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Abstract. Rotating turbulence is an example of a three-dimensional system in which an inverse cascade of
energy, from the small to the large scales, can be formed. While usually understood as a byproduct of the
typical bidimensionalization of rotating flows, the role of the three-dimensional modes is not completely
comprehended yet. In order to shed light on this issue, we performed direct numerical simulations of
rotating turbulence where the 2D modes falling in the plane perpendicular to rotation are removed from
the dynamical evolution. Our results show that while the two-dimensional modes are key to the formation
of a stationary inverse cascade, the three-dimensional degrees of freedom play a non-trivial role in bringing
energy to the larger scales also. Furthermore, we show that this backwards transfer of energy is carried
out by the homochiral channels of the three-dimensional modes.
PACS-keydiscribing text of that key – PACS-key discribing text of that key

1 Introduction

In the classical picture of three dimensional turbulence,
energy is injected in the larger scales of the problem and
then transferred to the smaller ones in a process known as
a direct energy cascade [1,2,3]. Since Richardson’s obser-
vations and Kolmogorov’s prediction turbulent cascades
have been studied in many systems, e.g. in rotating flows,
stratified flows, and magnetohydrodynamics flows [4]. One
of the most important results so far has been Kraichnan’s
prediction [5] of the presence of an inverse cascade of en-
ergy in two dimensional turbulence. Under this regime,
energy flows from small to large scales. Later, inverse cas-
cades have also been studied in three dimensional sys-
tems such as rotating flows [6,7,8], shallow fluid layers
[9,10], oceanic flows [11], magnetohydrodynamics [12,13],
and helically decimated flows [14,15,16]. While in two di-
mensional turbulence the inverse energy transfer can be
predicted and understood by the presence of two positive
definite quadratic inviscid invariants, namely energy and
enstrophy, the same argument cannot be extended to the
three dimensional systems, where the second quadratic in-
viscid invariant, helicity, is not sign definite. Understand-
ing how inverse cascades are formed in three dimensional
problems is the subject of ongoing research.

In this work we focus on the case of rotating turbu-
lence. Flows under rotation present a rich phenomenology
with plenty of physical interest, moreover they are com-
mon in nature, e.g. in the atmosphere and in the oceans
[17], in planetary cores [18], as well as in several engineer-
ing problems [19]. The presence of the Coriolis force in
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these flows breaks isotropy [20], generates inertial waves
and gives rise to the formation of large scales columnar
vortices [4,21]. The resulting flows look almost bidimen-
sional, with most of the energy accumulated in the modes
perpendicular to the rotation axis, as seen in simulations
[6,22] and experiments [23]. These effects happen because
the nature of the nonlinear interactions is changed [24,
25] with the appearance of resonant interactions due to
the action of the inertial waves in the turbulent flow [26].
Resonant interactions are known to play an important
role in turbulent dynamics [27,28,29], and their action
has been studied directly in experiments [30,31] and sim-
ulations [32,33,34]. While it can be shown that the ef-
fect of resonant interactions can make the energy transfer
anisotropic, with energy being preferentially transfered to
modes closer and closer to the plane perpendicular to the
rotation axis, it can also be shown that they cannot trans-
fer energy directly into the perpendicular plane [35]. Fur-
thermore, the modes perpendicular to the rotation axis
(the 2D modes, because of their two-dimensional nature)
and the resonant triads are decoupled under strong rota-
tion [35]. So the question of how the transfer of energy be-
tween the 2D and the rest of the modes (the 3D modes, as
they encompass all three-dimensional modes in the flow)
takes place remains open [21,36], with eddies [37,23] and
quasi-resonant interactions [38,39] appearing to have an
important role in the rotating turbulence dynamics. Of
particular interest to the present work are the simulations
done by [18], where they showed that if the 2D modes
are damped, the system then enhances the creation of
waves and small scale structures, suggesting that the bal-
ance between 2D and 3D modes modes is indeed delicate
and dynamic. A similar experiment was also performed in
convective flows [40]. It is important to stress that in nu-
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merical simulations on a finite-box domain exact resonant
interactions may be “lost” due to discretization effects at
small wavenumbers [41], thus making quasi-resonant in-
teractions even more important at the large scales [42,
43].

The phenomenon of bidimensionalization is an impor-
tant one because the inverse cascade in rotating flows is
often seen as a byproduct of the emerging 2D dynamics
[6,7,8]. In this picture, the decoupled modes behave as
purely 2D and Kraichnan’s result is recovered [5]. As can
be expected, wave turbulence theories prohibit the forma-
tion of 2D solutions [41]. In these theories, the transfer
of energy towards the 2D manifold becomes too weak to
trigger an inverse cascade. It should be noted, nonethe-
less, that it can be shown that bidimensionalization can
be achieved in periodic domains in the low Rossby limit
[39]. All things considered, this scenario begs many ques-
tions: if there is some coupling between the 2D and the
3D modes that is able to put energy from the former to
the latter, then wouldn’t this coupling also work the other
way? If resonant interactions can make the energy trans-
fer anisotropic, aren’t they also contributing to the inverse
transfer of energy? Moreover, it has been shown that even
in fully homogeneous and isotropic three dimensional tur-
bulence, there are channels that take energy backwards
[14,15], that the action of these channels can be enhanced
in different geometries [44], and that these channels can
couple the 2D and 3D modes in rotating turbulence [36].
This adds a further avenue to explore.

In order to better understand the mechanisms behind
the inverse cascade in rotating turbulence we perform sim-
ulations where the two dimensional modes are conser-
vatively removed and compare them to a simulation of
the full Navier-Stokes equations. In this way the flow can
never, by construction, become two dimensional, there-
fore all the purely three-dimensional effects involved in
the inverse energy transfer come into light. The results
show that although a stationary inverse cascade is not
formed, energy is nonetheless transferred and accumu-
lated in modes larger than the ones where it is injected. A
pseudo-bidimensionalization takes place where energy is
condensated in the lowest wavenumbers close to the per-
pendicular plane, forming a quasi 2D flow. In these states,
the homochiral channels of the energy flux bring the en-
ergy to the large scales while the heterochiral ones bring
it to the small scales, with the two of them balancing out.
In summary, our results show that while the 2D modes
are key to the formation of an inverse cascade in rotat-
ing flows, the 3D modes play a non-negligible role in the
distribution of energy, making the overall dynamics very
rich.

The paper is organized as follows, in Sec. 2 we intro-
duce the equations of rotating turbulence and several of
its core concepts, explain the process used to keep only the
three-dimensional modes, and give details on the simula-
tions we perform and the different quantities we analyze,
in Sec. 3 we present the results coming from our numerical
simulations, and in Sec. 4 we give concluding remarks.

2 Rotating turbulence equations

The governing equations for an incompressible fluid in a
rotating frame can be written as

{
∂tu+ ω × u+ 2Ω × u = −∇p+ ν∆u+ f

∇ · u = 0,
(1)

where ν is the kinematic viscosity, f is an external forcing,
the term 2Ω×u is the Coriolis force produced by rotation,
and Ω = Ωẑ is the angular velocity with frequency Ω
around the rotation axis ẑ. The fluid density is constant
and absorbed into the definition of pressure p.

Taking the curl of the linearized form of Eq. (1) in the
dissipation- and force-less regime (i.e., ν = 0 and f = 0)
yields

∂t(∇× u) = 2 (Ω · ∇)u. (2)

The general solution of this equation is given by a super-
position of waves of the form

u(x, t) =
∑
k,sk

hsk(k)ei[k·x−ωsk
(k)t] (3)

where sk = ±, hsk(k) are the orthogonal eigenmodes of
the curl operator, ik × hsk = skk hsk [45], and the wave
frequencies, ωsk , are given by the dispersion relation,

ωsk(k) = sk2Ω
kz
|k|
, (4)

where kz is the direction of the rotation axis. These are
the aforementioned inertial waves. It follows that, for each
wavevector there are two waves with opposite sign of he-
licity. The right-handed wave propagating in the direction
of k and the left-handed wave propagating in the −k di-
rection. Inertial waves also bring resonant triads into play.
It is well known that in Eq. (1), Fourier modes interact in
triads satisfying k+ p+ q = 0, where k, p, and q are the
three wavevectors involved in the triad. The presence of
inertial waves adds a second condition

ωsk(k) + ωsp(p) + ωsq (q) = 0, (5)

known as the resonance condition. Resonant interactions
are very important to the evolution of a rotating turbulent
flow, but they do not encompass all of the interactions that
happen in it [32,34].

The Reynolds and the Rossby numbers are the two
non-dimensional parameters which control the dynamic
evolution of the flow. They can be written, respectively,
as

Re =
ULf
ν

, Ro =
U

2ΩLf
, (6)

where Lf ∼ 1/kf is the forcing scale, and U is the rms ve-
locity at the forcing scale. The Rossby number represents
the ratio between the Coriolis force and inertial forces in
the flow. In the limit of large Rossby numbers, Ro � 1,
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the flow can evolve freely under its own internal dynam-
ics without being influenced by rotation. In the Ro . 1
regime, we can expect to observe effects of rotation on the
flow.

2.1 Rotating turbulence on a reduced Fourier set

From the dispersion relation in Eq. (4) it is clear that all
wavenumbers lying in the Fourier space plane, (kx, ky, kz =
0), perpendicular to the rotation axis, do not give rise to
inertial waves, as ωsk(k⊥) = 0. These are the aforemen-
tioned 2D modes, with all the rest of the modes in the
system being the 3D modes. The two sets can be written
explicitly in the following way

k2D = {∀k | kz = 0}, (7)

k3D = {∀k | kz 6= 0}, (8)

with k2D being the set of the 2D modes, and k3D the
one of the 3D modes. The 2D and 3D modes sets are
sometimes referred to as the “slow” and “fast” manifolds,
respectively [46,47,48].

As mentioned above, in turbulence under rotation en-
ergy tends to accumulate in the 2D modes [8]. But it is not
clear whether the inverse cascade is produced only due to
the action of these modes, or if the 3D modes also play a
role. In this work, we directly investigate the role of the
3D modes in the energy transfer. To do this, we reduce
the set of possible interactions described in the system of
Eqs. (1) to only the interactions which couple modes in-
side the 3D set. Restricting the dynamics of Eq. (1) to
only the 3D modes can be accomplished by using a gen-
eralized Galerkin projector, P, which acts on the velocity
field as follows:

v(x, t) = P u(x, t) =
∑
k

eik·x γkû(k, t) , (9)

where v(x, t) is the representation of the decimated veloc-
ity field in the real space. The factors γk are chosen to be
either 1 or 0 with the following rule:

γk =

{
1, if k ∈ k3D
0, if k ∈ k2D .

(10)

In this way the only active modes are the one inside the
3D set. Moreover, the factors γk preserve Hermitian sym-
metry γk = γ−k so that P is a self-adjoint operator. The
resulting equations for the Fourier decimated velocity field
are then,

{
∂tv = P[−∇p− (v · ∇v)]− 2Ω × v + ν∆v + Pf
∇ · v = 0.

(11)
In the above definition of the decimated equations, the
nonlinear term must be projected on the quenched deci-
mated set, to constrain the dynamical evolution to evolve

on the same set of Fourier modes at all times. Moreover it
is important to see that the resulting dynamics still con-
serves total energy and helicity. Similarly, any initial con-
dition and the external forcing used must have a support
on the same decimated set of Fourier modes only.

2.2 Energy spectra and fluxes

We now define the different energy spectra and fluxes we
use in this study. The isotropic energy spectrum of the 3D
modes can be written as

E(k) =
1

2

∑
k≤|k|<k+1

|v̂(k)|2. (12)

We can further decompose the spectrum into two compo-
nents, one parallel and one perpendicular

e(k⊥, k‖) =
1

2

∑
k⊥≤|k×ẑ|<k⊥+1

k‖≤kz<k‖+1

|v̂(k)|2, (13)

with k⊥ =
√
k2x + k2y and k‖ = kz. This spectrum takes

into account the anisotropic nature of the flow. When
plotting e(k⊥, k‖), a trigonometric factor of 1/ sin θ, with
θ = arctan k‖/k⊥, will always be included. Otherwise,
even in the isotropic case (i.e., Ω = 0) the spectrum (13)
would not look isotropic, as there are many more modes
with low θ entering in the summation.

The total energy flux has the form

Π(k) = −
∑
|k|≤k

ikj v̂i(−k)
∑
p,q

v̂i(p)v̂j(q)δ(p+q−k). (14)

Notice that the decimated velocity v̂(k) is non-zero only
when k ∈ k3D, so the flux only takes into account the
interactions of the 3D modes.

The energy flux can be further analyzed in terms of
its homochiral and heterochiral components. Doing this is
important because it is known that homochiral triads are
responsible of opening a channel that takes energy from
the small to the large scales, even in 3D homogeneous and
isotropic turbulence [16,49]. So in the context of rotating
turbulence it is interesting to see if rotation is only pro-
ducing a decoupling between 2D and 3D modes (whereby
the inverse cascade is then a product of the 2D dynamics),
or if it also enhances the backward flux produced by the
homochiral interactions inside the 3D manifold. To cal-
culate the homo and heterochiral energy fluxes, we first
decompose the velocity field into the helical modes, h+

and h−, defined above, as proposed by [50,51], in order to
obtain

v̂(k, t) = v̂+(k, t) + v̂−(k, t)

= v̂+(k, t)h+(k) + v̂−(k, t)h−(k) . (15)

It is important to note that this decomposition can be
performed for any three dimensional incompressible field,
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not just for the case of rotating flows. Under this change
of basis, we can write the energy flux corresponding to tri-
ads in which all modes have the same sign of the helicity,
the homochiral, and those in which one mode has a differ-
ent sign, the heterochiral. The corresponding homochiral
(ΠHO(k)) and heterochiral (ΠHE(k)) energy fluxes can
then be defined as:

ΠHO(k) = −
∑
|k|≤k,
q=k−p

[v̂+(−k) · (ik · v̂+(p))v̂+(q)+

+v̂−(−k) · (ik · v̂−(p))v̂−(q)] , (16)

ΠHE(k) = Π(k)−ΠHO(k) , (17)

where Π(k) is the total energy flux defined in Eq. (14).

2.3 Numerical simulations

As we are interested in the physics of the inverse cascade,
we study the flows defined above using hyperviscous dis-
sipation, so as to reduce the range of scales affected by
viscosity. In this way, Eqs. (1) become

{
∂tu = −∇p− ω × u− 2Ω × u+ ν(−1)α+1∆αu+ f

∇ · u = 0,

(18)
and Eqs. (11)

{
∂tv = P[−∇p− (v · ∇v)]− 2Ω × v + ν(−1)α+1∆αv + Pf
∇ · v = 0.

(19)

We perform direct numerical simulations of Eqs. (19) in a
triple periodic domain with a fully dealiased parallel 3D
pseudospectral code using grids of up to N3 = 5123 col-
location points. The time integration has been performed
with the second-order Adams-Bashforth scheme with the
viscous term integrated implicitly. The external forcing,
f , is a delta correlated random process in Fourier space

〈f̂(k)f̂∗(q)〉 = F (k)δk,qQ̂(k), (20)

where F (k) is an amplitude term that only has support

around kf and Q̂(k) is a projector applied to guarantee
incompressibility. The values of the different parameters
used are presented in Table 1. It is known that hyper-
viscosity introduces a bottleneck in the energy spectrum
close to the dissipative scales, however, for the interests
of this work, namely the properties of the backward en-
ergy transfer from the forcing to the large scales, we can
safely assume that the spurious effects of hyper-viscous
dissipation are negligible.

The simulations can be distinguished in two different
sets. In the first, PRJ-A, we fix the forcing properties and

Simulation Projected N Ω kf ε Ro
FULL No 256 80 30 0.045 0.008

PRJ-A1 Yes 256 0 30 0.06 ∞
PRJ-A2 Yes 256 5 30 0.06 0.1
PRJ-A3 Yes 256 15 30 0.06 0.04
PRJ-A4 Yes 256 40 30 0.06 0.025
PRJ-A5 Yes 256 80 30 0.06 0.015
PRJ-A6 Yes 256 160 30 0.06 0.009
PRJ-B1 Yes 256 80 4 0.4 0.007
PRJ-B2 Yes 256 80 15 0.1 0.011
PRJ-B3 Yes 256 80 30 0.06 0.015
PRJ-B4 Yes 512 80 50 1.2 0.03

Table 1. Parameters used in the different simulations. “Pro-
jected” indicates if the full equations (Eqs. (18)) or the
projected ones (Eqs. (19)) are used; N : number of colloca-
tion points in each spatial direction; Ω: rotation rate; kf :
forced wavenumbers; ε: viscous energy dissipation; Ro =
(εfk

2
f )1/3/Ω: Rossby number defined in terms of the energy

injection properties. In all simulations the order of the Lapla-
cian (−1)α+1ν∆αv is set to α = 4, and the kinematic viscosity
to ν = 1.8 × 10−13, except for the simulation with resolution
N = 512, where the viscosity is set equal to ν = 7.1× 10−14.

we study the system at changing the rotation rate Ω. In
the second set, PRJ-B, we study the effects of changing the
forcing scale, keeping the same rotation rate. In particular,
in set PRJ-A, we keep the energy input fixed at kf = 30,
which guarantees a large enough inverse inertial range,
and vary Ω between 0 and 160. In set PRJ-B, instead, we
fix Ω = 80, which ensures a rotation rate strong enough
to produce backward cascade, and we change the input
scales from kf = 4 up to kf = 50. For this last simulation,
we increase the resolution up to N3 = 5123, in order to be
able to force at kf = 50. As a control and benchmark, we
also perform a simulation of the original non-decimated
system (Eqs. (18)), which we refer to as FULL. In order
to make a fair comparison with the other simulations, we
only force the 3D modes so as to not inject energy directly
into the 2D ones. More details about all the simulations
are reported in Table 1.

3 Results

In Fig. 1 we show visualizations of the absolute value of
the velocity for three simulations: PRJ-A1, PRJ-A5, and
FULL (which have Ω = 0, Ω = 80 and Ω = 80, and are
shown in panels A, B and C, respectively). As expected,
simulation PRJ-A1 shows the typical disordered struc-
tures found in homogeneous isotropic turbulence and sim-
ulation FULL shows the characteristic columnar vortices
with vertical symmetry of rotating flows. On the other
hand, PRJ-A5 shows vertical structures that resemble the
columnar vortices, but with no vertical symmetry and
with a stronger presence of disordered three-dimensional
structures. In a way, it is as if the system is trying to build
the columnar vortices but it is not able to successfully do
it.
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Fig. 1. Visualizations of the absolute value of the velocity field for three simulations: A) projected system without the 2D
manifold with no rotation (simulation PRJ-A1), B) projected system without the 2D manifold with strong rotation (simulation
PRJ-A5), and C) the full system with strong rotation (simulation FULL).

Moving on to a more quantitative analysis, in Fig. 2 we
present the total energy evolution for the set of decimated
simulations PRJ-A and for the simulation FULL, where
we retain the 2D modes. It is evident that only keeping the
3D modes strongly affects the dynamical evolution of the
resulting systems. In particular, comparing the evolution
of FULL with that of PRJ-A5, we can see that in the case
of full Navier-Stokes equations the total energy increases
with a constant speed as a function of time, while in the
decimated system the total energy grows linearly only in
a first transient of time, then it saturates to a stationary
state. This result suggests that without the 2D modes the
system is not able to establish a backward energy transfer
stationary in time. From the same Fig. 2 we can also assess
the effect of changing the Rossby number on the evolution
of the decimated systems. In particular we can see that if
Rossby is large enough, namely when Ω ≤ 5, the system
does not seem to show a transient period with constant
energy increase, while this does happen when Ω > 5.

In order to have a better understanding of how en-
ergy is distributed in the system with 3D modes only, we
show in Fig. 3 the energy spectra for the simulations in
PRJ-A and for the simulation FULL. The spectra of the
decimated simulations is averaged on time once they reach
their stationary regime, while the spectra from simulation
FULL is not averaged in time, as it never reaches a sta-
tionary state. If rotation is not strong enough, energy is
not transferred to the smaller wavenumbers, as suggested
in Fig. 2. But if rotation is strong, energy is indeed trans-
ferred to modes with k < kf even though there are no 2D

Fig. 2. Evolution of total energy as a function of time for the
set of simulations without the 2D manifold, PRJ-A, for differ-
ent values of Ω. For comparison the total energy evolution for
the non-decimated (simulation FULL) system is also present
(circular full markers).

modes in the system. Interestingly, two distinct peaks are
formed around 10 ≤ |k| ≤ 12 and around 5 ≤ |k| ≤ 7.
While the position of these peaks does not seem to be
greatly affected by the rotation rate, their amplitude is,
with larger values of Ω generating bigger peaks. These
peaked spectra differ greatly from the equipartition spec-
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trum k2. It is important to note that there is no kind of
large scale friction being used in these simulations, so, as
we will see below, the total energy flux of the decimated
cases in the region k < kf must be zero.

Fig. 3. Energy spectra for the simulations without the 2D
manifold, PRJ-A, at changing Ω. For comparison the energy
spectrum for the non-decimated (simulation FULL) system is
also present (circular full markers).

Figure 4 shows the energy spectra of the simulations
in set PRJ-B, where we keep the rotation rate fixed at
Ω = 80 and vary the forcing scale kf . In all cases, energy
is accumulated around the same peaks seen in Fig. 3, even
for the case of PRJ-B1, where the forcing is acting on
wavenumbers smaller than those were the peak is formed.

Fig. 4. Energy spectra E(k) of the simulations in set PRJ-B.

So as to understand how the energy is distributed
among modes parallel and perpendicular to the rotation
axis, in Fig. 5, we analyze the decomposed energy spec-
tra e(k⊥, k‖) of the simulations PRJ-A1, PRJ-A5, and

Fig. 5. Decomposed energy spectra e(k⊥, k‖) of simulations:
A) PRJ-A1, B) PRJ-A5 and C) FULL.

FULL. In the non-rotating case, PRJ-A1 shown in panel
A, the spectral energy density forms concentric circles cen-
tered around k = 0 in an isotropic fashion. On the other
hand, when rotation is active this distribution becomes
anisotropic, with a stronger accumulation of energy in
modes with low k‖, as expected from [35]. While in simu-
lation FULL (shown in panel C) energy is indeed located
in the 2D modes as commonly happens in rotating tur-
bulence, in simulation PRJ-A5 (shown in panel B) energy
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goes towards modes with low k‖ but is then squashed be-
tween k = 1 and k = 5, as it cannot go to the 2D modes.
So, the action of the 3D modes does take energy to the
larger scales and with a preference towards modes close to
the 2D modes. It is important to note that in simulation
FULL, no energy is being injected directly into the 2D
modes. So while resonant interactions make the spectra
evolution anisotropic, quasi-resonant interactions must be
coming into play in order to couple the 3D and 2D modes
[42,38,39,34].

Finally, in order to understand how the stationary
regimes are sustained, we study the helical decomposition
of the energy flux. In Fig. 6 we present the homochiral and
heterochiral contributions on the total energy flux of PRJ-
A1, PRJ-A3 and PRJ-A6 (which have Ω = 0, Ω = 40
and Ω = 160, respectively). It is interesting to observe
that for the case of strong rotation the stationary state
is the result of the non-trivial cancellation of the homo
and heterochiral channels. So while the total flux is zero,
this is achieved by the dynamical balance of the chan-
nels that bring energy forwards (the heterochiral) and the
ones that bring it backwards (the homochiral). The same
phenomenon has been observed in flows composed by a
combination of 2D3C (two dimension, three component)
flows [44]. The amplitude and range of modes that are
involved in this flux balance does depend slightly on the
rotation rate, with simulation PRJ-A3 being the one with
the largest number of modes that had non-zero flux in the
homo and heterochiral channels.

Fig. 6. Homo and heterochiral contributions to the total en-
ergy flux, ΠHO(k) and ΠHE(k) respectively, of simulations
PRJ-A1, PRJ-A3, and PRJ-A6.

4 Conclusions

By performing simulations of rotating turbulence in which
modes perpendicular to the rotation axis (the 2D modes)
were conservatively removed we were able to assess the

role of the 3D modes in the formation of the inverse cas-
cade. We showed that while a stationary inverse cascade
is not formed, energy is nonetheless transferred to the low
wavenumber modes. The resulting non-trivial energy dis-
tribution is (i) strongly anisotropic, concentrated close to
the (removed) 2D plane and (ii) highly peaked around
|k| ∼ 10. Moreover, and more importantly, we show that
the stationary state is reached due to a balance between
homochiral and heterochiral transfers. The former trans-
ferring energy backward and the latter forward.

In short, while the 2D modes are essential in order
to have an inverse cascade, the 3D modes play a non-
negligible role distributing the energy towards the large
scales and in an anisotropic fashion.

The Fourier space decomposition in 2D-manifold and
waves-component has been performed also in small Rossby
number turbulence confined in two infinite walls perpen-
dicular to the rotation axis, in this configuration results
show that the two-dimensional component has no effect
on the wave-component energetics [52]. Another study on
rotating turbulence in a triple-periodic domain, instead,
claimed that the backward energy cascade cannot be sim-
plified as a 2D dynamics, but it supports the picture that
3D-waves near resonant interactions efficiently transfer en-
ergy from 3D modes to larger-scale 2D modes [43].

It is important to comment about a recent study where
a similar problem is addressed [18] by damping the 2D
slow modes instead of decimating them as we do here. By
doing this, the presence of three dimensional inertial waves
is enhanced and energy is accumulated at small scales,
indicating a more efficient forward energy cascade once
the 2D modes become unavailable because of the strong
damping. Different from our case, in [18] the system is
forced at large scale thus not allowing for the energy to
flow backwards. Both works suggest that there is a non-
trivial correlation between 2D and 3D dynamics.
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