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Abstract
We study small-scale and high-frequency turbulent fluctuations in three-dimensional flows under
Fourier-mode reduction. TheNavier–Stokes equations are evolved on a restricted set ofmodes,
obtained as a projection on a fractal or homogeneous Fourier set.We find a strong sensitivity
(reduction) of the high-frequency variability of the Lagrangian velocity fluctuations on the degree of
mode decimation, similarly towhat is already reported for Eulerian statistics. This is quantified by a
tendency towards a quasi-Gaussian statistics, i.e., to a reduction of intermittency, at all scales and
frequencies. This can be attributed to a strong depletion of vortex filaments and of the vortex
stretchingmechanism.Nevertheless, we found that Eulerian and Lagrangian ensembles are still
connected by a dimensional bridge-relationwhich is independent of the degree of Fourier-mode
decimation.

1. Introduction

Turbulence is considered a key fundamental and applied problem [1, 2]. Turbulentflows are distinguished in
nature and in the laboratories by the stirringmechanisms and the boundary conditions. Both can be strongly
anisotropic, non-homogeneous, and non-stationary, leading to very different realizations for themean
quantities and large-scale velocity configurations. In spite of this large variety, we know that the central feature of
all turbulent flows stems from the nonlinear termswhich are able to transfer to all scales the energy injected by
the stirringmechanisms. The nonlinear terms are invariant under translation, rotation andmirror symmetries.
This is why isotropic, homogeneous andmirror symmetric turbulence is considered a paradigmatic problem for
fundamental and applied studies [1].

It is an empirical observation that, in three-dimensional turbulence, energy tends to be transferred from
large to small scales intermittently, i.e., producing larger and larger non-Gaussian fluctuations by increasing the
Reynolds number (the relative intensity of nonlinear versus linear terms in the equations). This is accompanied
by the development of anomalous power law scaling for themoments of the velocity increments in the inertial
range, i.e., at scalesmuch smaller (larger) than thosewhere the forcing (viscous) term acts. Intermittency of
three-dimensional turbulence is not yet fully understood.We cannot connect it to the equation ofmotion.
Neither canwe predict its degree of universality, nor the key dynamical and topological ingredients of its origins.
For example, two-dimensional turbulent flows are non-intermittent with quasi-Gaussian statistics in the inverse
cascade regime [3].

In the past, theNavier–Stokes equations (NSEs) restricted on a sub-set of Fouriermodes have been
numerically investigated to gain information about the nature of anomalous scaling, its dependency on the
Reynolds number [4–6], and the effect of local versus non-local dynamics on the degree of intermittency see e.g.
[7].More recently, a newdecimation protocol has been proposed to ask further questions about the origin of
intermittency in theNSE [8, 9]. The idea is again to selectively remove degrees of freedom (DOF) in the Fourier
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space, but now implemented in away to preserve the same conserved quantities and the same symmetries of the
original undecimatedNSE. By studying the impact of such removal on the flow statistics (in particular, on the
intermittent behavior through changing of the projection protocol), a better understanding about the degree of
universality and sensitivity of anomalous scaling in turbulence can be achieved.

In this paper, we follow this route further by investigating for the first time the effects of Fourier-mode
reduction on the evolution of Lagrangian tracers in turbulence and thus also assessing temporal intermittency. It
is well known that Lagrangian particles get strong feedback from the presence of small-scale intense vortex
filaments [10–12]. Studying Lagrangian intermittency under Fourier-mode reduction is therefore a direct way to
quantify the robustness of vortex stretching and small-scale vorticity productionmechanisms by changing the
activeDOF in the dynamical evolution.

We perform a series of direct numerical simulations (DNSs) of the three-dimensional NSE by restricting the
dynamical evolution on a prescribed quenched set of Fouriermodes, and by varying the Reynolds number.We
investigate here the casewhen such a set ofmodes is a fractal or homogeneous subset of thewhole Fourier space.
Both these decimationmethods belong to the class of spectral tools aiming at solvingNavier–Stokes dynamics
on a reduced set of wave numbers. Themain goals of our theoretical and numerical work are: (i) understanding
the impact ofmode reduction on the Lagrangian statistics, and (ii) understanding the robustness of Eulerian–
Lagrangian bridge relation at changing the scaling properties of theflow.

The effects on the Eulerian statistics induced by the restriction of the dynamics on a fractal set for two- and
three-dimensional incompressible turbulence [8, 9, 13, 14], as well as on the one-dimensional Burgers equations
[15], have already been reported.

In this paperwe extend the previous findings on Eulerian intermittency by considering the case of the
homogeneousmode-reduction and by studying its effects on the Lagrangian statistics.Wefind that
homogeneous Fourier-mode decimation is a quasi-singular perturbation for the Lagrangian scaling properties,
similar towhat is seen for the Eulerian ones. Notwithstanding this fact, we alsofind that Eulerian and Lagrangian
statistics remain strongly correlated, such that the bridge-relation empirically observed for the original
undecimatedNSEs still holds in the presence of Fourier-mode reduction.

This paper is organized as follows. In section 2, we introduce themodel equations for the Eulerian and
Lagrangian dynamics, as well as the decimation protocols; we also define the set-up of the numerical
experiments performed, togetherwith the relevant parameters. In section 3we separately discuss themain
results for the velocity field in terms of the Eulerian and Lagrangian statistical properties; while in section 4we
combine them together by quantitatively assessing the validity of the bridge relation [16–21]. Summary and
discussions are contained in the last section.

2.Model equations for the Eulerian and Lagrangian dynamics

2.1. The decimated equations ofmotion
Let us define ( )u x t, and ˆ ( )u k t, as the real and Fourier space representations of the velocity field, respectively,
in dimensionD=3.We start by considering theNSEs for the incompressible flowwith unit density:

n ¶ = - - +  +( · ) ( )u u u up F, 1t
2

where p is the pressure and ν is the kinematic viscosity. F is a homogeneous and isotropic forcingwhich drives
the system to a non-equilibrium statistically steady state. Decimation on a generic sub-set of Fouriermodes is
accomplished by using a generalizedGalerkin projector,  , which acts on the velocity field as follows:

 å g= =( ) ( ) ˆ ( ) ( )·x x u kt t tv u, , e , , 2
k

k x
k

i

where ( )x tv , is the representation of the decimated velocity field in the real space. The factors gk are chosen to
be either 1 or 0with the following rule:

g =
- º

⎧⎨⎩ ∣ ∣
( )

h

h k k

1, with probability

0, with probability 1 , .
3k

k

k

Once defined, the set of factors gk are kept unchanged, quenched in time.Moreover, the factors gk preserve
Hermitian symmetry g g= -k k so that  is a self-adjoint operator.

TheNS equations for the Fourier decimated velocity field are then,

 n ¶ = - - +  +[ ( · )] ( )pv v v v F. 4t
2

Wenotice that in the above definition of the decimatedNSE, the nonlinear termmust be projected on the
quenched decimated set, to constrain the dynamical evolution to evolve on the same set of Fouriermodes at all
times. Similarly, the initial condition and the external forcingmust have a support on the same decimated set of
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Fouriermodes. In the (L2)norm, òµ  ∣ ( )∣ xv v x d2 3 , the self-adjoint operator  commutes with the gradient
and viscous operators. Since  =v v , it then follows that the inviscid invariants of the dynamics are the same of
the original problem inD=3, namely energy and helicity.

In this workwe adopt two different projectors  based on different definitions of the hk factors. One is given
by a fractal Fourier decimation, first introduced in [8] as:

µ <-( )h k k D, with 0 3,k
D

0
3

where k0 is a small wavenumber here always taken to be 1. This decimation ensures that the dynamics is restricted
isotropically to aD-dimensional Fourier sub-space.Note that this implies that the velocity field is embedded in a
three-dimensional space, but effectively possesses a set of DOF inside a sphere of radius k growing as
# ~( )k kD

DOF . The smaller the fractal dimensionD, the slower is the associated growth of theDOF.Moreover,
the decimation clearly has a larger impact towards the ultra-violet cutoff, sincemodes in the highwave number
range have a larger probability to be decimated. Note that this is different from studyingNSE in geometries with
one compactified dimension, as previously reported [22].

The second choice consists of keeping the degree ofmode reduction homogeneous in thewave number range:

 a a= "h k, ; with 0 1.k

2.2. Set-up of the numerical experiments
Weperformed different series ofDNSs of the incompressibleNSEs in a 2π-periodic volume, with a standard
pseudo-spectral approach fully dealiasedwith the two-thirds rule. Time stepping is donewith a second-order
Adams–Bashforth scheme.

Thefirst set of simulations is done by usingN3=5123 collocation points. In these runs, a constant energy
injection forcing [23, 24] acting only at large scales, 1�kforce�2, is implemented to keep the system in a
statistically steady state. The second set of simulations is donewithN3=10243 grid points. A statistically steady,
homogeneous and isotropic turbulent state ismaintained by forcing the large scales, 0.5�kforce�1.5, of the
flow via a second-orderOrnstein–Uhlenbeck process [25]. The choice to adopt a time-correlated process for the
forcing is dictated by the requirement to enforce the continuity of the acceleration of particles. In all simulations
withN=1024, the correlation time-scale of the forcing is t~ h10 so that small scales are unaffected by the
precise forcingmechanism. For both resolutions, we performdifferent sets ofDNS for different values of the
fractal dimensionD or the decimation percentage α. In our study, we define the Reynolds number as

nºlRe u Lrms , where urms is the rootmean square value of the velocity field and p=L 2 is the size of the
system. In table 1, for each runwe report the fractal dimensionD or theα values, togetherwith the estimated
Reynolds number.

To obtain the Lagrangian statistics, we seeded the flowwith tracer particles. The particles do not react on the
flow and do not interact amongst themselves. The trajectories of individual particles are described via the
equation:

= ( ( ) )X
X

t
t tv

d

d
, ,

and are integrated by using a trilinear or B-spline 6th order interpolation scheme [26], to obtain thefluid
velocity, ( ( ) )X t tv , , at the particle position.Wenote that Galerkin truncation or decimation operators destroy

Table 1.Parameters of our direct numerical simulations:N the number of grid points along each spatial direction; ν the kinematic viscosity; ò
themean energy dissipation rate; t n eºh theKolmogorov time scale.

N ν  τη D (Reλ) α (Reλ) (%)

512 0.001 0.79±0.03 0.035±0.002 ( ) ( ) ( )
( ) ( ) ( )

3 69 ; 2.99 70 ; 2.98 70 ;

2.95 70 ; 2.9 72 ; 2.8 74
—– 0; 0.03; 0.06; 0.15; 0.28; 0.46

512 0.001 0.80±0.01 0.035±0.001 —–
( ) ( ) ( )
( ) ( ) ( )

0.97 72 ; 0.95 71 ; 0.93 72 ;

0.9 73 ; 0.7 72 ; 0.5 82
0.03; 0.05; 0.07; 0.1; 0.3; 0.5

1024 8×10−4 1.4±0.2 0.023±0.005 ( ) ( )
( )

3 129 ; 2.99 125 ;

2.9 131
—– 0; 0.04; 0.34

1024 3×10−4 1.4±0.2 0.015±0.003 2.8 (220) —– 0.66

1024 8×10−4 1.4±0.1 0.023±0.003 —–
( ) ( )

( )
0.99 126 ; 0.95 126 ;

0.90 127
0.01; 0.05; 0.1

1024 3×10−4 1.3±0.2 0.015±0.003 —– 0.60 (205) 0.4

Note: TheReynolds number is estimated as nºl /Re u Lrms , where urms is the rootmean square value of the velocity, and p=L 2 is the

size of the system; note that at changing the decimation importance, the Reynolds number of theflow can also change, due to an increase of

the total kinetic energy in the system (see discussion below). The Reynolds number is given for each run, together with the fractal dimension

D or the α values.D is the dimension of the Fourier set for the fractally decimated cases. The values α are the probability used in the cases of

homogeneous decimation and (%) in the last column is the percentage of decimatedmodes with respect to the non-decimated case: it is

estimated in thewavenumber range between themode zero up to thewavenumber where the energy dissipation spectrumpeaks.
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the Lagrangian structure of theNS dynamics. However, it is clear that studying the Lagrangian dynamics in
turbulent decimated flows is always possible, and, as wewill see, it is an important piece of informationwhen
dealingwith the nature of intermittency in hydrodynamical turbulence.

3. Results

3.1. Spectra
As shown in [9], fractal decimation induces a correction,µ -k D3 , for the power law scaling of the kinetic energy
spectrum:

~ - -( ) ( )E k k k , 5D
D3 5 3

where the factor∼k−5/3 is theK41 spectrumpredicted byKolmogorov in 1941 theory and valid for theD=3
original problem (weneglect intermittent corrections). The derivation of this result can be found in [9]: it is
based on the empirical observation that the energyflux,  , remains constant in the inertial range of scales and for
all fractal dimensions. In order to keep a constant flux across all scales, with less and lessmodes, the spectrum
must acquire a power-law correction. Note that the extra power-law correction induced by the fractal
decimation introduces new contributions in the Eulerian domain, leading to a complex superposition of scaling
properties as shown in [9, 14, 15]. Furthermore, thismakes it evenmore difficult to interpret Lagrangian
statistics starting from the Eulerian phenomenology.

Since for the homogeneous case the decimation probability is constant and independent of k, these
difficulties are absent andwe expect a K41 spectra for allα:

~ -( ) ( )E k k . 6hom
5 3

Infigure 1we confirm the two predictions (5) and (6) by showing the compensated energy spectra for the case of
(a) fractal ( - +( )E k kD

D 3 5 3) and (b) homogeneous ( ( )E k khom
5 3) decimations. The curves all collapse for all the

values ofD andα.
Before concluding this section, we comment that the power-law correction of the spectrum exponent for the

fractal cases is such that forD=7/3, the spectrumbecomes divergent in the region of large k. Numerically, the
investigation of the system at such low fractal dimension is critical, since e.g. at resolutionN=1024 about less
than 1%of themodeswould survive. The actual behavior of the system at dimensions close to 7/3 remains an
open question.

3.2.Higher-order Eulerian statistics
In three-dimensional turbulence, the distribution of the spatial derivatives of the velocityfield has a strongly
non-Gaussian behavior. Ameasure of this is given by the kurtosis of one component of the vorticity field
(assuming small-scales isotropy):

w
w

=
á ñ
á ñ

( )K w .E
x

x

x

4

2 2

AGaussian distribution is characterized byKE=3. It is known that in three-dimensional turbulence, the
kurtosis is larger than 3 and grows as a function of the Reynolds number, indicating that the flow is becoming
more andmore intermittent. It was previously observed [9, 14] that when fractal decimation is applied, the
kurtosis approaches theGaussian valuewith decreasingD. Infigure 2we show the value of the kurtosisKE(wx) as

Figure 1.Compensated kinetic energy spectra (a) + - ( )k E kD5 3 3 for fractal and (b) k5/3E(k ) for homogeneous decimation. The spectra
have been shifted to obtain a collapse onto a single curve, for ease in visualization.
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a function of the percentage of removedmodes (%) (defined below and listed in table 1) for both fractal and
homogeneous decimations as well as for the different Reynolds numbers. Tomake the comparison between the
fractal and homogeneous protocolsmeaningful, we use the percentage ofmode reduction in the fractal case
measured as the percentage ofmodes removed up to kpeak, i.e., up to thewavenumberwhere the dissipation
energy spectrum ( )k E kD

2 peaks. For homogeneous decimation, the percentage of removedmodes (%) is simply
a-1 . Our results show that not only does the homogeneous decimation cause a suppression of intermittency,

but the effect takes placewith the same dependence on the percentage of removedmodes asmeasured in the
fractal case.Moreover, we see that our data from these sets of simulations are in agreement with data from [9]
where a different forcingwas used. To summarize, turbulent decimated systems show a unique tendency
towards a quasi-Gaussian statistics, independent of the decimation protocol.

The suppression of spatial intermittency under decimation leads us to themain question of this paper:What
happens to the Lagrangian dynamics when small-scale structures responsible for the vortex stretching are largely
modified [14], if not destroyed? To answer this questionwe stick to the homogeneous decimation case in order
to avoid the further complication induced by the power-law correction present in the velocity scaling in the
fractal case.

3.3. Lagrangian statistics
In this section, we analyze the statistical behavior of tracer particles in decimated flows. In order to do that it is
useful to define the order-p Lagrangian structure function:

åt d tº á ñ ~t
z( ) [ ] ( )S v , 7p

L

i
i

p p
L

where d t t= + + -t ( ( ) ) ( ( ) )X Xv v t t v t t, ,i i i and the sum is over the three components of the velocity field
(assuming isotropy). As for the Eulerian case, we quantify deviations fromGaussian statistics at changing time
lags by defining the Lagrangian kurtosis:

t
t
t

=( ) ( )
( ( ))

( )K
S

S
. 8L

L

L
4

2
2

KL(τ) evaluated at time increment τ=τη is plotted infigure 3. It shows a strong dependence on the number of
DOF, similar towhat happens for the Eulerian case. The dependence on the Reynolds number of theflow is weak
aswefind that themeasurements done in theDNSwithN=512 orN=1024 exhibit the same behavior.
Notice that in figure 3, the value of the kurtosis for the smallest time scale is very close to the one obtained by
looking at the acceleration of the particles.

To quantify the Lagrangian properties at all time lags τ, we show in the inset of the samefigure the kurtosis of
tracers for all τ. It is clear that there is a rapid reduction of intermittency, as it was reported in [9], just like the
corresponding Eulerianmeasurementsmade for spatial increments. Since Lagrangian statistics are known to be
more intermittent than their Eulerian counterparts (as quantified by the deviations from the dimensional
scaling), this result is evenmore interesting. This is because it shows how a nominally small decimation
(α=0.95) is responsible for a decrease of about 85%of the kurtosis at small τ.We attribute such a large
reduction to the strongmodification of intense vortical structures as reported in a previous study [14].
Moreover, the quick recovery of quasi-Gaussian statistics by increasing the degree of decimation is, for this

Figure 2.The kurtosis of the x-component of the vorticity field ( )K wE
x versus the percentage of decimated Fouriermodes, (%). The

explicit values of the percentage of decimation and the corresponding fractal dimensionD or the probability of homogeneous
decimation α are listed in table 1.
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observable and for the Reynolds numbers investigated here, almost independent of the Reynolds number. It is
also noteworthy that the results are independent of the particular type of large-scale forcing since the formof
forcing forN=512 differs from the case ofN=1024.

To have a deeper understanding of the Lagrangian scaling, infigure 4, we plot the local slopes by using
extended self similarity [19, 27, 28], i.e., the logarithmic derivative of the fourth order Lagrangian structure
function, t( )( )SL

4 , versus the second order one, t( )( )SL
2 , which gives:

t
t

z

z
=

( )
( )

( )S

S

d log

d log
. 9

L

L

L

L
4

2

4

2

Let us notice that the above quantity is a direct scale-by-scalemeasurement of the local scaling properties and
does not need anyfitting procedure. A scale-independent behavior of onemoment against the second-order one
would result in a constant value for the left-hand side of (9).We recall that in the absence of intermittency, these
curves should be constant across the time lags with z z = 2;L L

4 2 while this relation is alwayswell verified for the
smooth dissipative scales, a non-trivial behavior appears in the inertial range pointing out the intermittent
feature of the original system. A few important observations should bemade. First, in the time range from1 to
10 τη, the strong deviation observed in the local slope of the standardD=3 case and attributed to events of
tracer trapping in intense vortexfilaments [29] rapidly disappears as soon as themode reduction is applied.
Second, we observe that in the inertial range (where theD=3 local exponents develop a plateaux) the scaling
for the decimated cases ismuch poorer, i.e. the local-slopes are no longer constant. Finally, independent of the
existence of a pure scaling behavior, we observe that the intermittent correction is also reduced as the percentage
of removedmodes is increases, and it almost vanishes, reaching the dimensional value 2 for almost all τ, already

Figure 3.The kurtosisKL(τ) of the Lagrangian structure functionmeasured at theKolmogorov time scale t t= h as a function of the
percentage of decimated Fouriermodes (%). In the inset we show representative plots ofKL(τ) versus τ for some values ofα.

Figure 4. Log-lin plot of the local slopes of the scaling exponent z zL L
4 2 of the Lagrangian structure functions, averaged over the three

velocity components, versus τ/τη for some representative value ofα from the simulations atN=1024.
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atα=0.6, corresponding to 40%of themodes decimated. These observations are valid for all the Reynolds
numbers here explored.

4. Connecting Eulerian and Lagrangian statistics in decimatedflows

An important open point in literature is connected to the relation between Eulerian and Lagrangian statistics
[16, 19, 21, 30–34]. The two ensemblesmust of course be correlated. Let us introduce the order-pEulerian
structure function in amanner analogous to the definition of the Lagrangian structure function. For the
longitudinal velocity increments d = + -[ ( ) ( )] · ˆv rv x r v xr , the longitudinal Eulerian structure function can
bewritten as

dº á ñ ~ z( ) [ ] ( )S r v r . 10p
E

r
p p

E

Similarly, one could have introduced transverse Eulerian structure functions, based on transverse increments
[1]. Dimensional predictions based on the idea that in the inertial range everything is driven by the energy
transfer rate,  , puts strong constraints on the possible functional dependencies of Eulerian and Lagrangian
structure functions. For example, dimensional predictions give z = p 3p

E and z = p 2p
L . It is also known that in

the presence of intermittent corrections, where z ¹ p 3p
E and z ¹ p 2p

L , the two sets of exponents are well
explained by a bridge relation [16–18, 21]. The idea is to connect the spatial and temporalfluctuations over
increment r and τ by

d d t d~ ~t ( )v v r v; . 11r r

Applying the usualmultifractal formalism, is then possible to show that the following relation holds [16–18, 21]:

z z= ( ), 12p
L

n
E

z= - ( )p n . 13n
E

It is important to notice that the above relation is consistent with the dimensional phenomenology.Moreover,
considering that we have the exact Eulerian result z = 1E

3 , the second order Lagrangian structure functionmust

scale linearly according to (13), z = 1L
2 :

t t=( ) ( )S C . 14L
2 0

Different scaling properties for three-dimensional Lagrangian turbulence have also been proposed, as discussed
in [33]. The question of whether this bridge relation is exact or a very goodfirst-order approximation is still
open. Since, even under decimation, one can prove that z = 1E

3 , it is important to checkwhether the above
prediction (14) still holds (empirically)under the application of homogeneous decimation. Infigure 5(a), we
plot the second ordermoment of velocity increments, averaged over the three field components, for the
homogeneously decimated runs atN=1024.We note that all curves exhibit a similar behavior, which also
means that there is no evident difference between data ofD=3 standard turbulence, and the data from the
decimated cases, in agreement with (14).

Figure 5. (a) Log–log plot of the second-order Lagrangian structure function t( )S L
2 versus τ/τη, averaged over the three velocity

components, for some representative values of α. In the inset we show the linearly compensated second-order Lagrangian structure
function, t t( ) ( )S C ;L

2 0 the dimensionless constantC0 is chosen such that the peak of the compensated structure function is 1. In
(b)we show the variation ofC0 as a function of (%) for the homogeneously decimated cases, and for runs at comparable Reynolds
numbers: the upper curve is forReλ; 130 (×), while the lower curve is forReλ; 75 squares). The isolated circle point is for the
numerical simulation atN=1024, viscosity = -nu e3. 4 andα=0.6, for which the estmatedReynolds number is higher than the
other cases.
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In the inset of the same figurewe also plot the compensated curves, t t( ) ( )S CE
2 0 versus τ. Looking at the

compensated plots, we can observe better the agreement amongD=3 and decimated turbulence. Such a good
overlap of the different curves is obtained by accurately fixing the values of two parameters. First, the
Kolmogorov time scale τη is variedwithin the error bars given in table 1 to obtain an optimal horizontal shift.
Second, the coefficientC0 is also changed in order tofix the peak of the correlation at 1. The value of
normalization constantC0 has been already examined in previous works and it is known to depend on the
Reynolds number of the flow, see e.g. [35, 36]. For highReynolds numbers in three-dimensional turbulence, it is
estimated thatC0 lies in the range 6–7. In our simulations, we havemeasured forD=3 the valueC0=5.2 for
N=1024, which is in agreementwith the previousmeasurements at the sameReynolds number. Themeasured
behavior ofC0 as a function of the percentage of removedmodes (%) is interesting. In panel (b) offigure 5, we see
that it grows as the reduction of theDOF in the system increases. This result is in agreement with the observation
first reported in [8] that, at increasing decimation, a less efficient energy transfer towards small-scale leads to a
growth of total kinetic energy due to an accumulation at the largest scales of the system.We also note that for any
given value of the percentage ofmodes decimated,C0 is slightly larger for the homogeneous runswith higher
Reynolds number.We remark thatC0 is known to be strongly sensitive to the underlying Eulerian flow
realization, since for example in two-dimensional (undecimated) turbulence in the inverse cascade regime [20],
it can become as large as 40–50 depending on the inertial range extension.

The scaling properties of t( )S L
2 show that the bridge relation is robust undermode reduction, at least for

those observables that are not affected by intermittency.We now ask the same question for higher order
moments, where intermittency play amajor role and strongly depends on the degree ofmode reduction. In
figure 6, we test on the numerical data the bridge-relation (13) for the Lagrangian scaling exponent z zL L

4 2 . To do

this, we first need to estimate from the Eulerian data a functional form for the curve of the scaling exponents, zp
E

of the structure functions for different values of p.We accomplish this by repeating the procedure illustrated e.g.
in [19], by using themultifractalmodel and a log-Poisson distribution for the singularity spectrum.Details are
not repeated here for the sake of brevity.

The shaded area around each curve represents our uncertainty on the local Lagrangian scaling exponents,
based on the Eulerian ones: indeed in the Eulerian framework, scaling exponents are not defined uniquely since
longitudinal and transversemoments are observed to scale differently, see e.g., [37]. The shaded area is
associated to the different sets of Lagrangian scaling exponents thatwe can obtain considering either the
longitudinal or the transversemoments scaling in the Eulerian framework, and hence in the relations (12) and
(13). The agreement is remarkable.

To summarize, we have tested, a nonlinear set of relations bridging Eulerian scaling exponents to Lagrangian
ones. These transformations are based on the idea that statistical relations among velocity singular fluctuations
do survive decimation protocols, and can then be used evenwhen the detailed formof theNSEs ismodified by a
strong reduction of theDOF.

Figure 6. Log-lin plot of the local slopes of the scaling exponent z zL L
4 2 of the Lagrangian structure functions, averaged over the three

velocity components, versus the time lag τ/τη, for some representative values ofα from simulationswith higher Reynolds number.
The shaded region shows the inertial range prediction from themultifractalmodel by using the Eulerian longitudinal and transversal
structure functions. The straight dashed line correspond to the dimensional non-intermittent value z z= 2L

L4
2 . The overlap of the

shaded regions with the corresponding data fromour numerical simulations is a confirmation of the validity of the bridge relations
(see text), connecting the Eulerian and Lagrangian scaling exponents.
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5. Conclusions

Wehave performed a series ofDNSs of the three-dimensional NSEunder Fouriermode reduction. Projection
on a restricted set of Fouriermodes has been largely explored in the past, starting from the pioneering work of
Lee andHopf to study the Euler equations with the tools of equilibrium statisticalmechanics [38–41] or to
search forflux-less solutionswith scaling properties close to theKolmogorov−5/3 spectrum in the inverse
cascade regime [8, 42]. Here, we have shown that Fouriermode reduction also offers a unique opportunity to
change the degree of intermittency of theNSE and thus to study its robustness under awide spectrumof
different perturbations. Fouriermode reduction has a singular effect on the dynamics: a weak removal ofmodes
stronglymodifies the scaling properties of turbulent flows.

In this study, we have applied to the original three-dimensional problem two decimation protocols, where
the degree ofmode reduction is changed continuously through different control parameters. In both cases the
resulting dynamics preserves the inviscid conservation properties and all symmetries of the original problem.
Fractal decimation constraints the set of Fouriermodes to live on a fractal set, with the high-wavenumberDOF
having a larger probability to be decimated, leading to a larger and larger weight of non-local Fourier
interactions by decreasingD.Moreover, fractal decimationmodifies the scaling exponent of the kinetic energy
spectrum, thus introducing a complex superposition of scaling behaviors in the Eulerian domain.
Homogeneous decimation removesDOFwith the same percentage from large to small scales, without
introducing new scaling properties and keeping the same statistical weight of local and non-local triadic
interactions in the nonlinear evolution.We havefirst shown that both protocols reduce intermittencywith the
same dependence on the number ofDOF in the system in the Eulerian frame, and at the twoReynolds numbers
here investigated. Some runs have also been repeated by keeping all parameters unchanged, expect for the
stochastic realization of the decimationmask to check that the statisticalmeasures thatwe report are indeed
independent of the precise quenched realization of theDOF reduction.

Concerning the Lagrangian statistics, we have shown that homogeneous decimation leads to a quick
reduction of high-frequency intermittency too, asmeasured by the kurtosis of the Lagrangian structure
functions at the Kolmogorov time scale. This reduction of intermittency is accompanied by a quick increase of
theC0 constant in the second order Lagrangian structure function, indicating a possible singular behavior in the
high decimated regime at large Reynolds numbers. It is important to recognise that in the limit of infinite
Reynolds number, the fractal and homogeneous decimation protocols will probably lead to very different
asymptotics. This is because, as the Reynolds number increases, smaller and smaller scales appear whichwill be
decimatedwith a larger and larger probability for the fractal decimation protocol or with a constant probability
for the homogeneous case.

Interestingly, in spite of the strong sensitivity of intermittency on the degree ofmode reduction, the two sets
of Lagrangian and Eulerian structure functions remainwell-described by a phenomenological bridge-relation,
which connects the degrees of intermittency in the two set ofmeasurements. Besides the previousfindings, the
outcome of the present work can be seen as an attempt to characterize the statistical properties of theNSEwhen
restricted to a reduced set ofmodes and before applying a sub-grid closure for the removedDOF. This Large-
Eddy-Simulation program is typically implemented by applying a sharp cutoff at kc in Fourier space for all
wavenumbers with k>kc. Here, the cutoff is still sharp (we apply a projector) but the grid is diffused among the
whole Fourier space, keepingmemory of all scales and frequencies in the system. Thismight be crucial to further
improve themodelling of the evolution of particles in turbulent flows. In particular, the impact of fractal or
homogeneousmode reductions on the Lagrangian and Eulerian statistics can be seen as afirst step toward the
development ofmodels for the removedDOF,which is the ultimate goal of any large-Eddy-simulation. The
strong sensitivity of intermittency to the degree ofmode reduction is a clear indication that this is a delicate issue
that needs to be investigatedwith care.
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