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We performed a numerical study to train smart inertial particles to target specific flow regions
with high vorticity through the use of reinforcement learning algorithms. The particles are able to
actively change their size to modify their inertia and density. In short, using local measurements
of the flow vorticity, the smart particle explores the interplay between its choices of size and its
dynamical behaviour in the flow environment. This allows it to accumulate experience and learn
approximately optimal strategies of how to modulate its size in order to reach the target high-
vorticity regions. We consider flows with different complexities: a two-dimensional stationary Taylor-
Green like configuration, a two-dimensional time-dependent flow, and finally a three-dimensional
flow given by the stationary Arnold-Beltrami-Childress helical flow. We show that smart particles
are able to learn how to reach extremely intense vortical structures in all the tackled cases.
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I. INTRODUCTION

Controlling and predicting the dynamical evolution and spatial distribution of small particles suspended in complex
flows is a fundamental problem in many applied disciplines such as in combustion processes, drug delivery, dispersion
of pollutants or contaminants in the environment, spray formation and rain formation in clouds, to cite just a few cases
[1–5]. The dynamics of small particles is also used in turbulence to study the Lagrangian statistics of the flow, and/or
the instantaneous Eulerian velocity distribution in Particles Image Velocimetry techniques [6, 7]. Small particles have
been instrumented to perform local measurements of flow properties [8]. In this paper we present a numerical study to
show how one can implement a suitable learning algorithm to train micro particles to actively control their dynamical
trajectories in order to achieve some predetermined goal, for example reaching a very intense vorticity region in the
flow, escaping from turbulent fluctuations, preferentially tracking specific topological structures etc. There are many
advantages to have such smart particles in a flow. One can for example use them to measure specific flow properties,
to actively deliver drugs only in particular flow regions or to control the flow by local feedbacks.

It is well known that particles that are heavier or lighter than the fluid systematically detach from the flow stream-
lines [9–13]. As a consequence, correlations between particle positions and structures of the underlying flow appear.
Heavy particles are expelled from vortical structures, while light particles tend to concentrate in their cores. This
results in the formation of strong inhomogeneities in the spatial distribution of the particles, an effect often referred
to as preferential concentration [14–19].

Thanks to these properties, light particles have been used as small probes that preferentially track any high-vorticity
structure, highlighting statistical and topological properties of the underlying fluid conditioned on those structures
[20, 21].

Differently, in this paper we seek for inertial particles capable of sampling ad-hoc specific flow structures. We
imagine our smart particles to be endowed with the ability of obtaining some partial information about the regions of
the flow that they are visiting. They can use this knowledge to learn how to adapt their size and consequently their
inertia and density in order to preferentially sample only some predetermined flow properties. The set of questions
we want to address are: can these smart particles learn how to track specific targets in an approximately optimal
way in complex flows? Is this achievable without any previous knowledge of the flow structures and by using a set of
simple behavioural actions the particle may take? Is learning achievable even when tracer particles would evolve in
a chaotic and unpredictable way? Is it possible to guess the typical form of the approximately optimal strategies a
priori? To what extent are the approximately optimal strategies learnt in a stationary flow environment also robust
by adding time-dependence to the flow?

Similar questions have been investigated by training based on reinforcement learning algorithms for the dynamics
of smart micro-swimmers in Taylor Green flows [22], in ABC flows [23] and for the case of fish schooling in still water
[24]. A similar approach has also been pioneered in [25] for the case of birds that can exploit warm thermals to soar
in a turbulent environment. We show that reinforcement learning provides a way to construct efficient strategies by
accumulating experience also for the cases investigated here.

The paper is organized as follows. In Section II we define the model used to describe inertial particles. It will be the
groundwork for the designing of smart particles. In Section III we provide an overview on the reinforcement learning
approach and on the algorithm used. In Section IV we discuss the application of the reinforcement algorithm to
particles in a Taylor Green-like flow. It has given space to the algorithm implementation and to the results achieved,
both for stationary and time-dependent flow. Similarly, Section V deals with the case of ABC flows. Finally, in
Section VI we draw the conclusions and final remarks of the paper.

II. INERTIAL PARTICLES

We focus the discussion to the case of small spherical inertial particles that have a density that is different from the
surrounding fluid. In the absence of controls, their dynamics is entirely governed by the flow. By changing their size,
the particles may be able to alter their dynamics to navigate the flow. We consider only the diluted limit, neglecting
possible hydrodynamical interactions, collisions and aggregation among the particles. The particles are small enough
to be considered as point-like. They are characterized by their mass, mp and by their adjustable radius b. A commonly
used model for inertial particles with arbitrary density is the following [9, 26–28]{

Ẋ = V +
√

2χη,

V̇ = − 1
St (V− u(X, t)) + βDtu(X, t) .

(1)

Here dots denote time derivatives, X and V are dimensionless particle position and velocity, η(t) is a Gaussian white
noise introduced to break structurally unstable dynamics, 〈ηi(t)ηj(t′)〉 = δijδ(t− t′), and u and Dtu = ∂tu + (u ·∇)u
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denote dimensionless flow velocity field and material derivative evaluated at the particle position. The dimensionless
Stokes number

St = τp/τ (2)

in (1) is defined in terms of the ratio of the characteristic flow time τ and the particle response time:

τp = b2/(3νβ) (3)

where ν is the kinematic viscosity of the carrying flow. The dimensionless quantity

β = 3ρf/(ρf + 2ρp) (4)

accounts for the added mass effect resulting from the contrast between the particle density, ρp = 3mp/(4πb
3), and the

fluid density ρf . The value β = 1 distinguishes particles that are heavier (β < 1) or lighter (β > 1) than the fluid. The
dimensionless translational diffusivity χ in (1) is taken to be small, χ� 1. For Eqs. (1) to be valid, it is assumed that
the particle size b is much smaller than the smallest active scale of the flow, and that the Reynolds number based on
the particle size, Rep ≡ |u−V|b/ν, is very small, Rep � 1. In the limits St→ 0 or β → 1 the dynamics determined
by Eqs. (1) tends to the evolution of a tracer: imposing a finite Stokes drag leads to V = u +O(St(1− β)) +O(χ).

III. REINFORCEMENT LEARNING APPROACH

To identify efficient strategies to sample high-vorticity regions in complex flows, we used reinforcement learning
implementing the one-step Q-learning algorithm [29]. The general reinforcement-learning framework consists of an
agent that is able to interact with its environment (see Fig. 1a for a schematic illustration.). At any given time,
the agent has the ability to sense some information about the environment, or about itself. This information forms
the state s, which is an element of the set S consisting of all the possible distinct states the agent can recognize.
Depending on the current state sn, the agent chooses an action an from a set A of possible actions. Which action is
chosen affects the interaction between the agent and the environment. When the state of the system changes to a new
state sn+1, the agent is given a reward rn+1. The reward quantifies the immediate success of the previously chosen
action to reach the target goal. Depending on the reward, the agent updates its policy of how to select the action
for any given state. Finally, the agent chooses an action an+1 for the new state sn+1 using the updated policy and
repeats the procedure outlined above (see Fig. 1a). The aim of reinforcement learning is to form a close-to optimal
policy of how to choose the action for a given state to achieve the predetermined goal. This is done by maximizing
the long-term accumulated reward.

Action
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Reward
r

n

State
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n

r
n+1

s
n+1
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tn

tn+1 tn+2

b

FIG. 1. a Sketch of the reinforcement learning agent-environment interactions. b Graphical summary of a typical trajectory
for a smart particle in a generic two-dimensional flow. State changes occur at times tn, tn+1, tn+2, . . . when the particle enters
new vorticity regions that are separated by isolines of the vorticity field Ωz (green lines). In each state the particle chooses its
size (the action).

In our case, the agent is the smart inertial particle. It has as a target to navigate vortex flows to reach regions of
high vorticity. One example trajectory in a generic two-dimensional vortex flow is sketched in Fig. 1b. We assume
that the particle can sense the z-component Ωz of the local flow vorticity Ω = ∇ × u. It can distinguish a discrete
number Ns of coarse grained states corresponding to equally spaced intervals of Ωz in the full range of Ωz allowed
by the flow. Different states are separated by isolines of the flow vorticity as illustrated in Fig. 1b. Each time tn the
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particle enters a new state sn it selects a size (the action an) according to the current policy out of a finite discrete
set of Na possible sizes:

an ∈ A = {b1, b2, . . . , bNa
} .

As a result, the radius of the particle is a dynamical variable, b → bn, leading to a change in the particle density
β → β(bn) and inertia St → St(bn). Depending on which sizes the particle chooses, it will in general experience a
different dynamical evolution. The particle keeps its size until the time tn+1 where it enters the next state sn+1 and
is given a reward rn+1. In order to train the particle to move into regions of high vorticity, we choose the reward to
be proportional to some power of the vorticity.

The core of the learning protocol lies in the policy π of how to chose an action given a state, π(s) : s→ a. To find
an approximately optimal policy a training phase is performed. During this phase, the particle is allowed to explore
the effects of taking different actions in the different states. We use the one-step Q-learning algorithm to find an
approximately optimal policy, π∗, iteratively by introduction of intermediate policies πn during the n:th time step,
such that limn→∞ πn = π∗. The policy πn is derived from the Q-value, Qπ(sn, an), according to the ε-greedy rule:
select the action that maximizes the current Q-value function except for a small probability ε of randomly selecting
another action independent of the Q-value:

an+1 =

{
arg maxa′ Q(sn+1, a

′) with probability 1− ε
a random action with probability ε

. (5)

For every state-action pair (sn, an) at time tn, the Q-value estimates the expected sum of future rewards conditioned
on the current status of the system and on the current policy πn:

Qπn
(sn, an) =

〈
rn+1 + γrn+2 + γ2rn+3 + · · ·

〉
. (6)

The parameter γ in Eq. (6) is the discount factor, 0 ≤ γ < 1. The value of γ changes the resulting strategy: with a
myopic evaluation (γ close to 0), the approximately optimal policy greedily maximizes only the immediate reward.
As γ gets closer to 1, later rewards contribute significantly (far-sighted evaluation).

Each time a state change occurs, the agent is given a reward rn+1, which is used together with the value of the
next state sn+1 to update the Q(sn, an)-value according to the following rule [29]:

Q(sn, an)← Q(sn, an) + α[rn+1 + γmax
a

Q(sn+1, a)−Q(sn, an)] , (7)

where α is a parameter that tunes the learning rate. For Markovian systems and if ε slowly approaches zero as
n → ∞, it is possible to show that the update rule (7) converges to an optimal Q(s, a) with a derived policy π∗(s)
which assign to each state the action maximizing the expected long term accumulated reward [29]. The system of
inertial particles considered here is not Markovian, but still we expect approximately optimal policies to be found by
the one-step Q-learning algorithm.

Operationally, we broke the training phases into a number NE subsequent episodes E, with E = 1, . . . , NE . The
first episode is initialized with an optimistic Q-value, i.e. all entries are equal and very large compared to the maximal
achievable reward. This has the effect to encourage exploration and to avoid to be trapped around local minima
in the search for approximately optimal policies. Each episode ends after a fixed number of total state-changes, N ,
and it is followed by a new episode with a new random initial position of the particle in order to introduce further
exploration. The initial velocity of the particle is equal to that of the fluid at the particle position. In order to
accumulate experience, the initial Q of each new episode is given by the one obtained at the end of the previous
episode. For the purpose to quantify the learning ability of the smart particle during the training process, we monitor
the total amount of reward that the particle gains in each episode:

Σ(E) =

N∑
n=1

rn.

Finally, after the training has been performed, for each state s the final policy is to choose the action a with the
maximal entry in the Q-value function. To quantify the success of smart particles we use this policy to evaluate the
long-term accumulative discounted reward, the return:

Rtot =
〈 N∑
n=1

rnγ
n
〉
. (8)

Here the sum extends up to the total number of state changes, N , and the average is taken over realizations of the
noise and over the initial conditions of Eqs. (1). The return Rtot can also be used during training to evaluate the
success of the intermediate policies πn.
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IV. APPLICATION TO A TAYLOR GREEN-LIKE FLOW

As a first example we studied smart inertial particles in a two-dimensional stationary flow. The flow is differentiable
and incompressible everywhere in the considered domain, it consists of four main vortices of different intensity and
sign, singled out by appropriate Gaussian functions (see Fig. 2a and Appendix I for a detailed description).

A. Algorithm implementation

We divide the scalar vorticity field into Ns = 21 equally spaced states as sketched in Fig. 2a. The possible actions
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FIG. 2. a An illustrative sample of the isolines delimiting the Ns = 21 vorticity states. Values corresponding to the underlying
vorticity isolines are shown in red. b Set of pairs (St,β) corresponding to the selection of the Na = 11 actions. Smart particles
are allowed to select each one of the available actions freely (A). We also highlight four different cases corresponding to four
possible naive strategies: (B)-Heavy particle with (St = 0.58, β = 0.36) ; (C)-Light particle with (St = 0.83, β = 2.4); (D)-
Tracer with (St = 0.01, β = 1); (E) simple bimodal policy with only two actions: the particle has one constant low density
(St = 0.83, β = 2.7) [light] in strong negative vorticity states or one constant high density (St = 0.71, β = 0.18) [heavy] in all
the other states (see also text).

the smart particle can take are chosen among Na = 11 equidistributed sizes in the range 0.5 < b < 2. The values of
St and β in Eqs. (2-4) corresponding to these sizes are illustrated in Fig. 2b. In Table I we report all values for β and
St for each one of the Na = 11 different sizes. We contrast the smart particle to naive particles with simple strategies

b β St
a1 0.5 0.176 0.708 Heavy
a2 0.65 0.362 0.583 ”
a3 0.8 0.611 0.523 ”
a4 0.95 0.900 0.501 ”
a5 1.1 1.20 0.505 Light
a6 1.25 1.48 0.527 ”
a7 1.4 1.74 0.565 ”
a8 1.55 1.95 0.615 ”
a9 1.7 2.13 0.678 ”
a10 1.85 2.28 0.751 ”
a11 2 2.40 0.833 ”

TABLE I. Set of parameters corresponding to the Na = 11 actions.

whose actions are illustrated in Fig. 2b: being a heavy particle (B), being a light particle (C), being a tracer particle
(D), and being a bimodal particle that is light in flow regions of large negative vorticity and heavy otherwise (E).

To probe the efficiency of the algorithm, we choose the difficult task for the particles to reach the small upper
right flow region in Fig. 2a independently of the initial condition and within a limited number of state changes, N
(here N = 5000). The upper right region has the highest negative vorticity of the flow. We therefore assign a reward
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proportional to the cube of the negative vorticity experienced by the particle when it crosses the border between two
vorticity levels:

rn+1 = −s3n+1, (9)

where the minus sign is used to target negative vorticity regions. Due to the presence of different peaks in the vorticity
distribution the task is non-trivial. For example, naive light particles with a given fixed density and not too high
Stokes number (for example case (C) in Fig. 2b) would simply be attracted by the vortex closest to their initial
condition, independently of the sign and intensity of the vortex.

We consider reinforcement learning using the scheme described in Section III with mainly fixed learning rate α = 0.1
and ε = 0 (for a case with time-dependent α and ε see Section IV B 1). The other fixed parameters are γ = 0.999 and
χ = 0.005. To enhance exploration, the initial Q-value matrix coefficients are made equal to the undiscounted return
that a particle would gain if it was in the target region during the entire length of the episode: Q(s0, a0) = −Ω3

minN
for all (s0, a0).

B. Results

We first discuss the training session. In Fig. 3 we show the evolution of the normalized total gain:

Σ̃(E) =
3

√
Σ(E)

N
, (10)

where the normalization is introduced such that the maximum achievable gain corresponds to the cube-root of the
maximal reward, or equivalently to the minimal negative vorticity of the flow, Ωmin = −8, found in the upper right
region in Fig. 2a (state s1). For each session, the smart particle increases its performance during the training phase

 0
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 10

5000 10000 15000 20000

Σ~

E

maximal normalized gain

FIG. 3. Dependence of the normalized total gain, Σ̃ in Eq. (10) on the episode E for ten different learning processes (black
curves). Every point represents an average over a sliding window of 500 episodes. The red line shows the maximal possible
reward.

and eventually achieves to reach the smallest vortex for most initial conditions and realisations of the white noise η.
Fig. 3 shows the evolution of the learning gain as a function of the episode during the training process for ten different
trials. We observe that the different trials result in different values of the normalized gain after many episodes. The
greedy choice (ε = 0) of actions based on Q that we have adopted in this particular numerical experiment allow for
little exploration. After an initial transient where much exploration occurs, the evolution of the initially large Q-value
matrix almost stagnates. As a result it might happen that the dynamical relaxation (7) toward the approximately
optimal policy gets stuck for many training episodes in a local optimum. The only way to leave the local optimum is
due to the relatively small exploration due to the choice of initial condition and the realisation of the noise η.

After the training, we perform an exam session, by taking the policy derived from the final Q obtained from one of
the successful trials shown in Fig. 3. In Fig. 4 we show the spatial distribution of smart particles, using the derived
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policy which gives the highest gain in Fig. 3. This is compared to the spatial distribution for the four naive reference
cases discussed above and shown in Fig. 2b. We observe that the trajectories of smart particles have high density in
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FIG. 4. Left column: Particle positions along 10 representative trajectories plotted after an initial transient for the cases
studied in Fig. 2b (except for tracer particles which fill space uniformly). From top to bottom: Smart-particles (A), Heavy
(B), Light (C), simple bimodal policy (E). Middle column: probability density function of vorticity sampled along 1000 particle
trajectories for each of the cases studied (red curves). The PDFs are compared with the distribution for tracer particles (shaded
curve). The blue shaded region marks vorticity levels that are unique to the target region. Right column: the policies (the
action a the particle takes given a state s) used in the considered cases.

the target region, which isn’t sampled at all in the other instances, or just rarely for the case of light particles. Next to
the position plots, we show the probability density functions of the vorticity sampled by the particles (middle column),
which give a quantitative representation of the frequency at which the particle visits different states. Notice how the
smart particles (first row) are able to oversample the target of the training, the intense negative vorticity region,
avoiding for most of their time the other lower-reward vortices. It is important to remark that the approximately
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(A) (B) (C) (D) (E)

S-TG R̃tot 7.49 0.76 2.4 1.4 1.6

T-TG R̃tot 5.0 0.0 -2.0 0.0 0.0

TABLE II. The normalized discounted return, R̃tot for the best training of the smart particles using a greedy policy, compared
with the other four cases (B–E). First row: stationary Taylor-Green like flow (S-TG) given by Eq. (14). Second row: the same
as the first row but for the time dependent case (T-TG) discussed in Sec. (IV B 2).

optimal policy obtained via the reinforcement learning is much better than the one with a bimodal change in density:
being heavy for vorticities outside of the target region and light otherwise (fourth row in Fig. 4). In other words, to
reach the small target it is necessary to take unintuitive actions even in a relatively simple flow as the one considered
here. This is summarized by the complex structure of the approximately optimal policy shown in the right column of
Fig. 4. In Table II we report a quantitative comparison between the long term normalized return

R̃tot = 3

√
γ − 1

γN+1 − 1
3
√
Rtot (11)

for smart particles and the other reference cases. The normalization used for Rtot in (11) is given by the sum of the
first N terms of the geometric series with common ratio γ.

1. Additional exploration during the training

In this section we describe how the performance of the reinforcement learning can be improved by adding additional
exploration during the training session using a non-greedy action (ε > 0). The training phase starts with an initial
positive value of ε which is then slowly reduced to zero. This prevents trapping in local minima for a transient phase
and then slowly the greedy policy is recovered. This leads to a fixation of the approximately optimal strategy. A
particularly simple and efficient scheme is to decrease both the learning rate α and the exploration rate ε as a function
of the episode, E, during the training:

αE = α0/(1 + σ E) ; εE = ε0/(1 + δ E) , (12)

where σ and δ are positive constants. In Fig. 5 we show the results for a particular choice, ε0 = 1/1000; α0 = 1/10;
σ = 1/800 and δ = 1/10000. We observed that, by adding additional exploration the smart particles are able to find,
in a more systematic way, approximately optimal policies that are on the same level or better than the best performing
policies found in Fig. 3. The found policies are then stabilized by the adiabatic switch off in Eq. (12). It is important
to notice that when using the ε-greedy method one might need to fine tune the parameters of the learning protocol,
εo, α0, σ, δ and that in most cases there is not an priori obvious choice. This is due to the fact that there exists a
trade-off between the advantage of taking locally sub-optimal actions and the risk to drift in the space of possible
solutions due to the excess of randomness introduced by the exploration. Similarly, the performance of the algorithm
might depend on the sets of allowed states and actions. If there is a too limited number of options, the particle might
not have enough information and/or enough freedom in maneuvering, leading to a failure to reach the target. On
the other hand, an excess of inputs and of control might lead to a slow convergence to the approximately optimal
strategy due to the need to explore a vast number of state-action entries of the Q-value matrix. In Fig. 6 we show
the sensitivity of our results upon changing the discount factor γ but keeping all other training parameters constant.
As one can see, the normalized gain remains of the same order when γ is varied one order of magnitude. Only if the
discount is too myopic (γ � 0) or too far-sighted (γ ∼ 1) the algorithm fails. This indicates that the application of the
reinforcement learning protocol to the problem of inertial particles studied here is robust to variations in the learning
parameters. Typical combinations of the learning parameters consistently give good rewards and there is no need for
fine-tuning of the learning parameters for the application of finding an acceptably good solution. If the application
on the other hand is to really find a policy that is arbitrarily close to the approximately optimal behaviour, more care
is required in the choice of learning parameters and in the design of the space of allowed states and actions.

2. Time-dependent flows

It is natural to ask how the approximately optimal policy will perform under perturbations of the underlying
flow or if the algorithm is robust when applied to time-dependent and more complex flows. We have extended the
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FIG. 5. The normalized learning gain, Σ̃(E) in Eq. (10) against the episodes E for the ε-greedy reinforcement learning
algorithm. The representation is comparable to Fig. 3 (scale on left vertical axis) . The two continuous curves represent the
adiabatic decreasing of both the exploration parameter ε and the learning rate α (scale on right vertical axis).

 0

 2

 4

 6

 8

 10

 1000  10000

Σ~

(1 − γ)
−1

FIG. 6. The normalized learning gain Σ̃(E) as a function of the time horizon of the learning process (1 − γ)−1 averaged over
samples of ten different learning trials. Error bars are estimated on the basis of the scatter inside each sample.

two-dimensional flow in such a way that the four coefficients b1,. . . ,b4 building up the four-vortex flow (see Eq. (14)
in Appendix I) acquires an out-of-phase oscillating behavior bi(t) = cos(ω0t + φi), where ω0 is a constant angular
frequency and φi are four different constant phases. The system has been trained for the case ω0 = 0.001 with
constant learning rate α = 0.1 and greedy selection of actions (ε = 0). In Fig. 7 we show the corresponding results of

the total normalized gain during the training phase, Σ̃(E). Notice that the maximal value of Σ̃ now depends on time,
as the instantaneous maximal negative vorticity evolves in time. For our choice of parameters, it turns out that the

cube-root of the time average of the cubed minimal negative vorticity over one oscillation is (−Ω3
min)1/3 ≈ 5.2. Even

in presence of time variations, the smart particle learns how to move in the flow to follow the most intense negative
vortices, which now oscillates in a non-trivial manner around the four regions of the flow. In Fig. 7 we also show
three approximately optimal policies corresponding to three typical learning events. As one can see, there are some
systematic patterns that are common for all cases. A visual inspection of the spatial distribution of the particles at
four different times during one oscillation of the basic flow can be found in Fig. 8. Here it is possible to see how
the particles are indeed trying to follow the moving target with high percentage of success. The top panel of Fig. 8
shows the time dependence of the average vorticity sampled along trajectories of 100 smart particles that started
from random initial positions. The average vorticity is compared with the four reference cases (B-E). As one can see,
smart particles do not remain oscillating in a confined region but exploit the flow to reach, in average, more profitable
areas. In the last column on the right of the same figure we show the instantaneous distribution of vorticity sampled
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dimensional time-dependent flow. Every point represents an average over a sliding window of 500 episodes. The three policies
shown to the right are for the cases with best, middle and worst final gain.

by the smart particles (top) and by the light case (bottom). In the figure we also show the instantaneous minimum of
vorticity in the two-dimensional spatial configuration. We see that while light particles are forced to follow the local
extrema of vorticity (positive or negative), the smart particles tend to avoid positive vorticity and to be accumulated
in regions of intense negative vorticity, as requested by the reward.

V. APPLICATION TO ABC FLOWS

A stationary three-dimensional flow is intriguing because the motion of tracers can be chaotic and very irregular.
The Arnlod-Beltrami-Childress (ABC) flow has been the subject of many studies in turbulence theory. Its Eulerian
velocity field is (in dimensionless coordinates):

ux = C cos y +A sin z

uy = A cos z +B sinx

uz = B cosx+ C sin y . (13)

The flow is characterized by three parameters A, B, and C.
Numerical simulations and theoretical arguments show that the ABC flow has tube-like regions in space within

which the streamlines of the flow are confined and the velocity is essentially one-dimensional [30]. Since vorticity
Ω ≡ ∇ ∧ u is parallel to the velocity in an ABC flow, Ω = u/2, these tubes are referred to as principal vortices.
Due to symmetries an ABC flow with A = B = C has three pairs of principal vortices that are mainly aligned with
the three directions x̂, ŷ and ẑ. Each pair consists of two vortices of opposite sign of velocity and vorticity. Within
the principal vortices of an ABC flow the dynamics is regular, while outside it may become chaotic. Similar to the
two-dimensional flow in Section IV, we impose here as a target for the smart particle to maximize the magnitude of
its vorticity Ω ≡ |Ω|. In order to achieve this goal, the particle needs to navigate a complex flow landscape to target
the principal vortices with maximal vorticity.

A. Algorithm Implementation

To show how general the success of the reinforcement learning is, we adopt a slightly modified version of the
learning framework implemented in Section IV. We keep St = 0.2 fixed, and use as an action to change the value of β.
Allowed values are equally distributed in Na levels between 0 and 3. The state of the particle is given by either |Ω|
or one of the components of Ω, equally partitioned in Ns levels between the minimal and maximal value that can be
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FIG. 8. Upper row: average Ω sampled along the time evolution of 100 particles for each analyzed type: A-smart (purple), B-
heavy (orange), C-light (red), D-tracer (green) and E-particle with bimodal policy (magenta). The average vorticity is periodic
with the period T = 2π/ω0 of the underlying flow.
Middle row: spatial distribution of 100 smart particles at the four different times T1, T2, T3 and T4 highlighted in the top panel.
Lower row: the same but for light particles. The last column on the right shows scattere plots of Ω for smart particles (top) and
light ones(bottom) throughout the entire period. The shadowed grey curve represents the instantaneous maximum negative
vorticity throughout the flow.

obtained in the ABC flow. We use as reward |Ω|3 averaged over the time the particle spend between state changes.
This is in contrast to Section IV, where the cubed vorticity was evaluated at the position of the state change. As in
Section IV we use optimistic learning, where the entries of the initial Q-value matrix is N times the maximal reward
and N = 1000 is the number of state changes per episode. We keep the learning rate fixed, α = 0.1, use a greedy
policy, ε = 0, use a discount factor γ = 0.97 and use no noise in Eq. (1), χ = 0.

B. Flow parameters

For the ABC flow we use light particles (β = 3) as naive reference particles. Principal vortices are traps for light
particles: depending on the initial condition a light particle ends up in either one of the principal vortices. In a
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FIG. 9. Result from training of particles in ABC flow with weakly broken symmetry (2A = B = C = 1). a Normalized total

gain Σ̃ = 〈|Ω|3〉1/3 [Eq. (10)] as a function of episode E. The maximal vorticity in the flow is shown as black-dashed. Red-

dashed line shows the steady-state average 〈Ω3〉1/3∞ along the trajectories of many naive light particles. Solid blue line shows

the corresponding average 〈Ω3〉1/3∞ using the best policy obtained. Black dashed line shows maximal vorticity. b Distribution
of magnitude of vorticity |Ω| for smart particles (blue peak), naive particles with β = 1 (green) and naive particles with β = 3
(red region and peak). c Frequency of optimal action for each state using the ten final policies for the cases displayed in panel
a. Black boxes highlight the best policy in panel a.

symmetric ABC flow (A = B = C) the average magnitude of vorticity along trajectories in each of the principal
vortices is identical and the smart particle only marginally manages to outperform a light particle (not shown). We
therefore consider ABC flows with weakly broken symmetry, 2A = B = C = 1, and with strongly broken symmetry,
4A = 2B = C = 1. In the weakly broken case, the dynamics in one direction is distinct from the other two, and in
the strongly broken case all three directions have different dynamics. For the case of an asymmetric ABC flow, the
situation is similar to the four-vortex flow studied above. If the particle is constantly light, it will be attracted to a
vortex region depending on its initial condition. However, since different principal vortices have different intensity of
vorticity in the asymmetric ABC flow, not all light particles will end up in the region of strongest vorticity (similar
to the four-vortex flow above, where light particles end up in either of the vortices depending on its initial condition).
Giving the smart particle appropriate information about the flow, we expect it to be able to learn to go to the principal
vortices of highest vorticity and consequently beat the light particle.

C. Results

Fig. 9a shows the evolution of the normalized total gain Σ̃ for training of particles in an ABC flow with weakly
broken symmetry. The training has been performed using |Ω| as the state and repeated ten times. The resulting
curves (solid purple) are compared to the maximal vorticity in the flow (black dashed) and the steady-state average

〈|Ω|3〉1/3∞ for naive particles with constant β = 3 (red dashed). We remark that the value of the purple curves is
lower than the steady state average due to the initial transient before the steady state is reached. We therefore also

plot as solid blue the steady state average 〈|Ω|3〉1/3∞ for the best policy (highest averaged reward at the last episode)
for the data in Fig. 9a. Fig. 9b shows the steady-state distribution of the magnitude of vorticity for the best policy
in Fig. 9a (blue peak), for tracer particles (green solid line), and for naive light particles (red line and peak). The
distribution for the tracer particles shows that over the entire flow, vorticity is more or less uniformly distributed
with some reduced probability at small values. The distribution for the smart particles instead shows a sharp peak.
A similar peak is also found for the light particles, but these also show a band of vorticities around |Ω| = 1.5. Fig. 9c
shows, for the cases in Fig. 9a, the best policy found and the frequency at which the ten final policies select actions
for each state.

For non-small values of St (St = 0.5 and St = 2) the reinforced learning scheme basically finds the naive solution,
i.e. to be heavy if |Ω| is small, and light if |Ω| larger than some threshold value (not shown). These solutions perform
at the same level as the naive solution of being light with constant β = 3. For the case St = 0.2 considered here,
the smart particle find a qualitatively different solution that beats the naive solution, although the final gain is only
approximately 5% better than the naive solution. As shown in Fig. 9b the distribution of vorticity for the smart
particle and the naive light particle are similar but with one important difference. The sharp peak close to |Ω| = 2
corresponds to the principal vortices in the z-direction. While all initial conditions end up in these vortices for the
smart particles, some initial conditions for naive particles ends up in the subdominant principal vortices orthogonal
to the z direction, leading to the band of vorticities around |Ω| = 1.5 which explains why the naive particles have a
lower gain. As shown in Fig. 9c, the trend in the policy is basically to be light when vorticity is high, and heavy when
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N∗ 19 17 15 13 11 9 7 5 3 1 0

R̃tot 1.01 1.04 1.13 1.19 1.49 1.50 1.50 1.49 1.45 1.44 1.45

TABLE III. Normalized return R̃tot definded in (11) for the examination phase with Q-value matrix such that the optimal
action a∗(s) is 0 (heavy) for a number N∗ of centered states and 3 (light) for the remaining states. As an example, N∗ = 9
and Ns = 21 states used here gives a∗(s) = {3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 3, 3}.

vorticity is low, but there also seems to be some structure needed in the intermediate vorticity states that enables the
smart particles to outperform the naive one.

For the ABC flow with strongly broken symmetry, light particles distribute on two pairs of principal vortices, with
roughly 80% of the particles in the strong principal vortices in the ẑ-direction and the rest on the weaker principal
vortices in the x̂-direction. One such trajectory is shown in Fig. 10a. Training of the smart particle on the other
hand, using Ωz as the state, allows it to find strategies that target the dominant principal vortices in the ẑ direction
for all tested initial conditions. One such example is shown in Fig. 10b: starting from the same initial condition the
smart particle reaches the optimal vortex, while the naive particle ends up in a subdominant vortex.

a b

FIG. 10. Particle trajectories in an ABC flow (4A = 2B = C = 1) starting from an identical initial condition of a naive light
particle (a) and a smart particle b. The trajectories show that a smart particle manages to find the optimal vertical principal
vortices independent of the initial condition, while the naive light particle sometimes get stuck in suboptimal horizontal principal
vortices. The plotted particle sizes are proportional to the value of β

In Fig. 10 we observed that the smart particles using Ωz as state recognizes the two principal vortices of highest
vorticity, and therefore get a higher reward than the light particles with constant β = 3. The training progress and
resulting policy is shown in Fig. 12c,f. The structure of the Q-value matrix suggests that the policy used is quite
simple: be heavy (β = 0) when |Ωz| is smaller than some threshold and light (β = 3) otherwise. This observation is
supported by the data in Table III. The normalized returns quoted in Table III show that if the threshold is chosen
around N∗ = 7 ∼ 9, where N∗ is the number of states where the particle is heavy, the bimodal policy in Table III
performs roughly at the same level as the trained solution. This value of the threshold (also found by the smart
particle) does not follow immediately from the distribution of vorticity, shown in Fig. 11.

−1 0 1
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i
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FIG. 11. Flow distribution of different components of Ω: Ωx (red), Ωy (green), Ωz (blue) for an ABC flow with strongly broken
symmetry, 4A = 2B = C = 1.
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FIG. 12. Result from training of particles in an ABC flow with strongly broken symmetry (4A = 2B = C = 1). Data is

displayed in the same manner as Fig. 9. a–c Normalized total gain Σ̃(E) as a function of episode during training using the
components Ωx (a), Ωy (b), Ωz (c) as state. d–f Corresponding frequency of optimal action for the final policies in panels a–c.

Fig. 12a,d and Fig. 12b,e show results from training with Ωx and Ωy as states. We find that if Ωx is used as the
state, the smart particle learns to outperform the naive light particle, using a non-trivial strategy (Fig. 12d). If Ωy is
used as the state on the other hand, the smart particle is not able to find a strategy that outperforms a light particle.
This shows that it is important that the smart particle must measure appropriate information about the flow to be
able to find a good strategy. Fig. 11 shows the distribution of the components in the underlying ABC flow. The
distribution of Ωy is narrower than the distributions of Ωx and Ωz. This explains why it is hard to use Ωy as the state
in order to find regions with large |Ω|.

D. Evaluation of the algorithm

In general it is hard to evaluate the success of the reinforcement learning algorithm because the global optimal
policy is not known. Due to the vast size of possible Q-value matrices it is in general not possible to do a brute force
approach, by testing all possible Q-value matrices. However, in the current problem it turns out that the algorithm is
able to find non-trivial solutions also if the number of actions and number of states are reduced. We consider training
using Ωx as a state (the case in Fig. 12a,d), with a reduced number of actions Na = 2 (β can take the values 0 or 3)
and states Ns = 11. The results for 100 training sessions are displayed in Fig. 13a. The general trend is non-trivial,
the particle should be light for large |Ωx|, mainly heavy in a range of intermediate |Ωx| and light again for small Ωx.

There are 211 = 2048 possible Q-value matrices. We evaluate the normalized total return R̃tot for each Q-value
matrix averaging over 1000 episodes starting from 1000 predetermined initial conditions that are identical for each
tested Q-value matrix. Fig. 13b shows the distribution of R̃tot for all the 2048 possible Q-value matrices (green).

Also displayed is the distribution of R̃tot obtained from the 100 policies underlying Fig. 13a (purple). We find that
the policies obtained by reinforcement learning in general lies close to the global optimal solution, and that in some
instances the true global optimum is reached. The optimal normalized return is R̃tot = 1.49, which is comparable to
the best gain Σ̃ = 1.50 for the case Na = 11 and Ns = 21 (the data in Fig. 12a and d), but the case with fewer states
and actions is more likely to get stuck at poor solutions with a lower return.
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s = 2048 possible Q-value matrices. Purple bars show distribution of R̃tot for the 100 training sessions.

VI. CONCLUSIONS

In this paper, we have shown how smart inertial particles can learn to sample the most intense vortical structures
in fluid flows of different complexity: a two-dimensional stationary Taylor-Green like configuration, a two-dimensional
time-dependent Taylor-Green like flow and three-dimensional ABC flows. We achieve this goal by defining the prob-
lem within the reinforcement learning framework and using the so-called one-step Q-learning algorithm to obtain
approximally optimal policies in an iterative way. We evaluate the learning performance by comparing the acquired
ability of smart particles to reach the target region with respect to the analogous skill of particles with fixed size. For
the 2D examined flows, it is found that the learnt policies allow outperforming of particles that cannot modulate their
size or that can only do it rudimentarily. While the trajectories of smart particles have high density in the target
region, this region is never sampled, or just rarely, in all the other instances. Even better strategies are obtained
by adopting an ε-greedy algorithm, i.e. allowing additional exploration during the training session and letting the
learning parameter α decrease in time to stabilize the found policies. Smart particles tend to elude positive vorticity
and to accumulate in regions of intense negative vorticity even in the time-dependent flow. For the investigated
three-dimensional flows smart particles mainly outperform fixed-size particles except for the case of particles with
non-small Stokes numbers in the slightly asymmetric ABC flow, for which the smart particles perform on the same
level as naive light particles. In this context it emerges more clearly how general the success of the reinforcement
learning is, but also that achieving the predetermined goal depends on the properties particles can measure and on
how much the target can be discriminated from non-interesting regions. Despite that a fully realistic description of
the particle dynamics and the actual complexity of real flows is far from the goal of this paper, we provide a proof of
concept for the possibility to engineer smart inertial particles and to make a case for the use of reinforcement learning
algorithms for this purpose. There is room for improvement in many directions. For instance, other ways to control
the dynamics of engineered particles could be by changing their chirality or ellipsoidal structures. Moreover, other
sensory inputs could be explored, one example being the temperature in convection. Acknowledgments LB, KG
and SC acknowledge funding from the European Research Council under the European Unions Seventh Framework
Programme, ERC Grant Agreement No 339032.

VII. APPENDIX I

The flow domain is a square of size L = 5π/4 consisting of four quadrilaterals, (two squares and two rectangles)
of sides L1 = π and L2 = π/4, (L = L1 + L2). The velocity and vorticity fields are built from the following stream
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function, made out of the superposition of four different vorticity blobs placed at the center of each subdomain:

ψ(x, y) = b1G1(x)G1(y) sin

(
xπ

L1

)
sin

(
yπ

L1

)
P (x)P (y)

+ b2G2(x)G1(y) sin

(
xπ

L2

)
sin

(
yπ

L1

)
P (y)

+ b3G2(x)G2(y) sin

(
xπ

L2

)
sin

(
yπ

L2

)
+ b4G1(x)G2(y) sin

(
xπ

L1

)
sin

(
yπ

L2

)
P (x), (14)

where

G1(x) = exp(−(x− x̄1)2/(2∆2
1)),

G2(x) = exp(−(x− x̄2)2/(2∆2
2)),

are the Gaussian functions that modulate the vortical structures with widths ∆1 = L1/4, ∆2 = L2/4 and centers in
x1 = −L1/2, x2 = L2/2 and

P (x) = [x− x̄1 − (L− L1/2)][x− x̄1 + (L− L1/2)]

is a polynomial of degree 2 such that the orthogonal velocity component vanishes at the boundaries of the domain.
The coefficients, bi are fixed as (b1, b2, b3, b4) = (−0.1, 0.02,−0.10, 0− 02) and determine the intensity of the vortical
structures to be (approximately) (5,−8, 5,−2) (see Fig. 2). Reflecting boundary conditions are used to confine the
particles inside the volume.
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