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Inferring physical parameters of turbulent flows by assimilation of data measurements is an open
challenge with key applications in meteorology, climate modeling and astrophysics. Up to now,
spectral nudging was applied for empirical data-assimilation as a mean to improve deterministic
and statistical predictability in the presence of a restricted set of field measurements only. Here, we
explore under which conditions a nudging protocol can be used for two novel objectives: to unravel
the value of the physical flow parameters and to reconstruct large-scale turbulent properties starting
from a sparse set of information in space and in time. First, we apply nudging to quantitatively
infer the unknown rotation rate and the shear mechanism for turbulent flows. Second, we show that
a suitable spectral nudging is able to reconstruct the energy containing scales in rotating turbulence
by using a blind set-up, i.e. without any input about the external forcing mechanisms acting on the
flow. Finally, we discuss the broad potentialities of nudging to other key applications for physics-
informed data-assimilation in environmental or applied flow configurations.

INTRODUCTION

Extracting information from experimental or observa-
tional data of fluid flows is a highly challenging task.
While in laboratory experiments one can control and/or
measure the properties of the system (e.g. viscosity, ther-
mal expansion coefficient, large scale shear, rotation rate
etc...), this is often impossible when performing observa-
tions in the open field, such as for meteorological data
taken from the atmosphere or astrophysical data in the
sky. Thus, one has to resort to other methods to infer
the desired parameters, a task which most of the time
is obstructed by the quality of the data at hand. The
problem is part of a vaster paradigm that goes under the
name of data assimilation and optimal reconstruction,
where one is faced with the need to infer the flow pa-
rameters or to extrapolate measurements from a sparse
sub-volume of the flow field to the whole space. The
problem is also connected to the need to control and
improve predictability for the evolution of chaotic sys-
tems by using only a partial set of information about the
full trajectory. These problems can be encountered in
a wide range of fields, going from atmospherics sciences
[1, 2], astrophysics [3], optics [4] and medical physics [5].
Several tools have been developed to tackle these chal-
lenges. In the context of numerical weather prediction,
variational principles and ensemble filters have been de-
veloped to fine-tune the parameters entering in the sub-
grid models [6–9]. Alternatively, other techniques cou-
pled with Bayesian inference, machine learning and deep
learning have been proposed to estimate the parameters
phase-space in Reynolds-averaged Navier-Stokes models
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in engineering problems [10–13]. Also, information the-
ory and statistical mechanics tools such as belief propa-
gation have been used to infer parameters from turbulent
flows by looking at the motions of transported particles
[14]. Another interesting example is the use of sparse
regression methods to discover not only parameters but
the actual form of the terms controlling the evolution of
a system [15, 16].

In this paper, we explore a new avenue and we show
how to infer the physical flow parameters from partial
data assimilation by exploiting the equations of motion
in a dynamical way, using a technique known as nudg-
ing, whose conceptual foundation goes well beyond ap-
plications to physics (see 2017 Nobel lecture on Econ-
omy by R.E. Thaler). Contrary to the attempts previ-
ously mentioned where the modeled flow is usually com-
pared with data by using a cost function, nudging in-
troduces an extra term in the dynamical equation where
partial information from field measurements is inputted
and exploited to reconstruct the unmeasured degrees-of-
freedom. Nudging, has been successfully used and de-
veloped to input global circulation model into a regional
climate model [17–19]. In this case, due to computa-
tional constrains, the global models can not solve the
smallest dynamically active scales so as to have accu-
rate local weather predictions, while the regional models
can not solve for the large planetary cyclonic and anti-
cyclonic circulations. Nudging is applied to match the
overlapping scales in each model by forcing the regional
model to behave as the global one via a penalty term.
Outside numerical weather prediction, nudging has also
been rigorously applied to estimate bounds in the data
assimilation problem in two dimensional Navier-Stokes
equations [20, 21], the three dimensional Navier-Stokes
α-model [22], and in Rayleigh-Bernard convection [23].
It has also been used to study synchronization in maps
and dynamical systems [24]. To the best of our knowl-
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FIG. 1. Diagram showing the set-up of our numerical ex-
periments. First, a reference simulation is performed (left).
Second, a subset of data is filtered out of the reference field,
by keeping only data on a given sub-set of points in space and
instant in times (center). Third, we interpolate in time the
input partial information and use it to nudge the evolution of
a new field to reconstruct the missing data and to infer the
correct physics parameters (right).

edge, no attempts have ever been made to benchmark
and optimize its performances to the three-dimensional
Navier-Stokes equations in the fully developed turbulent
regime, characterized by high chaoticity and by a high-
dimensional strange attractor.

We implement a spectral nudging technique with two
novel aims. First, we show how to use nudging as a
physics-informed tool to accurately infer key flow param-
eters as, e.g. the rotation rate or the large-scale stirring
mechanism, from a limited sub-set of data sparsely mea-
sured in time and in Fourier space. Second, we show
that the same technique can be used to learn the global
physical turbulent configuration. We do this by using the
nudged equations to reconstruct in space the large-scale
energy distribution of rotating turbulence under the pres-
ence of a split energy cascade and without inputting in to
the algorithm any information about the external forcing
mechanism and about the intensity of the rotation rate.
Nudging is thus presented as a general data-driven algo-
rithm to learn from sparse measurements in a dynamical
way and a with a broad range of applications. Finally,
we discuss a series of open challenges to adapt and ex-
tend the application of nudging to other turbulent flow
configurations using either Eulerian or Lagrangian field
measurements and in different domains.

THE NUDGING TECHNIQUE

As said, nudging means to gently convince a numerical
flow to evolve as close as possible to a reference set sup-
posing to have only partial measurements or observations
of the latter [17–19]. The idea is to use the equation of
motion to perform an optimal data and flow-parameter
assimilation in the interval of time t ∈ (0, t′) and in
the whole fluid volume. Suppose we have a reference
three dimensional turbulent flow, uref(x, t) evolving un-
der the action of a set of external forces, F [uref ,Vref ],
parametrised by a set of physical coefficients, Vref =
(Ωref ,Sref , `ref ,∆Tref , · · · ) where we denoted with Ωref

the rotation rate, with Sref the amplitude of a large scale

shear with the typical length scale `ref , with ∆Tref the
temperature difference across the volume etc... Suppose
that we have access to the measurements of the reference
velocity field, uref on a limited set of M anemometers
placed in xj with j = 1, · · · ,M that record the flow
properties at N time instants tn with n = 1, · · · , N , i.e.
we control uref in a given sub-domain of the whole space-
time (3+1) volume only. The idea behind nudging is to
evolve an independent three dimensional incompressible
Navier-Stokes (NS) equations with an initially educated
guess for the set of parameters, V, and imposing a pe-
nalisation whenever the flow field does not reproduce the
inputted velocity values of the reference field in the space-
time domain V = (xj , tn):

∂u

∂t
+u·∇u = −∇p+ν∇2u+F [u,V]−αIV (u−uref) (1)

where ν is the viscosity, p is the pressure that ensures the
incompressibility condition, IV is a dimensionless linear
projector operator given by the characteristic function
of the set V , and α is a parameter that controls the in-
tensity imposed by the nudging control and has units
of frequency. In its crudest form, IV is equal to 1 for
(x, t) ∈ V and 0 otherwise. The simplest and most com-
mon improvement is to linearly interpolate the different
measured snapshots between each time tn and tn+1. So
when entering (1), uref will always be assumed to be
piece-wise differentiable in time with a characteristic in-
terpolation window, τ . In this way the operator IV is
only acting on the spatial part of the fields. The whole
protocol is sketched in Fig. 1. It is important to real-
ize that, in our application, we do not even require to
know the exact way the system is forced, i.e. we do not
impose V = Vref and the only a priori information that
we provide is inside the partial measurements of the ref-
erence field. Clearly, the success of the reconstruction
will depend on the amount of information provided (how
many measurements in space and in time), on its quality
(where and what we measure) and on the intensity of the
penalization term, α. Notice that, because of potential
stiffness and truncation effects arising when α is big, it
is not a priori obvious that taking large α is the best
choice. It is intuitive to imagine that in some cases it
might be better to allow for a larger error in some mea-
suring stations to allow the field to be closer to the target
globally.

SET-UP OF THE NUMERICAL SPECTRAL
NUDGING EXPERIMENT

We start first by restricting to the case when the set
of external parameters are given by the intensity of the
Coriolis force due to the presence of a rotation Ω in the
vertical direction and of an external stirring mechanism
S:
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F [u,V] = 2Ω ẑ× u(x, t) + S(x). (2)

where S is a randomly-generated, quenched in time,
isotropic field with support on wavenumbers with am-
plitudes k ∈ [kf1, kf2] whose Fourier coefficients are

given by Ŝ(k) = Sk−7/2eiθk , where θk are the random
phases. In the remaining part of this paper we will ad-
dress the most ideal case when the information is supplied
in Fourier space, i.e. we imagine to have a periodic array
of measurement stations that allow us to reconstruct the
reference flow configuration in a given range of nudged
wavenumbers, k0 < k < k1. In this case, the IV operator
reduces to a band-pass Fourier filter of the form

IV u =
∑

k0<|k|<k1

û(k, t) exp (ik · x), (3)

that projects the velocity field on the window of nudged
Fourier modes.

We implement the whole protocol as follows. First
we numerically produce a full space-time evolution of
the whole uref field in a interval t ∈ (0, Ttot) by solv-
ing the Navier-Stokes equations with a reference rota-
tion rate Ωref and a given intensity of the shear Sref (i.e.,
Eqs (1) with α = 0). The values of Ωref and Sref (and
also ν which is the same for both the reference and the
nudged simulations) are given in Table I. All reference
simulations are started from rest and allowed to reach
stationary states (t = 0 denotes the start of the station-
ary states). Second, we extract the inputting field in
a subset of discrete times tn = nτ with τ chosen as a
fraction of the characteristic eddy turnover time of the
flow (see Table I) . Third, we define the nudging field
(3) by a linear interpolation between tn and tn+1 for all
intervals. The initial condition used for all nudged simu-
lation is just the first extracted input field (i.e., the field
at t = t0) with all the modes outside the nudging re-
gion filtered out. All simulations have been performed
with a parallel pseudo-spectral code. The code uses a
two step Adams Bashfort scheme for the time integra-
tion, the “2/3 rule” for dealiasing and periodic boundary
conditions in all three directions. In the following we will
analyze three different nudging protocols. The first two
cases are about simulations made to infer the physical
flow parameters, Ωref and Sref (called INFER1 and IN-
FER2 in the following, see also Table I for details). The
third case is about the reconstruction of the large-scale
coherent structures and it is called PHYS1. Numerical
details for all set-ups can be found in Table I. The value of
τ is such that it is smaller than the decorrelation time of
the fastest nudged mode, while α was taken as 1/τ , these
choices follow common practices [25]. A comprehensive
report about the performance of nudging at changing α, τ
for fully developed homogeneous and isotropic turbulent
flow is not the scope of this paper and it will be presented
elsewhere.

Set-up Ekin T ν Re Sref [kf1, kf2] Ωref [k0, k1]
INFER1 1.84 3.28 0.002 6030 0.005 [1,2] 2 [1, 4]
INFER2 1.20 4.06 0.0025 4900 0.02 [1,2] 0 [1, 4]
PHYS1 0.0012 128 0.002 150 0.004 [10,11] 20 [8, 20]

TABLE I. Parameters used in the different numerical experi-
ments. INFER1 is the set-up for the Ω scan, INFER2 for the
S scan, and PHYS1 for the inverse cascade experiment. The
values listed are the total kinetic energy Ekin = 1/2〈|u|2〉, the

eddy turnover time T = L/(2Ekin)1/2, with L = 2π being the
largest scale in the flow (same for all simulations), the viscos-

ity ν, the Reynolds number Re = L(2Ekin)1/2/ν, the forcing
intensity of the reference simulation Sref , the band of forced
wavenumbers in the reference simulation [kf1, kf2], the rota-
tion frequency of the reference simulation Ωref , and the band
of nudged wavenumbers [k0, k1]. The number of grid points
N3

grid = 2563, the time step of the simulations dt = 0.001,
the nudging intensity α = 10, and the temporal interpola-
tion window of the nudging field τ = 0.1 are the same for
all simulations. The box length L, the temporal timestep dt,
the resolution N3

grid, and the viscosity ν are the same for the
reference and the nudged simulations in each set. The kinetic
energy and Reynolds numbers are given for the reference run
of each set, the nudged ones have very similar values.

INFERRING PHYSICAL PARAMETERS IN
ROTATING TURBULENCE

We start by asking how to guess the exact value of the
rotation rate, Ωref , without any a priori knowledge on its
value. To give a first idea on the applications of nudging,
in panels (A-D) of Fig. 2 we show a series of 2D slices of
the vorticity field in the direction parallel to the rotation
axis for the reference simulation (panel A) and for three
different nudged simulations (panels B-C-D), two with
wrong rotation rates, Ω = 0 and Ω = 2Ωref , and one with
the correct value, Ω = Ωref . Furthermore, in this set of
simulations we took S = 0, i.e. we suppose to not know
the forcing mechanism (all simulations are from set-up
INFER1 shown in Table I). All snapshots were taken at
the same instant in time. Comparing the four panels, it
is clear that the simulation nudged with the correct ro-
tation rate (panel C) does reconstruct the reference flow
(panel A) much better then the other two (panels B and
D). It is also worth pointing out that the standard de-
viation of the vorticity fields is recovered when rotation
is present, with the values begin around 2.8 for the ref-
erence and the simulations of both panels C and D, but
this is not the case in the absence of ration (panel C),
where the standard deviation takes a value around 5.4.
All fields have zero mean by construction. These qualita-
tive results already provide a first glance of the two main
points we make: (i) spectral nudging does work well also
for fully turbulent 3D flows, as it does reproduce non-
trivial features with high accuracy and (ii) by optimizing
the reconstruction properties, one can infer the unknown
flow-parameters of the nudging flow. It is worth noticing
that the percentage of nudged modes is very small, of
the order of #nudged ∼ 1×10−4, as we are nudging up to
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FIG. 2. Nudging with different rotation rates. Simulations
from set-up INFER1 (see Table I). A-D: 2D slices of the
vorticity field, ω = ∇ × u, in the direction parallel to the
rotation axis for the reference simulation with a rotation fre-
quency Ωref , and three nudged simulations performed with
Ω = 0,Ωref , and 2Ωref , respectively. E: Energy spectra of
the reference simulation compared with error spectra E∆(k)
(see Eq. (4)) for different values of the rotation frequency Ω.
All spectra were computed at the same instants of time. The
shaded gray area indicate the modes where the nudging is
acting. F: Time evolution of E(k, t) for k = 5 for Ω = Ωref

and Ω = 0, compared to the reference data. G: Evolution of
total energy for the reference field and for the three nudged
simulations at changing Ω.

k = 4 while the maximum possible wavenumber in this
simulation is k = 85. The nudged modes are the ones
containing the largest amount of energy, but the flow is
not completely determined by their evolution, as many
more scales should be controlled in order to achieve this
[26]. This fact is clear when looking at the error spectra
in Fig. 2, the error in the unnudged scales is of the order
of the energy at that scales even though the large scale re-
construction is very good, meaning the unnudged scales
are not slaved to the energy containing modes. Some
synchronization of the small scales is nonetheless present,
specially for the case with Ω = Ωref . Understanding how
much one needs to nudge in order to fully control a tur-
bulent flow is an open question that will be addressed in
future work.

In order to control the performance of the nudging pro-
tocol in quantitative terms and scale by scale, we intro-
duce a field given by the difference among the exact input
and the one reconstructed via (1), ∆u = u − uref , and
we study its spectral properties:

E∆(k, t) =
1

2

∑
k≤|k|<k+1

|û(k, t)− ûref(k, t)|2. (4)

Clearly, the smaller the spectrum E∆(k), the better the
reconstruction. This spectrum will be referred to as the
error spectrum.

In the bottom panel (E) of Fig. 2 we show three dif-
ferent curves for E∆(k, t) obtained by averaging over
all times when we provide the information, tn, and for
the three different values of the rotation rate, Ω =
0,Ωref , 2Ωref already discussed in panels (A-D), together
with the spectrum of the reference field Eref(k) =∑
k≤|k|<k+1 |ûref(k, t)|2, averaged on the same set of

times. In the figure, the set of nudged wavenumbers is
denoted by the grey area. From panel (E) it is clear
that the optimal nudging is obtained when Ω = Ωref is
used in (1), as revealed from the scale-by-scale nudging
error, E∆(k), that becomes much smaller than Eref(k)
for k ∈ (k0, k1). In all cases, there is a dip in the error
spectra at k = 3, as this is the first scale at which the
forcing is not present in the reference flow, so the nudg-
ing is able to do a better job reconstructing the data. At
k = 4 the error spectra increases again, mainly because
some unnudged modes are integrated when calculating
the spectra at this wavenumber. For Ω = Ωref , the scale-
by-scale error stays smaller than the reference spectrum
up to k ∼ 10 suggesting a good ability for data assimi-
lation outside the set of nudged degrees of freedom also.
This latter fact is also confirmed by the inset (panel F)
where we show the temporal evolution of Eref(k, t) for an
unnudged wavenumber, k = 5, compared with the spec-
tra of the reconstructed field evolved with Ω = 0 and
Ω = Ωref . In this experiment we started the nudged sim-
ulations from zero velocity. As one can see, after a short
transient, only the field evolved with the correct Ω rate
is indeed able to synchronize with the time evolution of
the inputting data. Finally, we also show the evolution
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of the total energy in panel G for the same simulations.
While the case with Ω = 0 is easy to pick apart, the other
two are very close to tell which is one produces a better
reconstruction of the flow. This indicates that compar-
ing averaged quantities (such as the total energy) may
not be the most precise way to determine the value of a
parameter.

To be more quantitative about the sensitivity to infer
the unknown rotation rate, we have performed also a
detailed scan of Ω values around Ωref . In Fig. 3A we
show the performance of the nudging reconstruction by
plotting the value of the spectrum E∆(k), as a function
of Ω and averaged in time and in the nudged window:

C =
1

N K

N∑
n=1

∫ k1

k0

dkE∆(k, tn), (5)

where tn are the instant in times where we have mea-

surements and K =
∫ k1
k0
dkEref(k) is a normalization fac-

tor. Notice that C is defined using information of the
nudging data only, i.e. the filtered reference field at the
specific times when the information is provided. In con-
trast, E∆(k) needs the whole uref which in most practical
applications would not be available, but that we can nev-
ertheless access in our numerical experiment.

From Fig. 3A, it is clear the existence of a minimum in
the error when evolving (1) with Ω ∼ Ωref . Furthermore,
we can determine the correct value of Ω with a 6.25%
error. The error is calculated by looking at which values
the errorbars for C overlap. We performed another ex-
periment (set-up INFER2 in Table I) to test if the inten-
sity S of mechanical forcing of the reference simulation
could also be discovered with our nudging protocol. In
this experiment a new reference simulation with Ωref = 0
and Sref = 0.02 was produced and used to extract the
nudging fields (see Table I for details). In Fig. 3A we
show that the protocol is able to infer the intensity of
the stirring mechanism also, with a clear minimum of
the error (5) in the proximity of S ∼ Sref . In this case,
the correct value of S can be pinpointed with a 12.5%
error. A third experiment, following INFER1 but nudg-
ing more wavenumbers (so using more information from
the reference as well is shown. Here all wavenumbers up
to k = 10 where nudged. By doing this we can reduce
the error in the estimation of Ω to 3.125%. All numeri-
cal experiments show that spectral nudging can be used
in a physics-informed way to fit parameters to data and,
thus, extract information from it. Furthermore, in set-up
INFER1, where no information about the external stir-
ring mechanism is used, performing a one-dimensional
scan (i.e. varying only the rotation rate) works well.
Having said this, we cannot conclude that this must be
the case for generic search in a multi-dimensional phase-
space, where the only systematic way to proceed would
be to adopt a local gradient-descent algorithm.

A similar scan was performed for the rotation rate but
without using the nudging (i.e., α = 0). In this case, the
forcing term was also added (with S = Sref), otherwise

FIG. 3. A: Value of the mean error committed to reconstruct
the reference field in the nudged window, C, for two different
scanning of the phase space parameters. Blue circle: the case
with fixed stirring mechanism and at changing the rotation
rate Ω (set-up INFER1 in Table I). Green triangles: the case
with fixed rotation rate and at changing the intensity of the
stirring parameter, S (set-up INFER2 in Table I). Magenta
squares: a further scan for Ω following INFER1 but nudging
all wavenumbers up to k = 10. In all cases a clear deep
is measured only when the scanning values do correspond to
the ones used for the reference data, Ωref and Sref respectively.
Error bars for each data point were calculated by measuring
the standard deviation of C. B: Scan of Ω perfomed without
nudging but adding the forcing term (i.e., same as INFER1
but with α = 0 and S = Sref).

there would be no energy injection mechanism present.
All other parameters are the same as set-up INFER1.
The results are shown in Fig. 3B. It is clear that ob-
taining an accurate value of Ω out of this scan is very
difficult because even though a minimum is readily seen,
the errorbars of several datapoints close to it overlap. So
while running simulations with different parameter val-
ues and performing posterior analysis in order to infer
the desired information is possible, our results suggest
the using nudging greatly improves the sensitivity and
accuracy of the search.
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FIG. 4. Nudging for the case of rotating turbulence in the in-
verse energy cascade regime. Simulations from set-up PHYS1
(see Table I). The nudged window is given by the grey area
between k0 = 8 and k1 = 20. The reference spectrum Eref

and the nudged spectrum Eu almost coincide for k > 8, mak-
ing it hard to discern between the two. Both the intensity of
the forcing S and the rotation rate Ω are zero in the nudged
simulation, so all energy injection and anisotropic effects are
coming from the nudging term. Notice the strongly reduced
error spectrum E∆(k) for a large set of wavenumbers, indi-
cating an optimal reconstruction quality.

INFERRING THE LARGE-SCALE VELOCITY
DISTRIBUTION WITHOUT INPUT ROTATION

In this section we describe how to use nudging to infer,
under some circumstances, the entire set of large-scale
physical flow structures of the reference data without a
detailed knowledge of the forces acting on flow. To test
this idea we performed a new experiment by using a tur-
bulent flow under rotation and in the presence of an in-
verse energy cascade. It is well known that if rotation is
strong enough and energy is injected at large wavenum-
bers the flow undergoes a transition from a direct to a
split turbulent energy cascade, accumulating kinetic en-
ergy and producing a non-trivial cyclonic distribution of
vortices at larger and larger scales [27–29]. This regime
does not occur naturally in homogeneous isotropic three-
dimensional turbulence [30], but it is argued to be impor-
tant in many geophysical set-ups in the oceans [31, 32]
and in the atmosphere [33]. Here, we show how a suitable
nudging strategy is indeed able to reconstruct the inverse
energy cascade even in the absence of any explicit rota-
tion term in the nudged equations (1), provided that the
uref is inputting information around the injection scale.
To do this we use a rotating turbulent flow forced at
kf = 10 and with Ωref = 20 and Sref = 0.004 as a refer-
ence (set-up PHYS1 in Table I) where an inverse energy
cascade develops. We then evolve (1) without any rota-

FIG. 5. A: Probability density functions (PDF) of the point-
wise kinetic energy for the reference simulation |uref(x)|2
(continuous black line), the nudged simulation |u(x)|2 (cir-
cles) and the nudging input field |IV uref(x)|2 (triangles) for
the inverse cascade experiment (set-up PHYS1 in Table I).
B-D: 2D slices of planes perpendicular to the rotation axis of
the absolute velocity fields.

tion and any external forcing:

F [uref ,Vref ] = 0

in this way we are completely ignorant about the physics
we want to reproduce. In Fig. 4 we show that by nudg-
ing in the region around the injection mechanism, the
energy spectra of the reference simulation is well repro-
duced by the nudged simulation even, and in particular,
in the inverse energy cascade range. The presence of a
strong peak around the forced wavenumber is typical of
systems where an inverse cascade is present, as this is a
slow and inefficient transfer mechanism [27–29, 34]. Even
though the only information we input is the nudging fil-
tered field, the nudged evolution is able to reconstruct
the inverse cascade and the correct spectrum slope even
for scales much smaller then the ones where we nudge.
It is remarkable how the spectrum error, E∆(k) is small
also for modes outside the nudging window k < k0 and
k > k1, indicating the presence of strong non-local spec-
tral correlation in the split-energy cascade mechanism
which are fully reconstructed by our protocol.

To go beyond spectral properties and to check the abil-
ity to reconstruct the large-scale coherent structures in
the rotating flow, we plot in Fig. 5 the probability density
functions (PDFs) of the space-dependent kinetic energy
for the reference simulation, |uref |2/2, the nudged simu-
lation, |u|2/2, and the nudging field, |IV uref |2/2. As one
can see, the reconstructed field has a PDF very close to
the reference case, even if the nudging input field does
not. In the same figure, we also show 2D slices of the
absolute velocity fields in planes perpendicular to the ro-
tation axis for the three fields as before. As one can
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see, the nudged simulation (panel D) is able to extrap-
olate the unknown large-scale reference flow structures
extremely well (panel B), for a case where the nudged in-
putting data do not contain any information about those
scale (C). The apparent patterns seen in these visualiza-
tions are a product of the strong forcing present in the
system acting around k = 10.

CONCLUSIONS

Spectral nudging is a physics-informed technique com-
monly used to guide the evolution of chaotic dynami-
cal systems inputting measured data. Giving examples
for both isotropic and rotating 3D turbulence, we have
shown how this technique can be efficiently used to in-
fer both the physical parameters entering in the external
stirring forces and the large-scale velocity distribution
for the inverse energy cascade regime, typical of strongly
rotating turbulent flows. The method can be further im-
proved and optimised by using different nudging param-
eters for different degrees of freedoms, e.g. by changing
α and τ with k. A detailed study of nudging perfor-
mances for homogeneous and isotropic turbulence at dif-
ferent Reynolds numbers, different nudging windows and
at changing the spatial locations of the measurements
stations will be reported elsewhere.

Other strategies used to estimate parameters, such as
variational methods [35] or ensemble based methods [7–
9], require the need to postulate and error correlation
matrix and make assumptions about the behavior of the
errors and deviations, need to use linearized models (for
variational methods), or are based on minimizing compli-
cated functions (again for variational methods). Nudging
based strategies do require to perform several forwards

simulations, similar to ensemble based method. One ad-
vantage other methods have compared to nudging, is the
ease to incorporate information on observables (such as
precipitation, for example) and not just state variables
(such as the velocity field, as was used here. Interestingly,
variational data assimilation schemes have been exploited
to determine vectors of optimal nudging coefficients [36].
Here, we reversed the point of view: given the coefficients
α, τ , we employed nudging to estimate the physical flow
parameters. Finally, the method is also general and ex-
tendable to other problems, opening the route to applica-
tions for parameter inferring to a vast set of hydrodynam-
ical situations including, to cite just the most promis-
ing cases, i) optimising sub-grid-scale models in Large
Eddy Simulations, by inferring parameters against data
extracted from either observation or benchmark direct
numerical simulations; ii) large-scale turbulent transport
to determine eddy-viscosity and eddy-diffusivity [37, 38];
iii) the identification of ambient air sources and the quan-
tification of their contribution to pollution levels (the so-
called source apportionment problem) [39]; iv) partial
field reconstruction using advanced Lidar systems [40] to
reveal the free parameters characterizing the atmospheric
boundary layer; v) correction of velocity fields in ocean
circulation models with Lagrangian data (e.g. from drift-
ing buoys) [41, 42] and/or other sources including HF
radar data [43].
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