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Local and non-local energy spectra of superfluid 3He turbulence

L. Biferale, D. Khomenko, V. L’vov, A. Pomyalov, I. Procaccia and G. Sahoo

Below the phase transition temperature Tc ≃ 10−3 K 3He-B has a mixture of normal and super-
fluid components. Turbulence in this material is carried predominantly by the superfluid component.
We explore the statistical properties of this quantum turbulence, stressing the differences from the
better known classical counterpart. To this aim we study the time-honored Hall-Vinen-Bekarevich-
Khalatnikov coarse-grained equations of superfluid turbulence. We combine pseudo-spectral direct
numerical simulations with analytic considerations based on an integral closure for the energy flux.
We avoid the assumption of locality of the energy transfer which was used previously in both analytic
and numerical studies of the superfluid 3He-B turbulence. For T < 0.37 Tc, with relatively weak
mutual friction, we confirm the previously found “subcritical” energy spectrum E(k), given by a
superposition of two power laws that can be approximated as E(k) ∝ k−x with an apparent scaling
exponent 5

3
< x(k) < 3. For T > 0.37 Tc and with strong mutual friction, we observed numerically

and confirmed analytically the scale-invariant spectrum E(k) ∝ k−x with a (k-independent) expo-
nent x > 3 that gradually increases with the temperature and reaches a value x ∼ 9 for T ≈ 0.72 Tc.
In the near-critical regimes we discover a strong enhancement of intermittency which exceeds by an
order of magnitude the corresponding level in classical hydrodynamic turbulence.

Introduction

Helium below the phase transition temperatures Tλ ≃
2.1K in 4He and Tc ≃ 10−3K in 3He can be described as
consisting of two coupled, interpenetrating fluids. One
fluid is inviscid with quantized vorticity, and the second
is viscous with a continuous vorticity. Consequently, su-
perfluid turbulence is even more complex than turbulence
in classical fluids. Moreover, the present knowledge of
many aspects of superfluid turbulence is still not fully
developed despite the many decades since the discovery
of superfluidity, see, e.g. Refs. 1–4. The subject offers
many opportunities for new approaches and new discov-
eries.
From the experimental point of view the study of the

statistical properties of superfluid turbulence is still dif-
ficult, even with the use of state-of-the-art technologies.
The very low values of Tλ and Tc limit severely any vi-
sual access, and in addition pose problems for adequate
sensors 1–4. Nevertheless new experiments are emerging,
requiring parallel theoretical efforts. Theoretical progress
requires developing direct numerical simulations (DNS)
which presently are the only way to reach a complete
description of the evolution of the normal and superfluid
velocity components. Such data offer access to the statis-
tical properties of superfluid turbulence. In the present
paper we study the physics of superfluid 3He turbulence,
using the fact that it is simpler problem than turbulence
in 4He, due to very high viscosity of the normal compo-
nent, which may be considered laminar.
The energy spectra E(k) in space-homogeneous, steady

and isotropic turbulence in superfluid 3He were studied
analytically within the algebraic approximation for the
energy flux in Ref. 5 (see also Eq. (2b) below). Numeri-
cally the issue was studied using the Sabra-shell model in
Ref. 6. The two papers 6,7 considered the large-scale ve-
locity fluctuations with k < π/ℓ, where ℓ is the mean dis-
tance between quantized vortex lines. It was shown that
the mutual friction between normal and superfluid com-

ponents suppresses E(k) with respect of the Kolmogorov-
1941 (K41) prediction 8:

E
K41

(k) = CKε
2/3
0 k−5/3 . (1)

Here ε0 is the energy flux over scales, equal in this case
to the rate of energy input into the system at k = k0:
ε0 = ε(k0); CK ∼ 1 is the dimensionless Kolmogorov
constant.
The isotropic, steady-state energy balance equation in

a one-fluid approach to 3He turbulence was analyzed by
Lvov, Nazarenko and Volovik (LNV) in Ref. 5:

d ε(k)

dk
+ΩE(k) = 0 , Ω = α(T )ΩT . (2a)

Here α(T ) is the temperature dependent dimensionless
mutual friction parameter and ΩT is the root mean square
(rms) turbulent vorticity. The wavenumber-dependent
energy flux over scales, ε(k), was approximated in Ref. 5

using K41-type dimensional reasoning, similar to Eq. (1):

ε(k) =
[
E(k)

/
CK

]3/2
k5/2 =

8

3

[
E(k)

]3/2
k5/2 , (2b)

as suggested by Kovasznay 9.
The ordinary differential Eq. (2) has an analytical so-

lution 5:

E(k) = E
K41

(k)
[
1− Ω† +Ω†

(k0
k

)2/3]2
, where (3a)

Ω† =
Ω

Ωcr

, Ωcr =
5

4

√
k30 E0 , E0 ≡ E(k0) . (3b)

For Ω† < 1 Eq. (3a) introduces a new crossover length-
scale

k× = k0
[
Ω†

/
(1− Ω†)

]3/2
, (3c)

that breaks the scaling invariance, predicting for Ω < Ωcr

a superposition of two scaling laws:

http://arxiv.org/abs/1701.07205v1


2

– For small k ≪ k×, the LNV spectrum (3a) takes a
“critical” form

Ecr(k) = E0

(
k0/k

)3
. (3d)

– For large enough k ≫ k×, the K41 spectrum (1) is
recovered, but with the energy flux ε∞ < ε0. The dif-
ference ε0 − ε∞ is dissipated by the mutual friction. For
k ∼ k×, the energy spectrum can be roughly approxi-
mated as E(k) ∝ k−x with an apparent scaling exponent
5
3
< x(k) < 3.
The crossover wavenumber k× increases with α(T ) and

for some critical value of αcr ∼ 1 it diverges. Then the
critical LNV-spectrum (3d) occupies the entire available
interval k0 < k < π/ℓ.
For α(T ) > αcr, the spectrum (3a) becomes “super-

critical” and terminates at some final k∗ that depends on
α(T ):

Es(k) ∝ k−3
[
k
2/3
∗ − k2/3

]2
. (3e)

All types of the LNV spectra (subcritical, critical and su-
percritical) where observed in Sabra-shell model simula-
tions (see Refs. 6 and10 for a general review on shell mod-
els). However, the analytical LNV model 5 is based on
an uncontrolled algebraic approximation for the energy
flux (2b); the shell-model of turbulence, used in Ref. 6, is
also an uncontrolled simplification of the basic equations
of motion for the superfluid velocity field. Therefore, the
problem of turbulent energy spectra in superfluid 3He
requires further investigation.
In this paper we report results of a first (to the best of

our knowledge) DNS study of the statistical properties
of a space-homogeneous, steady and isotropic turbulence
in superfluid 3He. We provide results on the turbulent
energy spectra, the velocity and vorticity structure func-
tions at different temperatures 0 < T < 0.7Tcr, the en-
ergy balance and intermittency effects. To these aims we
use the gradually-damped version of the Hall-Vinen 11-
Bekarevich-Khalatnikov12 (HVBK) coarse-grained two-
fluid model Eq. (4) as suggested in Ref. 13. We expect
this model to describe properly the turbulent velocity
fluctuations in superfluid 4He and 3He as long as the
their scales exceed the mean intervortex distance ℓ.
The paper is organized as follows:

• Section I is devoted to an analytical description
of the statistical properties of the steady, homogeneous,
isotropic, incompressible turbulence of superfluid 3He.
This should serve as a basis for further studies of
superfluid turbulence in more complicated or/and
realistic cases: anisotropic turbulence, transient regimes,
two-fluid turbulence of counterflowing, thermally driven,
superfluid 4He turbulence, etc.

In Sec. I A we present the gradually damped HVBK
Eqs. (4);

In Sec. I B we introduce the required statistical objects.

In Sec. I C we adapt the integral closure7 to obtain the
energy spectrum when the energy transfer over
scales is not local.

In Sec. ID we analyze the relations between the struc-
ture functions of the velocity and vorticity fields
with the sub- and super-critical energy spectra
E(k). These are required for the analysis of the
DNS data.

• Section II presents the DNS results for the statistics
of superfluid turbulence in 3He, together with a compar-
ison with the theoretical expectations.

In Sec. II A we shortly describe the details of the numer-
ical procedure;

In Sec. II B we present the DNS results for the energy
spectra obtained for different values of mutual fric-
tion frequency Ω in the subcritical, critical and su-
percritical regimes. We demonstrate their quanti-
tative agreement with the corresponding theoreti-
cal predictions, given by Eqs. (3a), (3d) and (16);

In Sec. II C we report a significant enhancement of inter-
mittency in near-critical regimes of superfluid 3He
turbulence, revealed by analysing the second- and
fourth-order structure functions of the velocity and
vorticity differences;

In Sec. II D we analyze the energy balance in the en-
tire region of k, shedding light on the origin of the
subcritical, critical and supercritical regimes of the
energy spectra;

In Sec. II E we present and analyze the DNS results for
the energy and enstropy time evolution, showing
how the large and small scale turbulent fluctua-
tions are correlated (or uncorrelated) in different
regimes;

Section II F clarifies the relation between the mutual
friction frequency Ω and the temperature T in pos-
sible experiments.

• Section III summarizes our findings. For the conve-
nience of the reader we present here the main results:

The numerical subcritical energy spectra for different
T < 0.37Tcr (see Tab. I and Fig. 1a), are in good
agreement with the LNV prediction (3a) with a sin-
gle fitting parameter b ≈ 0.5 that replaces the fac-
tor 5

4
in Eq. (3b).

At T ≈ 0.37Tcr (corresponding to Ω = 0.9 in our case)
we observed a critical energy spectrum Ecr ∝ 1/k3.

The numerically observed supercritical energy spectra
at T > 0.37Tcr exhibit a scale-invariant behavior
E(k) ∝ k−x, Eq. (16a) with the scaling exponent
x > 3 that gradually increases with the tempera-
ture and reaches the value x ∼ 9 for T ≈ 0.72Tcr.
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Relaxing the assumption of locality by using integral
closure for the energy flux (11), we confirmed ana-
lytically the scale-invariant spectrum E(k) ∝ k−x,
Eq. (16a) with the variable scaling exponent x that
depends on the temperature in a qualitative agree-
ment with the DNS observation.

In the near-critical regimes we observed significant in-
crease in turbulent fluctuations of superfluid veloc-
ity and vorticity at small scales, typical for inter-
mittency.

I. ANALYTIC DISCUSSION OF THE

STATISTICS OF 3HE TURBULENCE

A. Gradually damped HVBK-equations for

superfluid 3He-B turbulence

Large scale turbulence in superfluid 3He can be de-
scribed by the Landau-Tisza two-fluid model in which the
interpenetrating normal and superfluid components have
densities ρn, ρs and velocity fields un(r, t), us(r, t), re-
spectively. The gradually damped version of the coarse-
grained HVBK equations13 for incompressible motions of
superfluids with constant densities has the form of two
Navier-Stokes equations supplemented by mutual fric-
tion:

∂ us

∂t
+ (us ·∇)us −

1

ρs
∇ps = νs ∆us + fns , (4a)

∂ un

∂t
+ (un ·∇)un −

1

ρn
∇pn = νn∆un−

ρs
ρn

fns , (4b)

pn =
ρn
ρ
[p+

ρs
2
|us − un|2] , ps =

ρs
ρ
[p− ρn

2
|us − un|2] ,

fns ≃ α(T )ΩT (un − us) . (4c)

Here pn, ps are the pressures of the normal and the super-
fluid components. ρ ≡ ρs + ρn is the total density, νn is
the kinematic viscosity of normal fluid component. The
dissipative term with the Vinen’s effective superfluid vis-
cosity νs was added in Ref. 14 to account for the energy
dissipation at the intervortex scale ℓ due to vortex re-
connections and similar effects. A qualitative estimate of
the effective viscosity νs ≃ ακρs/ρ follows from a model
of a random vortex tangle moving in a quiescent normal
component 14.
The approximate Eq. (4c) for the mutual friction force

fns was suggested in Ref. 5. It involves the tempera-
ture dependent dimensionless mutual friction parame-
ters α(T ) and rms superfluid turbulent vorticity ΩT. In
isotropic turbulence

Ω2
T
≡

〈
|ω|2

〉
≈ 2

∫
k2Es(k)dk , (5)

where Es(k) is the one-dimensional (1D) energy spec-
trum, normalized such that the total energy density per
unit mass Es =

∫
Es(k) dk.

Note that in Eq. (4) we did not account for the reactive
part of the mutual friction 15, proportional to another
temperature dependent parameter α′. As was shown in
Ref. 16, this force leads to a renormalization of the non-
linear terms in Eq. (4a) by a factor (1 − α′). Dividing
Eq. (4a) by this factor, we see that (besides the renor-
malization of time) we get also the renormalization of
α ⇒ α̃ = α/(1 − α′) in Eq. (4c), which now reads:

fns ≃ Ω (un −us) , Ω = α̃(T )ΩT , α̃ = α/(1− α′) . (6)

Ideally, the turbulent vorticity ΩT should be calcu-
lated self-consistently, at each time step. However we use
a simplified version, by first solving Eqs. (4) with some
value of Ω, then calculating ΩT by Eq. (5) with the ob-

served Es(k) and finally finding α
DNS

= Ω/ΩT. After
that we identify the temperature to which the particular
simulation corresponds by comparing with known exper-

imental values α(T ) = α
DNS

. We have verified that in the
present range of parameters, simulations with a constant
value of Ω and self-consistent simulations give similar re-
sults.

B. Statistical description of space-homogeneous,

isotropic turbulence of superfluid 3He

1. Definition of 1-D energy spectra and cross-correlations

Traditionally one describes the energy distribution
over scales in a space-homogeneous, isotropic case using
the one-dimensional (1D) energy spectrum E(k), defined
by Eq. (9). To clarify this definition we need to recall
some well known relationships.
Fourier transforms are defined with the following nor-

malization:

un,s(r, t) ≡
∫

dk

(2π)3
ũn,s(k, t) exp(ik · r) , (7a)

ũn,s(k, t) =

∫
dr un,s(r, t) exp(−ik · r) . (7b)

Next we define the simultaneous correlations and cross-
correlations in k-representation, [proportional to δ(k+q)
and δ(k + q + p) due to the space homogeneity]:

〈ũn(k, t) · ũn(q, t)〉 = (2π)3Fnn(k) δ(k + q) , (8a)

〈ũs(k, t) · ũs(q, t)〉 = (2π)3Fss(k) δ(k + q) , (8b)

〈ũn(k, t) · ũs(q, t)〉 = (2π)3Fns(k) δ(k + q) , (8c)〈
ũ ξ
s (k, t) ũ

β
s (q, t) ũ

γ
s (p, t)

〉

= (2π)3F ξβγ
sss (k, q,p) δ(k + q + p) . (8d)

In the isotropic case the correlations Fnn, Fss and Fns

become independent of the direction of k, being functions
of the wavenumber k only. This allows us to introduce
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the one-dimensional energy spectra Es, En and the cross-
correlation Ens as follows:

En(k) =
k2

2π2
Fnn(k) , Es(k) =

k2

2π2
Fss(k) ,

Ens(k) ≡ k2

2π2
Fns(k) . (9)

2. Energy balance equation

To derive the energy balance equation for Es(k, t) we
first need to Fourier transform Eq. (4a) to get the equa-
tion for ũs(k, t). Next, using Eq. (8b) and Eq. (9), we
arrive to the required balance equation:

∂Es(k)

∂t
+Tr(k) + Dν(k) + Dα(k) = 0 , (10a)

Dν = 2 νsk
2Es(k) , Dα = 2Ω

[
Es(k)− Ens(k)

]
.(10b)

Here Dν describes the energy dissipation, caused by the
effective viscosity. The term Dα is responsible for the
energy dissipation by the mutual friction with the char-
acteristic frequency Ω given by Eqs. (4c) and (5).
The energy transfer term Tr(k) in Eq. (10a) originates

from the nonlinear terms in the HVBK Eqs. (4a) and
has the same form as in classical turbulence (see, e.g.
Refs. 17,18):

Tr(k) = 2Re
{∫

V ξβγ(k, q,p)F ξβγ(k, q,p)

×δ(k + q + p)
d3q d3p

(2π)6

}
, (10c)

V ξβγ(k, q,p) = i
(
δξξ′ −

kξkξ
′

k2

)

×
(
kβδξ′γ + kγδξ′β

)
. (10d)

Importantly, Tr(k) preserves the total turbulent kinetic

energy:

∫ k

0

Tr(k′)dk′ = 0 and therefore can be written

in the divergent form:

Tr(k) =
∂ ε(k)

dk
, (10e)

where ε(k) is the energy flux over scales.

C. Supercritical energy spectra

1. LNR integral closure

To relax the assumption of the local energy trans-
fer in deriving the supercritical superfluid energy spec-
trum, we use the integral closure, introduced by L’vov,
Nazarenko and Rudenko7(LNR). The main approxima-
tion in this closure is the presentation of the third order

velocity correlation function F ξβγ
sss in Eq. (10c) as a prod-

uct of the vertex V , Eq. (10d), two second order correla-
tions Fss(kj), Eq. (8b), and response (Green’s) functions.
This closure is widely used in analytic theories of classi-
cal turbulence, for example in the Eddy-damped quasi-
normal Markovian closure (EDQNM) (see, e.g. books
Ref. 8,19 ). Keeping in mind the uncontrolled character
of this approximation, LNR further simplified the result-
ing approximation for isotropic turbulence by replacing
d3q d3p δ3(k+q+p) in Eq. (10c) with 3-dimensional vec-
tors k, q, and p by q2dq p2dp δ(k+q+p)/(k2+q2+p2)
with one-dimensional vectors k, q, and p varying in
the interval (−∞,+∞). The next simplification is the
replacement of the interaction amplitude V ξβγ(k, q,p),
Eq. (10d) by its scalar version (ik). The resulting LNR
closure can be written as follows:

Tr(k) =
A1 k

3

2π2

∫ ∞

−∞

q2dq p2dp δ(k + q + p)

2π (k2 + q2 + p2)
(11)

×k Fss(|q|)Fss(|p|) + q Fss(|k|)Fss(|p|) + pFss(|q|)Fss(|k|)
Γ(|k|) + Γ(|q|) + Γ(|p|) .

HereA1 is a dimensionless parameter of the order of unity
and Γ(k) is the typical relaxation frequencies on the scale
k.
The LNR model (11) satisfies all the general closure

requirements: it conserves energy,
∫
Tr(k) dk = 0 for

any Fk; Tr(k) = 0 for the thermodynamic equilibrium
spectrum Fk =const and for the cascade K41 spectrum
F (k) ∝ |k|−11/3. Importantly, the integrand in Eq. (11)
has the correct asymptotic behavior at the limits of
small and large q/k, as required by the sweeping-free
Belinicher-L’vov representation, see Ref. 20. This means
that the model (11) adequately reflects contributions of
the extended interaction triads and thus can be used for
the analysis of the supercritical spectra.

2. Supercritical spectra with non-local energy transfer

As was shown in Ref. 21, the eddy life time in 3He tur-
bulence is restricted by the mutual friction, which dom-
inates the dissipation due to the effective viscosity νsk

2

and the turbulent viscosity, caused by the eddy inter-
actions. Therefore we can safely approximate Γ(k) in
Eq. (11) by Ω. Omitting further the (uncontrolled) pref-
actors of the order of unity and using Eq. (9), we rewrite
Tr(k) in Eq. (10a) as follows

Tr(k) ≃ −Ak

Ω

∞∫

−∞

dq dp δ(k + q + p)

k2 + q2 + p2
(12a)

×
[
k3 Es(|q|)Es(|p|) + q3Es(|k|)Es(|p|) + p3 Es(|q|)Es(|k|)

]
.

Here A is uncontrolled dimensionless parameter, pre-
sumably of the order of unity. Recall, that in 3He tur-
bulence En ≪ Es and Ens ≪ Es. This allows us to sim-
plify the mutual friction dissipation term Dα to the form
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Dα(k) ≈ 2ΩEs(k). Hereafter we consider only superfluid
component and omit the superscript ”s“ in notations. We
show below that in the supercritical regime the viscous
dissipation term Dν(k) is vanishingly small with respect
to the mutual friction term Dα(k) and therefore can be
neglected in the balance Eq. (10a). Thus, in the station-
ary case Eq. (10a) can be presented in a simple form:

Tr(k) + 2ΩE(k) = 0 . (12b)

The integral (12a) diverges in the regions q ≪ k or p ≪ k.
For these wavenumbers it can be approximated as:

Tr(k) ≃ −Ak

Ω

∞∫

−∞

E(|q|)Ψ(k, q)dq , (13)

Ψ(k, q) =
k3 E(|k + q|)− (k + q)3 E(|k|)

k2 + q2 + (k + q)2
.

One sees that for q = 0 Ψ(k, 0) = 0 and the term which
is linear in q in the expansion does not contribute to the
integral (13). Therefore the main contribution to this
integral in the region q ≪ k originates from the second
term of the expansion:

Ψ(k, q) ≃ q2

2

∂2Ψ

∂q2

∣∣∣
q=0

=
q2

2

[k
2
E′′(k)− E′(k)

]
. (14)

Here ′ indicates the derivative with respect to k. Now
the energy balance Eqs. (12) can be simplified as follows:

AΩ2
T
k
[k
2
E′′(k)− E′(k)

]
= 4Ω2E(k) , (15)

where ΩT is given by Eq. (5). Equation (15) has the scale
invariant solutions

E(k) ∝ k−x , (16a)

with

AΩ2
T
x(x − 1) = 8Ω2 . (16b)

The whole approach is valid if the main contribution to
the integral (5) comes from the region q ≪ kmax, i.e for
supercritical cases with x > 3. With logarithmic accu-
racy we can also include the critical case with x = 3.
This allows us to estimate the new critical value of Ω for
supercritical regimes (with x > 3):

Ω̃cr = ΩT

√
3A/2 . (16c)

Now we can rewrite Eq. (16b) as:

x(x− 1) = 6 (Ω‡)2 , Ω‡ ≡ Ω/Ω̃cr , x > 3 . (16d)

We thus conclude that for the integral closure (12a) that
takes into account the long-distance energy transfer in k-
space, the supercritical spectra do not terminate at some
final value of k [as with the algebraic closure (2b)], but
behave like E(k) ∝ k−x with a scaling exponent x > 3
that increases with the supercriticality Ω‡.

D. Relations between structure functions and

energy spectra

a. Velocity structure function S2(r) vs E(k). Con-
sider full 2nd-order velocity structure function

S2(r) ≡
〈
|v(r +R)− v(R)|2

〉
, (17a)

which is related to the 3D energy spectrum F (k) as
follows:

S2(r) =

∫
d3k

(2π)3
|1− exp(ik · r)|2F (k) (17b)

= 2

∫
d3k

(2π)3
[
1− cos(k · r)

]
F (k) .

In spherical coordinates:

S2(r) = 2

∫
E(k)

[
1− sin(kr)

kr

]
dk . (18)

Let us analyze convergence of this integral for scale-
invariant spectra E(k) ∝ k−x. In the ultraviolet (UV)
region (for k r ≫ 1) the oscillating term (∝ sin(k r)) can
be neglected and the integral (18) converges if x > 1. In
the infrared (IR) region (for small k ≪ 1)

[1− sin(k r)/(k r)] ≃ (k r)2/6 (19)

and the integral (18) converges if x < 3. We con-
clude that for the integral (18) the window of convergence
(more often is referred to as the locality window) is:

1 < x < 3 , Locality window for S2 integral. (20a)

In this window, the leading contribution to the inte-
gral (18) comes from the region k r ∼ 1 and

S2(r) ∝ ry , y = x− 1 . (20b)

This is a well know relationship. For example, for the
K41 spectrum with x = 5/3 (which is inside the locality
window (20a)) y = 2/3 .
We conclude that subcritical spectra, (which in the

finite-k interval can be approximated as E(k) ∝ k−x with
5
3
≤ x ≤ 3) are local and we can use for the estimate

of the S2 the scaling relation (20b). We also see that
when exponent x approaches the critical value x = 3,
the S2 scaling approaches the viscous limit with y = 2.
For x = 3, S2(r) ∝ r2 with logarithmic corrections, not
detectable with our resolution.
In the supercritical region (x > 3), the S2-integral(18)

formally IR-diverges and the integration region has to
be restricted from below by some k0, similarly to the
integral (5). Together with Eq. (19), this gives the viscous
behavior for any x > 3:

S2(r) ≃ (rΩT)
2/6 . (21)
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TABLE I: Parameters used in the simulations by columns: (# 1) Ω determines the mutual friction by Eqs. (4c) and (5); (#
2) νs: the effective viscosity of the superfluid component; (# 3) us

rms: the rms velocity of the superfluid component; (# 4)

Resλ = us

rmsλ/νs: the Taylor-microscale Reynolds number, where λ =
2π

L

√
〈u2〉
〈ω2〉 is the Taylor microscale; (# 5) εsν : the mean

energy dissipation rate for the superfluid component due to viscosity; (# 6) εstot: total mean energy dissipation rate for the
superfluid component; (#7) ηs =

√
2νs/u

s

rms; (# 8) T s

0 = L/us

rms: large-eddy-turnover time. The temperature dependence of
ã is taken from Ref.22 (see Fig. 7). In all simulations: the number of collocation points along each axis is N = 1024; the size
of the periodic box is L = 2π; the kinematic viscosity of the normal component is νn = 10; the range of forced wavenumbers
kϕ = [0.5, 1.5]. The values for the critical value of Ωcr ≈ Ω = 0.9 [row (#5)] are emphasized. Runs (#1-#4) correspond to the
subcritical regime, (#6-#8) to the supercritical regime.

# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

# Ω νs us
rms Resλ εsν εstot ηs T s

0 Ωcr Ω̃cr ≈ Ω† = Ω‡ = ΩT 1/α̃(T ) T/Tc

Eq. (6) ×104 ×104 Eq. (25) 0.18ΩT Ω/Ωcr Ω/Ω̃cr Eq. (5) Eq. (6)

1 0 5 1.14 0 4.6 590 4.95 4.95 1.14 17.7 0 − 100 ∞ 0

2 0.25 5 0.89 0.28 3.3 750 0.85 3.57 0.89 7.4 0.28 − 41 164 0.19

3 0.5 1 0.95 0.53 3.2 2600 0.34 5.5 0.95 10.4 0.53 − 21 42 0.27

4 0.7 1 0.81 0.86 2.6 7500 0.015 4.38 0.81 2.2 0.86 − 10.4 15 0.32

5 0.9 1 0.79 1.13 2.5 16000 0.0028 5.1 0.79 0.9 − 1.0 6.3 7 0.37

6 1.1 1 0.75 1.46 2.3 23000 0.001 5.2 0.75 0.55 − 2.0 3.3 3 0.39

7 2.5 1 0.57 4.42 1.6 18000 0.0004 5.53 0.57 0.3 − 8.4 2.0 0.8 0.59

8 5 1 0.4 12.1 1.2 14000 0.0002 5.2 0.4 0.21 − 24 1.4 0.3 0.72

b. Vorticity structure function T2(r) vs E(k). Con-
sider now 2nd-order vorticity structure function

T2(r) ≡
〈
|ω(r +R)− ω(R)|2

〉
, (22a)

which is related to the 3D energy spectrum F (k) as fol-
lows:

T2(r) =

∫
d3k

(2π)3
|1− exp(ik · r)|2k2F (k) (22b)

= 2

∫
k2E(k)

[
1− sin(kr)

kr

]
dk .

By analogy, we can immediately find the locality win-
dow of this integral

3 < x < 5 , Locality window of T2 integral. (23a)

Within this window

T2(r) ∝ rz , z = x− 3 . (23b)

It is also clear that for x > 5 the scaling of T2(r) takes
the form

T2(r) ≃
r2

3

∫
q4E(q)dq ∼ r2 Ω2

T
k20 . (23c)

II. STATISTICS OF 3HE TURBULENCE:

DNS RESULTS AND THEIR ANALYSIS

A. Numerical procedure

We carried out a series of DNSs of Eqs. (4a) and (4b)
using a fully de-aliased pseudospectral code up to 10243

collocation points in a triply periodic domain of size L =
2π. In the numerical evolution, to get to a stationary
state we further stir the velocity field of the normal and
superfluid components with a random Gaussian forcing:

〈ϕu(k, t) ·ϕ∗
u(q, t

′)〉 = Φ(k)δ(k − q)δ(t− t′)P̂ (k) , (24)

where P̂ (k) is a projector assuring incompressibility and
Φ(k) = Φ0k

−3; the forcing amplitude Φ0 is nonzero
only in a given band of Fourier modes: kϕ ∈ [0.5, 1.5] .
Time integration is performed with a 2nd order Adams-
Bashforth scheme with viscous term exactly integrated.
The parameters of the Eulerian dynamics for all runs are
reported in Table I.

B. Energy spectra

1. Critical spectrum

The numerical energy spectra are shown in Fig. 1. As
was predicted in Ref. 5, at some particular “critical” value
of the mutual friction (value of Ω = Ωcr in our current
notations) there exists the self-similar balance between
the energy flux and the mutual-friction energy dissipa-
tion, that leads to the scale-invariant critical spectrum
Es(k) ∝ k−3, Eq. (3d). As one sees in Figs. 1, the com-
pensated spectrum for Ω = 0.9 is almost horizontal.
Therefore, in our simulations Ω ≈ 0.9 corresponds to
the critical spectrum.
For Ω < Ωcr we see the subcritical spectra, lying above
the critical one. In this case, the energy at small k is dis-
sipated by the mutual friction and approximately E(k) ∼
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FIG. 1: The normalized energy spectra Es(k) = E(k)/E0 compensated by k3: subcritical [Panel (a)] and supercritical [Panel
(b)] (solid lines) for different values of Ω. The critical spectrum (with Ω = 0.9) is shown in both panels. The dashed lines
in Panel (a) are the LNV-prediction (3a) for the subcritical spectra with one fitting parameter in Eq.(25) (b = 0.5) for all
Ω < 0.9. The horizontal dashed lines in both panels show the critical spectrum. Other dashed lines in Panel (b) represent the
scale-invariant spectra (16a) with an Ω-dependent exponent x.
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k−3. For larger k, the k-independent mutual friction dis-
sipation can be neglected compared to the energy flux
(with the inverse interaction time γ(k) ∼ k

√
kE(k)) and

E(k) can have K41 tail with the energy flux ε∞ < εinput,
that for even larger k is dissipated by viscosity.

2. Subcritical LNV spectra

The analytical LNV-model 5 of the subcritical spec-
tra, based on the local in k-space algebraical closure (2b),
was shortly presented in the Introduction. It results in
Eqs. (3) for Ecr(k,Ω) formally without explicit fitting pa-
rameter. Nevertheless, having in mind simplification (4c)
for the mutual friction, valid up to dimensionless factor
of the order of unity and the uncontrolled character of
Eq. (2b) for the energy flux, we replace in Eq. (3b) the
numerical factor 5

4
by a fitting parameter b ≈ 0.5. Now

Ωcr = b
√
k30E0 . (25)

Fig. 1a compares the numerical results with the ana-
lytical LNV-spectra (3a) with Ωcr given by Eq. (25).
A good agreement between DNS and analytical spec-

tra (3a) (with b ≈ 0.5) allows us to conclude that the
algebraic LNV-model with the build-in locality of the
energy transfer adequately describes the basic physical
phenomena of the subcritical regime in superfluid 3He
turbulence.

3. Supercritical spectra

According to LNV model 5, for Ω > Ω̃cr we expect su-
percritical spectra, i.e. the energy is mainly dissipated
by the mutual friction and Es(k) falls below the criti-

cal spectrum k−3. As we pointed out, the energy trans-
fer in this regime is not local anymore and a simple al-
gebraic closure (2b) fails. Instead, we adopted an inte-
gral closure (11) and predicted the scale-invariant spectra
Es(k) ∝ k−x, Eq. (16a), with the exponent x, estimated
by Eq. (16b). As we see in Fig. 1b, the supercritical en-
ergy spectra are indeed scale-invariant over more than
a decade of k (decaying by 13 decades for Ω = 5). The

scaling exponent x increases with Ω‡ = Ω/Ω̃cr as qualita-
tively predicted by Eq. (16b), although much slower. For
example, Ω‡ ≈ 2.0 for Ω = 1.1, see line (# 6) in Tab. I.
Then Eq. (16b) gives xmodel ≃ 5.4 instead of numerically
found xnum ≃ 3.7. This disagreement increases with Ω‡.
Here we should note that the particular form (11) of the
integral closure was chosen just for simplicity. We can
use much more sophisticated kind of a two-point inte-
gral closure, like EDQNM,23 or Kraichnan’s Lagrangian-
history direct interaction approximation 24, etc. However
the result will be qualitatively similar: a scale-invariant
solution with the exponent x that increases with Ω‡.
We again conclude that the suggested model (now with

the integral closure) describes qualitatively the physics of

the supercritical regime of the superfluid 3He turbulence
with the balance between the energy flux from k ∼ k0 di-
rectly to a given k ≫ k0, [the left hand side of Eq. (15)],
where it is dissipated by the mutual friction [the right
hand side of Eq. (15)]. This balance equation results in
the power-like law Esp ∝ k−x, in agreement with the
DNS results. The actual value of the exponent x de-
pends on the details of the uncontrolled integral closure.
A detailed analysis of the closure problem, including con-
tribution of next order terms in perturbation approach,
and comprehensive numerical simulations would be re-
quired to achieve better understanding of the statistics
of the supercritical regimes of superfluid 3He turbulence

C. Enhancement of intermittency in critical and

subcritical regimes of superfluid 3He turbulence

Current Sec. II C is devoted to the discussion of the nu-
merically found velocity and vorticity structure functions
S2(r), S4(r) and T2(r), T4(r) and to comparison their
scaling with the corresponding theoretical predictions.
The most important physical observation is a significant
amplification of the velocity and vorticity fluctuations in
the critical and subcritical regimes (for 0.7 ≤ Ω ≤ 0.9)
with respect to the level typical for classical hydrody-
namic turbulence. We consider this result as a manifes-
tation of the enhancement of intermittency in superfluid
3He turbulence.

1. 2nd-order structure functions of the velocity and

vorticity S2(r) and T2(r)

Consider scaling behavior of the velocity 2nd-order
structure function S2(r̃) for different Ω, shown in Fig. 2a
as a function of a dimensionless distance r̃ = r/η. For
the classical hydrodynamic turbulence (Ω = 0, black
line), S2(r̃) demonstrates the expected behavior: a vis-
cous regime, with S2(r̃) ∝ r̃2 for small r followed by
the K41 regime, with S2(r̃) ∝ r̃ζ2 , with ζ2 = 2/3 both
shown by black dashed lines. Note, that intermittency
correction to the K41 value of the scaling exponent ζ2
(ζ2 ≈ 0.70 instead of ζ2 = 2/3 ≈ 0.67) is not visible
on the scale of Fig. 2a and will be discussed below. The
spectrum for Ω = 0.25 (brown line) behaves similarly to
the classical case Ω = 0, just with larger cross-over value
of r̃. For larger subcritical values of Ω = 0.5 (red line)
and Ω = 0.7 (green line), the viscous S2(r̃) ∝ r̃2 behav-
ior for small r is now followed by an apparent scaling
behavior S2(r̃) ∝ r̃ζ2 with 2

3
< ζ2 < 2.This is a con-

sequence of apparent scaling behavior of the subcritical
LNV spectrum (3a), discussed in the Introduction. For
example,for Ω = 0.5 ζ2 ≈ 1.0, while for Ω = 0.7, the
apparent exponent ζ2 ≈ 1.4, and become close to ζ2 ≈ 2
already for the near critical value of Ω = 0.9. Note that
for much larger Reynolds numbers, these apparent expo-
nents are expected to appear only around r× ∼ 1/k×.
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FIG. 3: Color online. The velocity Fv(r̃) = S4(r̃)/S
2

2(r̃) and vorticity Fω(r̃) = T4(r̃)/T
2

2 (r̃) flatness vs r̃ for different Ω [Panels
(a) and (b)] and vs Ω for different r̃ [Panels (c) and (d)]. The straight dashed lines with the estimates of the apparent scaling
exponents serve to guide the eye only.

For r ≪ r× the apparent exponent should approach the
classical value ζ2 = 2/3 and for r ≫ r× – the critical
value ζ2 = 1.

As explained in Sec. ID, in the supercritical regime,
when Es(k) ∝ k−x with x > 3, the integral (18) losses its
locality and is dominated by small r, where the velocity
field can be considered as smooth. In this regime the
viscous behavior S2(r̃) ∝ r̃2 is expected for all Ω > 0.9,
as is confirmed in Fig. 2a.

Moreover, in this case the scaling behavior of the ve-
locity structure function S2(r̃) ∝ r̃2 is disconnected from
the energy scalingE ∝ k−x. The vorticity structure func-
tion T2(r̃) is more informative for this regime, because,
as shown in Sec. ID, the vorticity field is not smooth for
x < 5.

Fig. 2b compares the behavior of T2(r̃) for different Ω.
Consider first the test case Ω = 0, shown by a black
line. For very small r̃, when 1/r̃ exceeds viscous cutoff
of the energy spectrum, we see the viscous behavior ∝
r̃2, followed by the saturation region T2(r̃) ≃const. As
explained in Sec. ID, this is because the energy spectrum
exponent x = 5/3 is below the lower edge of the vorticity

locality window (23a). For x < 3, the integral (22b) is

dominated by large k in the interval
π

r
< k < kmax and

T2(r̃) becomes r-independent, as observed.
In Figs. 2 we present two cases with x within the lo-

cality window for vorticity (23a), 3 < x < 5: Ω = 0.9
with x ≈ 3 and Ω = 1.1 with x ≈ 3.66. According to our
asymptotical (for infinitely large scaling interval) predic-
tion (23b), we expect for these cases z ≈ 0 and z ≈ 0.66.
The numerically found values (see Fig. 2b) are slightly
larger: z ≈ 0.3 and z ≈ 0.8. Having relatively short scal-
ing interval, we consider this agreement as acceptable.
For even stronger mutual friction Ω = 2.5 and Ω = 5,

the energy scaling exponent x ≈ 6.9 and x ≈ 8.6,
are above the upper edge of the vorticity locality win-
dow (23a). In this case integral (22b) diverges at lower
limit, giving

T2(r̃) ≃
4

3
r̃2

∞∫

kmin

k4E(k) dk ∝ r̃2 . (26)

as is indeed observed in Fig. 2b.
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2. 4nd-order structure functions, flatnesses and

enhancement of intermittency

Consider now 4th-order structure functions of the ve-
locity and vorticity S4(r̃) and T4(r̃), shown in Fig. 2c and
Fig. 2d, for the subcritical and supercritical regimes. As
is well known, for the Gaussian statistics or, in a more
general case, for the “mono-scaling” statistics, the fourth-
order structure functions are proportional to the square
of the second one: S4(r̃) ∝ S2

2(r̃) and T4(r̃) ∝ T 2
2 (r̃).

We find such a behavior for very small r̃. For the clas-
sical case Ω = 0 (Fig. 2c) we see again scaling exponent
ζ4 close to the standard K41 value 4/3 ≈ 1.33 with in-
termittency corrections, hardy visible on this scale. For
larger Ω, the subcritical LNV spectrum (3a) becomes a
superposition of two scaling laws and, as we mentioned
in the Introduction, in the vicinity of a crossover wave
number k× may be approximated as k−x with an appar-
ent scaling exponent 5

3
< x(k) < 3. Indeed, we see in

Fig. 2c that the apparent value of ζ4 definitely deviate
from 4/3, approaching, for example, ζ4 ≈ 1.7 for Ω = 0.5
and ζ4 ≈ 2.3 for Ω = 0.7. Such a steepening of the struc-
ture functions spectra is caused by the energy dissipation
by mutual friction (see Fig. 1).
More importantly, upon increase in Ω the apparent

scaling of the velocity field progressively deviates from
the self-similar behavior type with S4(r̃) ∝ S2

2(r̃) and
ζ4 = 2ζ2. For example, for Ω = 0.5 ζ4 ≈ 1.7 < 2ζ2 ≈ 2.0
(such that ξ = 2ζ2 − ζ4 ≈ 0.3) and for Ω = 0.7 the
difference ξ ≈ 0.5.
To further detail this multiscaling regime, we plot in

Figs. 3 the velocity and vorticity flatnesses Fv(r̃) and
Fω(r̃), defined as:

Fv(r̃) = S4(r̃)/S
2
2(r̃) , Fω(r̃) = T4(r̃)/T

2
2 (r̃) . (27)

For the Gaussian and mono-scaling statistics, Fv(r̃) and
Fω(r̃) must be r̃-independent. In particular, for the
Gaussian statistics Fv(r̃) = Fω(r̃)=3. As is evident in
Fig. 3a and Fig. 3b, the intermittency corrections, hardly
visible for structure functions for Ω = 0, are clearly ex-
posed by the flatness. The velocity flatness Fv(r̃) for this
case (black solid line in Fig. 3a) approximately follow the
intermittent exponent for turbulence in classical fluids
ξcl ≈ 0.15, which is close to the experimental values for
both the longitudinal and transversal structure functions
(for previous experimental and numerical works on in-
termittency in the classical space-homogeneous isotropic
turbulence see Refs.25–30) . As the mutual friction be-
come stronger, the apparent exponent ξ increases, reach-
ing its maximum ξmax ≈ 0.45 ≈ 3ξcl at Ω = 0.7. The vor-
ticity flatness Fω(r̃)[Fig. 3b] too reaches its maximum for
small r̃ at slightly larger value of Ω ≈ 0.9. This is a clear
evidence of significant enhancement of intermittency in
the near-critical regimes of superfluid 3He turbulence.
Additional important information can be found in

Figs. 3c and 3d, where Ω-dependence of the velocity and
vorticity flatnesses is shown for different r̃. The sharp
peak appears for Ω . 0.9. In the small r̃ range, the ve-
locity flatness Fv(r̃) for Ω = 0.7 reaches value about 25
(compare with the Gaussian value of three and the classi-
cal hydrodynamic value about seven). At the same time
the vorticity flatness reaches value of about 200, exceed-
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ing the Gaussian limit by almost two orders of magni-
tude.
In the supercritical regime, the intermittency sharply

decreases. For example, for Ω > 2.5 the velocity flatness
drops even below the Gaussian limit, indicating that the
time dependence of the velocity becomes sub-Gaussian.

D. Energy balance

The direct information about the relative importance
of the energy dissipation by the effective viscosity and
by the mutual friction can be obtained from an analysis
of the energy balance, shown in Figs. 4. The energy bal-
ance for the classical turbulence (Ω = 0) is presented in
Fig. 4a. As expected, the energy input at a shell with a
given wave number k, Tr(k) = dε(k)/dk (green line) is
compensated by the viscous dissipation Dν = 2νsEs(k)
(red line). The discrepancy in the region of very small k
is caused by the energy pumping, which is not accounted
in the balance Eq. (10a). Sometimes it is more convenient
to discuss a “global” energy balance, analyzing instead
of the “local” in k balance Eq. (10a) its integral from k =
to a given k. In the stationary case this gives:

ε(k) = ε0 −Dtot
ν (k)−Dtot

α (k) , (28a)

Dtot
ν (k) =

∫ k

0

Dν(q)dq, Dtot
α (k) =

∫ k

0

Dα(q)dq . (28b)

As we see in Fig. 4d (for Ω = 0), the energy flux over
scales ε(k) is almost constant up to k ≃ 20 and then
decreases due to the viscous dissipation. Accordingly,
Es(k, 0), shown in Fig. 1a by black solid line, exhibits a
K41 scaling ∝ k−5/3. Minor upward deviation from this
behavior may be a numerical artifact.
The energy balance in the subcritical regime of the

superfluid 3He turbulence, shown in Figs. 4b and 4e for
Ω = 0.5 and in Figs. 4c and 4f for Ω = 0.7 demonstrates
a qualitatively different behavior. We see in Figs. 4b and
4c that for almost all wavenumbers, the energy input
Tr(k) in a given k (shown by green lines) is balanced by
the mutual friction dissipation Dα(k) (shown by the blue
lines). Only for large k & 75, the viscous dissipation be-
gin to dominate. Nevertheless, as seen in Figs. 4e and 4f,
the total contribution to the energy dissipation is dom-
inated by the mutual friction everywhere. As expected,
for larger and larger Ω the crossover wave number k×,
at which the local dissipation by viscosity and by mu-
tual friction are equal, increases (compare Fig. 4b with
Ω = 0.5 and Fig. 4c with Ω = 0.7) and reaches kmax for
the critical regime with Ω = 0.9(Fig. 5a). In this case
the viscous and the mutual friction dissipation become
compatible only for k ≃ kmax.
In the supercritical regime, shown in Figs. 5e and 5f for

Ω = 1.1 and Ω = 5, the contribution of the viscous dis-
sipation (red lines) becomes less and less important with
the increase in the supercriticality. In these cases, the
nonlinear input to the energy, Tr(k) = dε(k)/dk (green

lines) is fully compensated by the mutual friction dissi-
pation(blue lines).
The global energy balance, shown in Figs. 5, confirms

this physical picture.

E. Energy and enstropy time evolution

We consider here evolution of the total superfluid en-
ergy Es(t)

Es(t) =

∫
Es(k, t)dk (29a)

and enstrophy 1/2Ω2
T
(t). As expected, in the subcriti-

cal regime, when E(k, t) has apparent slope ∝ k−x with
5
3
< x(k) < 3, the integral (29a) for total energy E(t)

is dominated by the small k ∼ kmin, while the inte-
gral (5) for total enstropy Ω2

T
(t) is dominated by the large

k ∼ kmax. Therefore, for the large ratio kmax/kmin (in
our case kmax/kmin ∼ 103), one expects an uncorrelated
behavior of E(t) and Ω2

T
(t) in case of a well developed tur-

bulent cascade. This behavior is confirmed in Figs. 6a,
6b and 6c. In the supercritical regime, with the slope
x > 3, both E(t) and Ω2

T
(t) are dominated by the small

k ∼ kmin and have to be well correlated, as is indeed seen
in Figs. 6e and 6f. However, in the critical regime (Fig. 6d
with Ω = 0.9), E(t) and Ω2

T
(t) are still uncorrelated be-

cause E(t) is dominated by k ∼ kmin, while Ω2
T
(t) has

equal contributions from all k.

F. Relation between Ω and temperature T of

possible experiments

Up to now we have considered Ω as a free parame-
ter that determines the mutual friction by Eq. (4c), in
which ΩT is given by Eq. (5). After the simulation with
a prescribed Ω was completed, we numerically computed
Ω2

T
, using found energy spectra and Eq. (5), see Tab. I.

Now, using Eq. (4c) we can find α̃ = Ω/ΩT for a given
Ω in the simulations. The parameter α̃ in 3He strongly
depend on temperature, as reported in22 and shown in
Fig. 7. Using these data, we can find T corresponding to
the simulations with any prescribed Ω.

III. SUMMARY

This paper examined the basic statistical properties of
the large-scale, homogeneous, steady, isotropic quantum
turbulence in superfluid 3He, developing further some
previous results 5,6. Direct numerical simulations of the
gradually damped version of the HVBK coarse-grained
two-fluid model of the superfluid He, Eqs. (4)11–13 were
performed using pseudo-spectral methods in a fully pe-
riodic box with a grid resolution of N = 10243. The
analytic study was based on the LNR integral closure for
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FIG. 5: Color online. The differential [Panels (a),(b),(c)] and the integral [Panels (d),(e),(f)] the energy balances in the critical
and the supercritical regimes with Ω = 0.9 [Panels (a),(d)], Ω = 1.1 [Panels (b),(e)] and Ω = 5.0 [Panels (c),(f)]. The nonlinear
energy transfer is shown by green lines, the viscous dissipation by red lines and the dissipation by mutual friction by blue lines.
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FIG. 6: Color online. The energy (red lines) and enstrophy (blue lines) time evolutions in the subcritical regime normalized
by mean-in-time values [Panels (a),(b),(c) with Ω = 0, 0.5, 0.7], the critical [Panel (d), Ω = 0.9] and the supercritical regime
[Panels (e),(f) with Ω = 1.1, 5.0].

the energy flux 7, Eq. (11), adapted for 3He turbulence in
Eq. (12a). Both the DNS and the analytic approaches do
not use the assumption of locality of the energy transfer
between scales. The main findings are:

1. The direct numerical simulations confirmed the pre-

viously found 5,6 subcritical (3a) and critical (3d) energy
spectra and showed that for T < 0.37Tc (see Tabl. I)
the analytic prediction are in a good quantitative agree-
ment with the DNS results, using a single fitting param-
eter b for all temperatures. The reason for this agree-
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FIG. 7: Temperature dependence of the mutual friction pa-
rameter α̃(T ) = α/(1− α′), taken from Ref. 22

ment is that in the subcritical regime the energy transfer
over scales is indeed local, in accordance with the ba-
sic assumptions in Refs. 5,6. In the critical regime5,6 with
E(k) ∝ k−3, the exact locality of the energy transfer fails:
all the scales contribute equally to the transfer of energy
to the turbulent fluctuations with a given k. This leads
to a logarithmic corrections to the spectrum E(k) ∝ k−3

that cannot be detected with our DNS resolution.
2. For T > 0.37Tc, when the mutual friction exceeds

some critical value, we observed in DNS and confirmed
analytically the scale-invariant spectrum E(k) ∝ k−x

with a (k-independent) exponent x > 3. The exponent x
increases gradually with the temperature, reaching in our
simulation the value x ≈ 9 for T ≈ 0.72Tc. The reason

for this behavior of the supercritical spectra with x > 3
is that the energy is transferred directly to any given k
from the energy containing region at small k.

3. We analyzed the 2nd-order structure functions of the
velocity and vorticity S2(r) and T2(r) and demonstrated
that although their r-dependence can be rigorously found
from the energy spectrum E(k), their r-dependence is
much less informative that the k-dependence of E(k).

4. The 4nd-order structure functions of the velocity
and vorticity S4(r) and T4(r) provide important addi-
tional [with respect to E(k)] information about the statis-
tics of quantum turbulence in the superfluid 3He. We
discover a strong enhancement of intermittency in the
near-critical regimes with the level of turbulent fluctu-
ations exceeding the corresponding level in the classical
turbulence by about an order of magnitude.

5. The analysis of the energy balance and of the energy
and enstrophy time evolution in various (subcritical, crit-
ical and supercritical) regimes, confirms the discovered
physical picture of the quantum 3He turbulence with the
local and non-local energy transfer, in which the relative
importance of the energy dissipation by the effective vis-
cosity and by the mutual friction depends in a predicted
way on the temperature and the wavenumber.

We propose that these analytic and numerical findings
in the description of the statistical properties of steady,
homogeneous, isotropic and incompressible turbulence of
superfluid 3He should serve as a basis for further stud-
ies of superfluid turbulence in more complicated or/and
realistic cases: anisotropic turbulence, transient regimes,
two-fluid turbulence of thermally driven counterflows in
superfluid 4He turbulence, etc.
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