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We study the energy transfer properties of three dimensional homogeneous and isotropic turbu-
lence where the non-linear transfer is altered in a way that helicity is made sign-definite, say positive.
In this framework, known as homochiral turbulence, an adapted eddy-damped quasi-normal Marko-
vian (EDQNM) closure is derived to analyze the dynamics at very large Reynolds numbers, of order
105 based on the Taylor scale. In agreement with previous findings, an inverse cascade of energy
with a kinetic energy spectrum like ∝ k

−5/3 is found for scales larger than the forcing one. Con-
jointly, a forward cascade of helicity towards larger wavenumbers is obtained, where the kinetic
energy spectrum scales like ∝ k

−7/3. By following the evolution of the closed spectral equations for
a very long time and over a huge extensions of scales, we found the developing of a non monotonic
shape for the front of the inverse energy flux. The very long time evolution of the kinetic energy
and integral scale in both the forced and unforced cases is analyzed also.
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I. INTRODUCTION

Since the discovery that helicity is an inviscid invariant of the three-dimensional Navier-Stokes equations [1], the
possibility of inverse cascades in homogeneous isotropic turbulence (HIT) without mirror symmetry has been greatly
investigated: indeed, two-dimensional turbulence possesses as well two inviscid invariants, kinetic energy and enstro-
phy, and in this configuration, energy cascades towards large scales [2].
In 3D, the first theoretical considerations date back to the study of Brissaud and coworkers [3] where two different

scenarios were proposed: (i) a joint direct cascade of kinetic energy and helicity where E(k) ∼ ǫ2/3k−5/3, and
H(k) ∼ ǫHǫ−1/3k−5/3, where E and H are the kinetic and helical spectra, and ǫ and ǫH the kinetic energy and
helicity dissipation rates; (ii) a split cascade with a direct transfer of helicity combined with an inverse cascade of
kinetic energy. In fact, the second scenario was proven to be impossible by [4] within the eddy-damped quasi-normal
Markovian (EDQNM) approximation [5–7]. In subsequent papers like [8, 9] and more recently [10], the joint direct
cascade of helicity was observed in HIT without mirror symmetry, with strictly zero inverse energy transfer. This
stems from the fact that helicity, the scalar product of velocity and vorticity, is not positive-definite, unlike kinetic
energy and enstrophy.
Keeping this later feature in mind, Biferale and coworkers [11, 12] performed a ”surgery” of the triadic Fourier

interactions of turbulence, following the ideas developed by [13], in order to keep only the ones that maintain the
helicity sign-definite, yielding to the so-called homochiral turbulence. They consequently recovered the second sce-
nario of [3], namely an inverse cascade of kinetic energy and a forward cascade of helicity, showing that all three
dimensional turbulent flows indeed possess a sub-set of Fourier interactions potentially able to sustain an inverse
energy cascade. Such a ”surgery” of the Navier-Stokes equations was thoroughly investigated in multiple subsequent
works [14–16] so that the details are not recalled here. The main findings are that by forcing at small scales the
decimated Navier-Stokes (dNS) equations where helicity is made sign-definite, say positive here, kinetic energy is
transferred to smaller wavenumbers with E(k) ∼ ǫ2/3k−5/3. By forcing at large scales the dNS equations, a direct

helicity cascade with E(k) ∼ ǫ
2/3
H k−7/3 was obtained. It was also notably shown that as soon as helicity is not

made strictly sign-definite, by adding helical Fourier modes with the opposite helicity (negative here), the inverse
energy cascade vanishes, and that the transition between the upward and forward cascades mechanisms looks singular
[14, 16]. On the other hand, by changing the relative weight of homochiral and heterochiral triads, one is led to a
transition from direct to inverse cascade for a finite value of the control parameter [15], showing that the way Navier
Stokes equations transfer energy across scales might be strongly different by changing the involved degrees of freedom.

Strangely enough, inverse cascades with EDQNM were rarely investigated in the past and mainly for two configura-
tions only: the inverse cascade of kinetic energy in 2D turbulence [17], and the inverse cascade of magnetic helicity in
isotropic magnetohydrodynamics turbulence [18]. Consequently, it appears interesting in terms of modelling to check
that a sophisticated model such as EDQNM can handle complex and particular configurations when only specific
triadic interactions are kept. In the present work, we aim at further studying these features when helicity is made
sign-definite by deriving a new EDQNM model. We show for the first time that a split cascade scenario develops
and that it can be studied for very large Reynolds numbers and for very long times. In what follows, the adapted
EDQNM closure for homochiral turbulence is derived, and then numerical results are presented for cases with and
without forcing.

II. EDQNM CLOSURE FOR HOMOCHIRAL TURBULENCE

The spectral counterpart of the Navier-Stokes equation for the fluctuating velocity ûi reads in homogeneous isotropic
turbulence

(

∂

∂t
+ νk2

)

ûj(k) = −iPjmn(k)

∫

k=p+q

um(p)un(q)d
3p, (1)

where ν is the kinematic viscosity, i2 = −1, the operator 2Pjmn = kmPjn+knPjm, with the projector Pjn = δjn−αjαn

and αj = kj/k, k and k are respectively the wavenumber and wavevector, and (̂·) denotes the Fourier transform. In

isotropic turbulence without reflexion symmetry, the spectral second-order velocity-velocity correlation R̂ij(k, t) =
〈û∗

i (k, t)ûj(k, t)〉, where (·)∗ denotes the complex conjugate and 〈.〉 an ensemble average, can be decomposed as

R̂ij(k, t) = E(k, t)Pij(k) + iǫijkαk
H(k, t)

k
, (2)
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with ǫijk the Levi-Civita permutation tensor, and where E and H are respectively the kinetic energy and kinetic
helicity densities. Such a decomposition involving the kinetic energy density E and helical density H was previously
used in [8, 9, 19]. More recently [10], this decomposition was applied to investigate with EDQNM the large Reynolds
numbers dynamics of the kinetic energy and helical spectra defined as

E(k, t) =

∫

Sk

E(k, t)d2k, H(k, t) =

∫

Sk

H(k, t)d2k, (3)

where Sk is a sphere of radius k. The total helicity, which is the scalar product of velocity and vorticity, is then
obtained by 〈u.ω〉/2 =

∫

∞

0
H(k, t)dk. In what follows, we analyze within an adapted EDQNM approximation at

large Reynolds numbers, the configuration proposed in [11, 12], namely the homochiral decimated Navier-Stokes.
To select only helical modes of identical sign the classical Lin equation for E(k, t) [20] and its non-linear transfer

of HIT cannot be used anymore. One needs a new closure, adapted to homochiral turbulence where helicity is made
sign-definite. First, the spectral fluctuating velocity is decomposed in positive and negative modes using the helical
decomposition [7, 13, 19] so that

û(k, t) = u+(k, t)N(k) + u−(k, t)N
∗(k), (4)

where N are the helical modes, which verify N∗(k) = N(−k), N .N = 0, N .N∗ = 2, and ik ×N = kN , so that
the spectral fluctuating vorticity reads

ω̂(k, t) = k
[

u+(k, t)N(k, t)− u−(k, t)N
∗(k, t)

]

. (5)

Considering only the positive helical modes we get for the kinetic energy spectrum:

E+(k, t) =

∫

Sk

E+(k, t)d
2k =

∫

Sk

〈u∗

+(k, t)u+(k, t)〉d
2k, (6)

and the helical spectrum is thus simply given by H+(k, t) = kE+(k, t). The evolution equation of u+ is obtained by
contracting (1) with N∗

i /2 which gives

(

∂

∂t
+ νk2

)

u+(k, t) = −
1

2
i
(

kiN
∗

j (k) + kjN
∗

i (k)
)

∫

k=p+q

u+(p)u+(q)Ni(p)Nj(q)d
3p (7)

The evolution equation of the kinetic energy density E+ is then

(

∂

∂t
+ 2νk2

)

E+(k, t) = T+(k, t). (8)

It is very important to stress that the non-linear terms of the Navier-Stokes equations conserve both energy and
helicity triad-by-triad, and therefore the same is true for the dNS. In other words, the non-linear transfer T+ is
conservative, takes into account triadic interactions of positive helical modes, and reads after some algebra

T+(k, t) =

∫

ℜ
[(

kiN
∗

j (k) + kjN
∗

i (k)
)

S+(k,p, t)Ni(p)Nj(q)
]

d3k, (9)

where S+ is the spectral triple velocity correlation

S+(k,p, t)δ(k + p+ q) = i〈u+(k, t)u+(p, t)u+(q, t)〉. (10)

Then, after some technical manipulations typical of the EDQNM approximation [5, 6], one obtains the decimated Lin

equation of the (positive) kinetic energy spectrum, namely

(

∂

∂t
+ 2νk2

)

E+(k, t) = SE
+(k, t), (11)

where the spherically-averaged non-linear transfer is

SE
+ (k, t) =

∫

Sk

T+(k, t)d
2k = 16π2

∫

∆k

k2pqθkpq(1 + z)E ′′

+

[

pE+(y − z)(y + z − 2x)
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+ (1 − x− 2yz)
(

k(1 + y)E ′

+ − p(1 + x)E+

)

]

dpdq, (12)

with ∆k the domain where k, p and q are the lengths of the sides of the triangle formed by the triad k + p+ q = 0,
and where x, y and z are the cosines of the angles formed by p and q, q and k, and k and p respectively. For the
sake of clarity E+ = E+(k, t)/4πk

2, E ′

+ = E+(p, t)/4πp
2, and E ′′

+ = E+(q, t)/4πq
2. θkpq is the characteristic time of

the triple correlations where the eddy-damping term is given by A1

√

∫ k

0
u2E+(u, t)du. Here we will start by taking

A1 = 0.355 for consistency with previous studies [10, 18, 21, 22], the impact of changing A1 is discussed later on. The
previous equations of the EDQNM closure for the sign-definite helicity originating from the decimated Navier-Stokes
equation are the main theoretical contributions of this work.
For consistency and clarity, it is recalled that in isotropic helical turbulence (without decimation), the kinetic energy

spectrum evolves according to (∂t + 2νk2)E = SE , where SE is the usual isotropic spherically-averaged non-linear
transfer, namely

SE(k, t) = 16π2

∫

∆k

θkpqk
2p2q(xy + z3)E

′′

(E
′

− E)dpdq, (13)

where E = E(k, t)/4πk2, E ′ = E(p, t)/4πp2, and E ′′ = E(q, t)/4πq2. The eddy-damping term is given by the complete
energy spectrum E, unlike in the decimated version where it is given by E+. The expression (12) is more complicated
than (13) in the sense that it is less compact and symmetric: this is due to the further contraction with the helical
modes to select only specific triadic interactions.
In what follows, we wish to recover two features of homochiral turbulence: (i) the direct helicity cascade of [12] where

the kinetic energy spectrum scales as E+(k) ∼ ǫH
2/3k−7/3 and (ii) the inverse cascade of energy in E+(k) ∼ ǫ2/3k−5/3.

For the EDQNM simulations, the wavenumber space is discretized using a logarithmic mesh ki+1 = rki for i = 1, . . . , n,
where n is the total number of modes and r = 101/f , f = 15 being the number of points per decade. It has been
checked that increasing f , for instance up to f = 20, does not modify the slopes of the spectra, nor the asymptotic
values of the integrated quantities (like kinetic energy) more than 1%. This mesh spans from kmin = 10−6kL to
kmax = 10kη, where kL is the integral wavenumber and kη = (ǫ/ν3)1/4 the Kolmogorov wavenumber. The initial
kinetic energy spectrum is given by E+(k) ∼ kσ exp(−k2), where the infrared slope is σ = 2, corresponding to
Saffman turbulence. Simulations not presented here revealed that the results of this work are independent of the
infrared slope, in particular the findings are the same for Batchelor turbulence (σ = 4). The initial E+ is normalized
so that 〈u2

+〉 =
∫

∞

0
E+(k)dk is unit at t = 0.

III. RESULTS AT LARGE REYNOLDS NUMBERS

First, homogeneous homochiral turbulence without any forcing is considered. The k−7/3 scaling is recovered in
figure 1a at large Reynolds numbers, which corresponds to the forward helicity cascade [3]: this inertial k−7/3 range
grows with time and spans more than 4 decades at the largest Reynolds number. The noteworthy feature is that even
without forcing, if large Reynolds numbers are reached, strong inverse transfers mechanisms occur since the peak of
E+, given at the integral wavenumber kL, increases with time, unlike in fully isotropic decaying turbulence. A further
evidence for intense inverse non-local transfers is that, even though the infrared scaling of the kinetic energy spectrum
is initially E+(k < kL) ∼ k2, it rapidly becomes E+(k < kL) ∼ k4, which is a signature of strong back transfers
[21–24]. It follows from E+(k) ∼ k−7/3 that the helical spectrum scales in H+(k) = kE+(k) ∼ k−4/3.

In addition, one can remark from figure 1a that the peak of the kinetic energy spectrum Epeak
+ seems to evolve

as k−1 with time. This has nothing to do with inertial range scaling considerations, since the inertial range scaling
clearly remains k−7/3. This can be briefly justified as follows. Since we have mainly a direct helicity cascade, one
can roughly assumes that ǫ ≃ 0, consistently with arguments given in [3]. Thus, it follows that the kinetic energy
〈u2

+〉, whose evolution is given by ∂t〈u
2
+〉 = −ǫ ≃ 0, remains constant, which is well verified numerically (see later

figure 3b). Then, using the definition of the kinetic energy, one can reasonably assume that it is mainly given by the
integral scale:

〈u2
+〉 =

∫

∞

0

E+(k, t)dk ≃

∫ kL

0

Epeak
+ (t)dk = kLE

peak
+ (t). (14)

The kinetic energy being constant, one obtains that the time evolution of the kinetic energy spectrum peak is given

by Epeak
+ (t) ∼ kL

−1(t). Note that for dimensional reasons the integral scale evolves like L ∼ t in the unforced case.
It will be shown later for the forced case that the time evolution of 〈u2

+〉 and L are quite different. In figure 1b we
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FIG. 1: Time evolution of the kinetic energy spectrum and of the kinetic and helical fluxes for Saffman
turbulence (σ = 2): the integral and Kolmogorov wavenumbers kL and kη are displayed as vertical

dashed lines. (a) E+(k, t) for various times t = 0, t = 0.1τ0, t = 0.5τ0 and t = 10nτ0 for n ∈ [1; 6], where
τ0 is the eddy turnover time: kL and kη correspond to the last time (thick spectrum) where

Reλ(t = 106τ0) = 106. (b) Kinetic (black) and helical (blue) fluxes ΠE and ΠH for various times
t/τ0 = [10; 102; 104]. For better readability, fluxes are normalized by their maximum value and

presented as functions of k/kL.

show the evolution of the two fluxes, ΠE and ΠH , where ΠE(k) = −
∫ k

0
SE
+(x)dx and ΠH(k) = −

∫ k

0
xSE

+ (x)dx. As
said earlier, both energy and helical transfers with homochiral triadic interactions are conservative: indeed, one has
ΠE(k → ∞) = ΠH(k → ∞) = 0. Furthermore, there is a direct cascade of helicity since ΠH is mostly positive in
the inertial range and spans more and more decades with time, which is consistent with the k−7/3 scaling of E+ of
figure 1a. In addition, figure 1b illustrates that there is an inverse cascade occurring on a small range around kL for E+.

To increase the scaling region of the inverse cascade, we add to the decimated Lin equation (11) a forcing term
F (k), to have the possibility to study the split cascade scenario with a well developed inverse energy transfer for
asymptotically long times. The forcing term is given by

F (k) = C1 exp

(

−
1

(C2)2

[

ln

(

k

kf

)]2
)

, (15)

with C1 so that one has
∫

∞

0
F (k)dk = 1, C2 = 0.1 and kf = 1 as proposed in [10]. We double checked that the

following numerical results are independent of the forcing term by studying also the case with F (k) ∼ k4 exp(−2k2)
(not shown). The time evolution of the kinetic energy spectrum is shown in figure 2a, where the forcing term F
is in grey. It is clear that the system develops a split cascade on both sides of the forcing term. Indeed, as time
increases, a k−5/3 range grows at large scales, similar to the one obtained in [11], which is a strong evidence for the
inverse cascade of kinetic energy. Whereas for wavenumbers larger than kf , the k−7/3 range is preserved, as in figure
1a without forcing. It is important to stress that this is the first time where the split energy-helicity simultaneous
cascade is observed: this is notably due to the fact that by using EDQNM we can push the resolution on both sides
to very large values. It is reasonable to conclude from figure 2a that the non-linear transfers which are at the origin of
the inverse cascade are dominantly local in homochiral turbulence: indeed, because of the logarithmic discretization
of the wavenumber space, elongated triads corresponding to non-local transfers cannot be taken into account with
EDQNM [6]. This statement does not mean that there are no non-local interactions: indeed, it has been argued that
some inverse non-local transfers are responsible for the change of the infrared slope of E+ from k2 to k4 in figure 1a
[25].
In figure 2b the kinetic and helical fluxes ΠE and ΠH are presented. For k > kf , at scales smaller than the forcing

one, the helical flux is positive, indicating a direct cascade of helicity. For k < kf , the helical flux is zero and the
kinetic one ΠE is negative, showing a stable inverse cascade of energy for scales larger than the forcing one. Note
that the shape of ΠE is qualitatively in agreement with the one of [15] (figure 3 therein, curve marked with squares).
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FIG. 2: Time evolution of the kinetic energy spectrum, kinetic and helical fluxes for Saffman turbulence
(σ = 2), from t = 0 to t = 500τ0, where the curves are sampled at t/τ0 = 0; 1; 10; 50; 100; 500. The

integral, forcing, and Kolmogorov wavenumbers kL, kf , and kη are displayed as vertical dashed lines at
Reλ(t = 500τ0) = 3.105. (a) E+(k, t) with the forcing term F (k) (grey) defined in (15). (b) Kinetic

(black) and helical (blue) fluxes ΠE and ΠH .

Here we show for the first time in a clean way that the inverse transfer has a non trivial wavy shape around the
front. The numerical evidence for the split energy cascade in figure 2b further justifies that for k < kf the kinetic
energy depends only ǫ (since ΠH is almost zero), and that E+ and H+ only depend on ǫH for k > kf (since ΠE is
almost zero). Compensated kinetic energy spectra are presented in figure 3a in the direct and inverse cascades. A
reasonable plateau is obtained in both cases spanning two decades. In the inverse cascade, E+(k)k

5/3ǫ−2/3 settles
around 3.35, and E+(k)k

7/3ǫH
−2/3 around 2.7 in the direct cascade. Both constants are larger than the Kolmogorov

one in HIT. For the constant of the inverse cascade, this is somehow consistent with constants of inverse energy
cascades found in two-dimensional turbulence which are roughly between 6 and 10 [17, 26, 27]. Note that the values
of the present constants could be modified by changing the eddy-damping parameter A1, which is here chosen to
be 0.355 for consistency with previous EDQNM simulations in isotropic and skew-isotropic homogeneous turbulence
[10, 22]. More specifically, the plateau E+(k)k

5/3ǫ−2/3 for the inverse cascade increases with larger eddy-damping
constants, namely from 2.3 to 4.2, for A1 varying from 0.2 to 0.49 (this latter value for A1 was used in [28]). The
value 4.2 for the plateau of the inverse cascade is very close to what is obtained in [11]. To obtain a plateau for
E+(k)k

5/3ǫ−2/3 around 6 as in 2D turbulence, one would need to go up to A1 = 0.8.
Finally, some one-point statistics are presented in figure 3b, namely the kinetic energy 〈u2

+〉 and the integral

scale L = 1/kL = 3π/〈u2
+〉
∫

∞

0
(E+(k)/k)dk for both the forced and unforced cases. For the unforced case, the

constancy of 〈u2
+〉 and L ∼ t, discussed earlier, are recovered. For the forced configuration, the kinetic energy is

expected to grow as 〈u2
+〉 ∼ ǫt [17]. The linear dependence with time is recovered in figure 3b. Then, it follows

from dimensional analysis L ∼ K3/2/ǫ that the integral scale should evolve like t3/2, which is also assessed in figure 3b.

IV. CONCLUSIONS

In conclusion, we addressed a particular kind of helical turbulence, where only specific triadic interactions are
kept, so that the helicity is made sign-definite. In this particular homochiral framework, the 3D turbulence possesses
two sign-definite inviscid invariants, namely kinetic energy and helicity, like 2D turbulence with kinetic energy and
enstrophy. The main objective of this study was to show that a spectral closure method, such as EDQNM, could
recover the main findings of [11, 12]. To do so, an adapted EDQNM approximation was derived, taking into account
only the particular interactions that make helicity sign-definite (positive here). The direct helicity cascade, where
E+(k) ∼ ǫH

2/3k−7/3, is first obtained in unforced homochiral turbulence, where the kinetic energy flux ǫ ≃ 0. In such
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FIG. 3: (a) Compensated kinetic energy spectra in the inverse (black) and direct (blue) cascades. The
integral, forcing, and Kolmogorov wavenumbers kL, kf , and kη are displayed as vertical dashed lines at
Reλ(t = 500τ0) = 3.105. (b) Time evolution of the kinetic energy 〈u2

+〉 (−) and integral scale L (−−)
for σ = 2, for the forced (blue) and unforced (black) cases. The grey −· curves indicate the power laws t

and t3/2.

a configuration, the kinetic energy 〈u2
+〉 remains constant and the peak of E+ evolves in kL

−1 with time. When a
forcing term is added, in addition to the helicity forward cascade, an inverse energy cascade develops toward smaller
wavenumbers, where the helicity flux ǫH ≃ 0. In this regime of forced homochiral turbulence, the kinetic energy
evolves linearly with time 〈u2

+〉 ∼ ǫt, and the integral scale like L ∼ t3/2.

Our work shows for the first time the possibility to have a stable split cascade in three dimensional turbulence under
strong restriction of the helical interactions. It remains to be understood how much this phenomenology might be
indeed observed in more realistic flow congurations, as in the presence of strong rotation or confinement, where also a
transition from direct to inverse energy cascade is observed [29–33]. It is also interesting to study the inverse cascade
regime in the presence of a large scale drag, in order to allow for the formation of a large scale stationary condensate
[34]. At difference from the two dimensional case, the condensate will necessarily have strong helical properties and
be close to an ABC quasi-stationary solution of the three dimensional Navier-Stokes equations [35–37]. Work in this
direction will be reported elsewhere. Finally, it is important to stress that similar EDQNM studies can be extended
to helical MHD [38].

The research leading to these results has received funding from the European Union’s Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement No. 339032.
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[25] O. Métais and M. Lesieur, “Statistical predictability of decaying turbulence,” Journal of the atmospheric sciences 43,

857–870 (1986).
[26] R. H. Kraichnan, “Inertial-range transfer in two- and three-dimensional turbulence,” Journal of Fluid Mechanics 47,

525–535 (1971).
[27] U. Frisch and P. L. Sulem, “Numerical simulation of the inverse cascade in two-dimensional turbulence,” Physics of Fluids

27, 1921–1923 (1984).
[28] W. J. T. Bos, L. Chevillard, J. F. Scott, and R. Rubinstein, “Reynolds number effect on the velocity increment skewness

in isotropic turbulence,” Physics of Fluids 24, 015108 (2012).
[29] P.D. Mininni and A. Pouquet, “Helicity cascades in rotating turbulence,” Physical Review E 79, 026304 (2009).
[30] A. Celani, S. Musacchio, and D. Vincenzi, “Turbulence in more than two and less than three dimensions,” Physical Review

Letters 104, 184506 (2010).
[31] H. Xia, D. Byrne, G. Falkovich, and M. Shats, “Upscale energy transfer in thick turbulent fluid layers,” Nature Physics

7, 321 (2011).
[32] F. S. Godeferd and F. Moisy, “Structure and dynamics of rotating turbulence: A review of recent experimental and

numerical results,” Appl. Mech. Rev. 67, 030802 (2015).
[33] L. Biferale, F. Bonaccorso, I. M. Mazzitelli, M. A. T. van Hinsberg, A. S. Lanotte, S. Musacchio, P. Perlekar, and F. Toschi,

“Coherent structures and extreme events in rotating multiphase turbulent flows,” Phys. Rev. X 6, 041036 (2016).
[34] M. Chertkov, C. Connaughton, I. Kolokolov, and V. Lebedev, “Dynamics of energy condensation in two-dimensional

turbulence,” Physical Review Letters 99, 084501 (2007).
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