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We compare different approaches towards an effective description of multi-scale velocity field
correlations in turbulence. Predictions made by the operator product expansion, the so-called
fusion rules, are placed in juxtaposition to an approach that interprets the turbulent energy cascade
in terms of a Markov process of velocity increments in scale. We explicitly show that the fusion
rules are a direct consequence of the Markov property provided that the structure functions exhibit
scaling in the inertial range. Furthermore, the limit case of joint velocity gradient and velocity
increment statistics is discussed and put into the context of the notion of dissipative anomaly. We
generalize a prediction made by the multifractal (MF) approach derived in [Phys. Rev. Lett. 80,
3244 (1998)] to correlations among inertial range velocity increment and velocity gradients of any
order. We show that for the case of squared velocity gradients such a relation can be derived from
”first principles” in the case of Burgers equation. Our results are benchmarked by intensive direct
numerical simulations of Burgers turbulence.
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I. INTRODUCTION

Three-dimensional turbulence is a paradigmatic out-
of-equilibrium system with connections to fundamental
questions in statistical mechanics [1, 2] and many other
applied problems in different disciplines, e.g., mechanical
engineering [3], atmospheric physics [4], geophysics [5],
and astrophysics [6]. One of the most striking features
of turbulence is that, already when stirred with a Gaus-
sian, homogeneous and isotropic forcing, the flow devel-
ops highly non-trivial, non-Gaussian and multi-scale sta-
tistical properties in the limit of high Reynolds numbers.
Here, the Reynolds number is the control parameter that
defines the relative intensity of nonlinear vs. linear terms
in the Navier-Stokes equation

∂

∂t
v(x, t) + v(x, t) · ∇v(x, t) = −∇p(x, t) + ν∇2v(x, t) .

(1)
The existence of anomalous scaling properties goes un-
der the name of intermittency, which is empirically found
in all three-dimensional turbulent flows in nature and is
still lacking a clear understanding and derivation from
the underlying equations of fluid motion. Accordingly,
this phenomenon of small-scale intermittency manifest-
ing itself, e.g., in form of the non-self-similarity of the
probability density function (PDF) of longitudinal veloc-
ity increments

δrv = [v(x + r)− v(x)] · r
r

for r > 0 , (2)

is still one of the most compelling experimental, numeri-
cal and theoretical open problems of fully developed tur-
bulence. Many studies of turbulence research have been

devoted to the experimental and theoretical examina-
tion of the scaling exponents ζ(n) of structure functions
〈(δrv)n〉 ∼ rζ(n) in the inertial range [1]. Here, Kol-
mogorov’s phenomenological description of the turbulent
energy cascade, i.e., the transport process of energy from
large to small scales, predicts ζ(n) = n/3, which in turn
implies a self-similar velocity increment PDF. The effects
of intermittency lead to deviations from Kolmogorov’s
theory and ζ(n) has been empirically found to be a non-
linear function of n [1, 7–12].

The pivotal role of the turbulent energy cascade in tur-
bulence theory immediately suggests the importance to
extend the analysis based on single-scale observables (2)
to multi-scale velocity increments, which should also lead
to a better understanding of local and non-local correla-
tions inside the inertial range and among inertial and vis-
cous scales. Owing to the prohibitive analytical difficul-
ties to attack the Navier-Stokes equation (1), the atten-
tion has been also often focused on other dynamical mod-
els of turbulence, in particular to the Burgers equations,
a simplified one-dimensional and compressible version of
the Navier-Stokes equation. Here, the only nonlinearity
enters through the advective term

∂

∂t
v(x, t) + v(x, t)

∂

∂x
v(x, t) = ν

∂2

∂x2
v(x, t) . (3)

It is well known that the Burgers equation develops a
quasi-shock for generic smooth initial conditions, a prop-
erty that is also connected to anomalous scaling of the
velocity increments [13]. In the following we will address
both Navier-Stokes and Burgers equation using different
statistical approaches to describe their multi-scale corre-
lation properties, together with a series of quantitative
validations using direct numerical simulations of Eq. (3).
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In particular, we will compare the two seemingly different
approaches of the operator product expansion [14–18] and
the Kramers-Moyal approach [19–22]. It will be shown
that both methods yield the same predictions for multi-
scale velocity increment correlations, the so-called fusion
rules. Subsequently, we will address the case where one
of the increments matches the velocity gradient within
the framework of the multifractal approach [1, 17, 23].
We will prove a particular expression of the multifractal
(MF) approach from ”first principles” in Burgers turbu-
lence, i.e., by deriving an exact velocity increment hier-
archy from the Burgers equation.

Historically, one of the first multi-scale analysis in tur-
bulence was carried out in [14] where the operator product
expansion from quantum field theory [24] was invoked. In
this framework, one can derive the following relation for
the two-increment (three-point) quantity

〈(δrv)p(δRv)q〉 ∼ 〈(δrv)p〉
〈(δRv)p〉 〈(δRv)p+q〉 , (4)

for η < r ≤ R ≤ L, where η is the dissipation scale and
L the integral length scale. Moreover, we assume that
one of the two extremes of the interval of length r and R
coincide and that both increments are collinear. These
relations, are known as fusion rules, and they have been
analyzed both theoretically and numerically [15–18]. It
should be noted that the fusion rules necessarily imply a
reduction of the spatial complexity of the problem: the
three-point quantity on the l.h.s. of Eq. (4) can be cast
in terms of two-point quantities, the structure functions
〈(δrv)n〉. For three-dimensional isotropic and homoge-
neous turbulent flows, one can show [25] that the most
general tensorial two-point velocity correlation function
can be always decomposed in terms of longitudinal or
transverse velocity structure functions. Here, for the sake
of simplicity, we will always limit the discussion to the
case when all distances are collinear with the velocity in-
crements taken on the longitudinal direction as given by
Eq. (2). Furthermore, this is the only possible case for
one-dimensional Burgers turbulence (see below).

In the following, we will address the multi-scale corre-
lation function (4) by using the MF approach [1, 17, 23]
as well as the Kramers-Moyal (KM) approach [19–22]
in order to describe the evolution of velocity increment
PDFs across the inertial range. Within the MF ap-
proach we will also address multi-scale correlation func-
tions when one of the velocity increment is calculated
at fused-points, i.e., when the increment is smaller than
the viscous dissipative cut-off. The latter case is im-
portant to discuss in the context of the so called dis-
sipative anomaly [26] that emerges in a multi-point PDF
hierarchy of Burgers turbulence (see also the discussion
in Section IV A of this paper). Most of the theoreti-
cal arguments are general and can be applied both to
the three-dimensional homogeneous and isotropic Navier-
Stokes equation as well as to the one-dimensional Burgers
equation. We will then present a series of detailed nu-
merical benchmarks for the latter case only, where one

can achieve a separation of scales large enough to make
precise quantitative statements. The paper is organized
as follows: In Section II, we outline the usual derivation
of the fusion rules (4) and discuss the dissipative cut-off
within the framework of the MF approach. Henceforth,
it will be shown in Section III that the fusion rules (4)
can be derived from the KM expansion associated to a
Markov process [27]. Section IV A contains a derivation
of a multi-increment PDF hierarchy from Burgers equa-
tion which leads to a validation of the MF prediction
from first principles. In the final part of this paper IV B,
we will examine both fusion rules and the MF predictions
in direct numerical simulations of Burgers turbulence.

II. FUSION-RULES AND THE MULTIFRACTAL
APPROACH

The derivation of the fusion rules (4) starts from the
assumption that the small-scale statistics of δrv is re-
lated to the large-scale configuration δRv via the multi-
plier λ(r,R) according to

δrv ∼ λ(r,R)δRv . (5)

Furthermore, we assume that λ(r,R) = λ(r/R), which
is a consequence of a purely uncorrelated multiplicative
process in addition to homogeneity along the energy cas-
cade [17, 18] and yields

〈(δrv)p(δRv)q〉 ∼ 〈λ(r/R)p(δRv)p+q〉
∼ 〈λ(r/R)p [λ(R/L)(δLv)]

p+q〉 , (6)

where we required that the large-scale increment is re-
lated to the integral scale increment by the same relation
(5). Furthermore, δLv is assumed to be statistically in-
dependent from the multiplier λ(r/L), which yields

〈(δrv)p(δRv)q〉 ∼ 〈λ(r/R)pλ(R/L)p+q〉〈(δLv)p+q〉 , (7)

but also implies that 〈(δrv)p〉 = 〈(δLv)p〉〈λ(r/L)p〉.
Hence, in the high-Reynolds number limit (Re =√
〈v2〉L/ν � 1, with the kinematic viscosity ν) where

we expect scaling of the structure functions 〈(δrv)p〉 ∼
(r/L)ζ(p), we can demand that 〈λ(r/R)p〉 ∼ (r/R)ζ(p).
The last hypothesis that enters the derivation of the fu-
sion rules (4) is that the multipliers obey an uncorrelated
multiplicative process, which allows the splitting of the
first expectation value on the r.h.s. of Eq. (7)

〈(δrv)p(δRv)q〉 ∼ 〈λ(r/R)p〉︸ ︷︷ ︸
(r/R)ζ(p)

〈λ(R/L)p+q〉〈(δLv)p+q〉︸ ︷︷ ︸
〈λ(R/L)p+q(δLv)p+q〉

∼ 〈(δrv)p〉
〈(δRv)p〉 〈(δRv)p+q〉 . (8)

In the following, we will also consider the case when
the small-scale increment in Eq. (4) approaches the ve-
locity gradient. On the basis of the MF approach one
can deduce the existence of an intermediate dissipation
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range [28], corresponding to a continuous range of dis-
sipation lengths η(h, ν), where h denotes the continu-
ous range of scaling exponents of the MF approach (see
also [23]). In addition, the MF approach can be in-
voked in order to investigate the Reynolds number de-
pendence of moments of velocity derivatives [29]. By the
use of these multifractal calculations in combination with
the intermediate dissipation range cut-off, one can derive
expressions for joint velocity gradient-increment statis-
tics [17, 18] such as

〈(
∂v(x)

∂x

)2

(δRv(x))q

〉
∼ Rζ(q+3)−1

ν
. (9)

Here, we explicitly wrote the dependence of the incre-
ment δRv on x in order to indicate that the velocity gra-
dient and the velocity increment are calculated with one
point in common, x. Moreover, it must be stressed that
this relation only holds if the scaling exponents fulfill
Kolmogorov’s 4/5-law, i.e., ζ(3) = 1.

We now want to generalize the previous expression (9)
to arbitrary orders of the velocity gradient. To this end,
we define the quantity Dp,q(ν,R) = 〈(∂v/∂x)p(δRv)q〉
which can written in terms of the dissipative scale, η(ν),
as

Dp,q(ν,R) =

〈(
δηv

η

)p
(δRv)q

〉
. (10)

The MF ansatz is based on the introduction of a set of
scaling exponents h so that there exists a local scaling
law

δηv = (η/R)hδRv , (11)

with probability Ph(η,R) = (η/R)3−D(h), where D(h) is
the fractal dimension of the set and where the velocity
increment is Hölder continuous with exponent h (see also
[1]). Furthermore, the dissipative scaling is defined by
requiring an O(1) local Reynolds number [28]

Reλ =
ηδηv

ν
∼ O(1) . (12)

As a result, we get a fluctuating η which depends on h
and ν. Using (11) and (12) in (10), we obtain the first
conditional expectation

〈(
δηv
η

)p
(δRv)q

∣∣∣δRv
〉

∼
∫

dh(δRv)q+pR−p
(

ν
RδRv

) p(h−1)+3−D(h)
1+h

∼ (δRv)
(q+p+φ(p))Rφ(p)−p

νφ(p)
, (13)

where we have used a saddle-point estimate in the limit
of infinite Reynolds numbers, ν → 0, in order to get the
exponent

φ(p) = −min
h

p(h− 1) + 3−D(h)

1 + h
. (14)

Finally we can estimate the unconditioned expectation
value by considering again the MF ansatz to connect the
velocity increment at scale R with the large scale velocity
fluctuation vL

δRv = (R/L)hδLv (15)

and integrating over all possible h

Dp,q(ν,R) ∼
∫

dhR3−D(h) (δRv)(q+p+φ(p))Rφ(p)−p

νφ(p)
,

(16)
where we have taken L = 1 for simplicity. Plugging (15)
in (16) and using again a saddle-point estimate in the
limit R� L = 1, we get

Dp,q(ν,R) ∼ Reφ(p)Rζ(p+q+φ(p))Rφ(p)−p , (17)

where the viscosity from Eq. (16) has been replaced by
the dimensionless Reynolds number Re for which the re-
lation Re ∼ O(1)/ν holds. The exponents ζ(q) are the
scaling exponents of the structure function of order q

〈(δRv)q〉 ∼
∫

dh(δRv)qR3−D(h) ∼ Rζ(q) , (18)

with

ζ(q) = min
h

(qh+ 3−D(h)) . (19)

It is important to remark that within the MF ansatz
the scaling exponents of the velocity gradient, i.e.,

〈(∂v/∂x)
p〉 ∼ Reφ(p) and the structure function scaling

exponent are connected via [1, 29]

φ(p) = (ζ(q)− q)/2 and p = (ζ(q) + q)/2 . (20)

Using the above expression, it is easy to see that
provided the third-order single-scale structure function
satisfies the 4/5-law, ζ(3) = 1, then for p = 2
the expression (17) possesses the remarkable property
that it is inversely dependent on the viscosity ν, e.g.,

ν
〈

(∂v(x)/∂x)
2

(δRv(x))q
〉

remains a finite quantity in

the limit ν → 0, which is a sort of generalized dissipative
anomaly [1].

In Section IV A we will prove Eq. (9) from ”first prin-
ciples” in Burgers turbulence and discuss the effects of
pressure contribution that we have to face in the more
general case of three-dimensional Navier-Stokes equation.

A different approach to the turbulent velocity gradient
statistics was carried out recently [30–32]. Here, a series
of order-dependent dissipative scales, η2n are introduced
starting from a balancing of inertial and diffusive terms
of the equation for the 2n-th order longitudinal structure
function

η2n = LRe
1

ζ(2n)−ζ(2n+1)−1 . (21)

Furthermore, the moments of the velocity gradient can be
related to the structure functions via the local dissipation
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Reynolds number (12) according to
〈∣∣∣∣
∂v

∂x

∣∣∣∣
n〉
≈
〈∣∣∣∣
δηv

η

∣∣∣∣
n〉

=

〈
(δηv)2n

〉

ν
∼ Renη

ζ(2n)
2n ,

(22)
Eq. (21) implies Reynolds number scaling of the velocity
gradients according to

〈∣∣∣∣
∂v

∂x

∣∣∣∣
n〉

= Resn , (23)

where

sn = n+
ζ(2n)

ζ(2n)− ζ(2n+ 1)− 1
. (24)

The above prediction is different from the the MF re-
sult for q = 0 in Eq. (17), see also [33] for a quanti-
tative comparison. Furthermore, it is not obvious how
Eq. (23) should be generalized in order to predict the
multi-scale dissipative-inertial correlation function (17).
Finally, and more importantly, it is not consistent with
the existence of a dissipative anomaly, i.e. with the con-
straint s2 = 1, unless the relation ζ(5)− ζ(4) = ζ(4)− 1
holds. Inserting ζ(3) = 1, this relation suggests mono-
scaling ζ(5) − ζ(4) = ζ(4) − ζ(3), which is at odds with
intermittency effects observed in three-dimensional tur-
bulence (but compatible with the Burgers scaling, see
below). As a result, the MF approach must yet be consid-
ered as the only description of multi-scale correlations in
turbulence capable of reproducing the existence of dissi-
pative anomaly. The latter depends only on the require-
ment that the exact 4/5-law is satisfied in the inertial
range, i.e., ζ(3) = 1.

III. MARKOV PROPERTY IN SCALE AND
FUSION RULES

Another description of multi-increment statistics in
turbulence was proposed in [19], using a Markov process
of velocity increments in scale for the turbulent energy
cascade. The latter approach starts from the definition
of the n-increment PDF

fn(vn, rn; vn−1, rn−1; . . . ; v1, r1) =

n∏

i=1

〈δ(vi − δriv)〉 .

(25)
where we restricted ourselves to longitudinal velocity in-
crements (2) only (note that the inclusion of mixed lon-
gitudinal and transverse increment statistics necessar-
ily complicates the entire procedure [34]). According to
Bayes’ theorem, we can define the conditional probabili-
ties

p(v3, r3|v2, r2; v1, r1) =
f3(v3; r3, v2, r2; v1, r1)

f2(v2, r2; v1, r1)
, (26)

and

p(v2, r2|v1, r1) =
f2(v2, r2; v1, r1)

f1(v1, r1)
. (27)

Henceforth, the localness of interactions of the cascade
process of the longitudinal velocity increments in scale is
ensured by the Markov property in scale

p(v3, r3|v2, r2; v1, r1) = p(v3, r3|v2, r2) , (28)

where we assume that η < r3 ≤ r2 ≤ r1 < L. The
Markov property implies a considerable reduction of the
spatial complexity of the velocity increment statistics,
which can be deduced from the n-increment PDF (25):
If one imposes the scale ordering η < rn ≤ rn−1 ≤ . . . ≤
r1 < L, this n + 1-point quantity factorizes due to the
Markov property according to

fn(vn, rn; vn−1, rn−1; . . . ; v1, r1) (29)

= p(vn, rn|vn−1, rn−1)× . . .× p(v2, r2|v1, r1)f1(v1, r1) ,

Hence, the Markov property constitutes a three-point-
closure of the multi-increment statistics [22, 35].

In the following, we want to examine the implications
of (28) for the multi-scale moments (4). A central notion
of a Markov process is that the transition PDF follows
the same KM expansion as the one-increment PDF [27],
namely

− ∂

∂r2
f1(v2, r2) = L̂KM (v2, r2)f1(v2, r2) , (30)

− ∂

∂r2
p(v2, r2|v1, r1) = L̂KM (v2, r2)p(v2, r2|v1, r1) , (31)

where the KM operator is defined as

L̂KM (v2, r2) =

∞∑

k=1

(−1)k
∂k

∂vk2
D(k)(v2, r2) . (32)

Furthermore, the minus sign in Eq. (31) indicates that
the process occurs from large to small scales and the KM
coefficients are defined as

D(k)(v2, r2) =
1

k!
lim
r3→r2

∫
dv3

(v3 − v2)k

r2 − r3
p(v3, r3|v2, r2) .

(33)
The KM expansion (30) allows for an appealing for-
mulation of intermittency via an evolution of the one-
increment PDF (30) in scale. Moreover, scaling solutions
for the structure functions, i.e., 〈(δrv)n〉 ∼ rζ(n) neces-
sarily imply KM coefficients of the form [20, 21, 36]

D(k)(v2, r2) =
(−1)kKk

k!

vk2
r2

, (34)

as can be seen by taking the moments
∫

dv2 v
n
2 f(v2, r) =

〈(δrv)n〉 from Eq. (30) and setting r2 = r

− ∂

∂r
〈(δrv)n〉 =

n∑

k=1

(
n

k

)
Kk(−1)k

〈δrvn〉
r

, (35)

Dividing by the structure function of order n yields

− ∂

∂r
ln〈(δrv)n〉 =

1

r

n∑

k=1

(
n

k

)
Kk(−1)k . (36)
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model scaling exponent ζ(n) reduced KM coefficients Kn

K41 n/3 K1 = 1/3 , no higher orders

K62a n/3− µn(n− 3)/18 K1 = (3 + µ)/9, K2 = µ/9, no higher orders

Burgers-ramps n K1 = 1, no higher orders

Burgers-shocks 1 Kn = 1

β-modelb DF−2
3

n+ (3−DF ) K1 = DF−2
3

+ (3−DF ), Kn = 3−DF for n > 1

She-Levequec n
9

+ 2
(

1−
(

2
3

)n/3)
Kn = 1

9

(
n 1F0(1− n; ; 1) + 18

(
1− 3

√
2
3

)n)
Yakhot (1+3β)n

3(1+βn)
Kn = Γ[n+1]

Γ[n+1+ 1
β

]

(
Γ[1 + 1

β
] + 1

3β2 Γ[ 1
β

]
)

TABLE I. Phenomenological models of turbulence (we refer the reader to [20, 21] for further discussions) with scaling expo-
nents ζ(n) and the corresponding reduced KM coefficients from Eq. (34): Kolmogorov’s mean field theory from 1941 (K41),
Kolmogorov-Oboukhov theory from 1962 (K62), Burgers phenomenology, β-model, She-Leveque phenomenology, and Yakhot’s
model. Note that the K41 as well as the Burgers-ramps do not exhibit intermittency corrections. The K62 phenomenology is
the only intermittency model that can be reproduced with just two KM coefficients.
a µ ≈ 0.227, b DF ≈ 2.83, c here, νFq(a; b; z) is the generalized hypergeometric function, d β = 0.05

Integrating this equation from r to L yields

〈(δrv)n〉 = 〈(δLv)n〉
( r
L

)−∑n
k=1 (nk)Kk(−1)k

. (37)

Accordingly, the reduced KM coefficients Kk are related
to the scaling exponents ζ(n) according to

ζ(n) = −
n∑

k=1

(
n

k

)
Kk(−1)k . (38)

All currently known phenomenological models of turbu-
lence are reproduced by a suitable choice of the reduced
KM coefficients listed in Tab. I. Another important im-
plication of this KM description of structure function
scaling follows directly from the moment solution (37): In
order to obtain non-vanishing odd order moments (such
as Kolmogorov’s 4/5-law 〈δrv3〉 = − 4

5 〈ε〉r ) at a scale
r one must have non-vanishing odd order moments at
large scales L. In other words, the symmetric form of
the KM expansion dictated by the coefficients (34) is not
able to generate skewness during the cascade process, it
can only transport an initial large-scale skewness in the
PDF ”down in the cascade”.

In the original works [19, 37, 38] the KM expansion (30)
was truncated after the second coefficient which reduces
the expansion to an ordinary Fokker-Planck equation
(consistent with K62 scaling, see Tab. I). This trunca-
tion is motivated by Pawula’s theorem [27], which states
that if an even order KM coefficient n > 2 is zero then all
other coefficients n > 2 are zero as well. In this particu-
lar case, it can be shown [39, 40] that multi-scale corre-
lations obey fusion rules (4). However, the restriction to
a Fokker-Planck equation based on the Pawula theorem
has proven to be a questionable approximation [20–22]
and higher-order coefficients were found to be small but
non-vanishing (see also Table I). We will show below that

the fusion rules are valid even considering the entire KM
expansion. To this end, we cast the solution of Eq. (31)
in form of a Dyson series [27] replacing r2 = r and r1 = R

p(v2, r|v1, R)

= δ(v2 − v1) +

∫ R

r

dr1L̂KM (v2, r1)δ(v2 − v1)

+

∫ R

r

dr1

∫ r1

r

dr2L̂KM (v2, r1)L̂KM (v2, r2)δ(v2 − v1)

+ . . .

= δ(v2 − v1) +

∫ R

r

dr1
L̂(v2)

r1
δ(v2 − v1)

+

∫ R

r

dr1

∫ r1

r

dr2
L̂(v2)2

r1r2
δ(v2 − v1) + . . .

= δ(v2 − v1) + ln
R

r
L̂(v2)δ(v2 − v1)

+
1

2!

(
ln
R

r

)2

L̂(v2)2δ(v2 − v1) + . . .

= exp

[
ln
R

r
L̂(v2)

]
δ(v2 − v1) , (39)

where the scale-independent differential operator L̂(v2)
is defined according to

L̂(v2) =

∞∑

k=1

Kk

k!

∂k

∂vk2
vk2 . (40)

Note that the ”scale ordering problem” in the first line of
the Dyson series (39) can be omitted due to the separable
form of the KM coefficients (34).

We are now in the position to introduce the three-point
moments (4). Due to the ordering r ≤ R, we can take
the moments of the two-increment PDF f2(v2, r; v1, R) =
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p(v2, r|v1, R)f1(v1, R) = 〈δ(v2 − δrv)δ(v1 − δRv)〉 and
obtain

〈(δrv)p(δRv)q〉

=

∫
dv2v

p
2

∫
dv1v

q
1p(v2, r|v1, R)f1(v1, R) . (41)

Inserting the Dyson series (31) for the transition PDF
p(v2, r|v1, R) yields

〈(δrv)p(δRv)q〉 =
〈
(δRv)p+q

〉
+ ln

R

r

∞∑

k=1

Kk

k!

∫
dv1v

q
1

∫
dv2 v

p
2

∂k

∂vk2
vk2δ(v2 − v1)f1(v1, R)

+
1

2!

(
ln
R

r

)2 ∞∑

k=1

∞∑

l=1

KkKl

k!l!

∫
dv1v

q
1

∫
dv2 v

p
2

∂k

∂vk2
vk2

∂l

∂vl2
vl2δ(v2 − v1)f1(v1, R) + . . . (42)

Partial integrations with respect to v2 in the second and third term yield

〈(δrv)p(δRv)q〉 =
〈
(δRv)p+q

〉
+ ln

R

r

p∑

k=1

(−1)kKkp!

k!(p− k)!

∫
dv1v

q
1

∫
dv2 v

p
2δ(v2 − v1)f1(v1, R)

+
1

2!

(
ln
R

r

)2 p∑

k=1

(−1)kKkp!

k!(p− k)!

p∑

l=1

(−1)lKlp!

l!(p− l)!

∫
dv1v

q
1

∫
dv2 v

p
2δ(v2 − v1)f1(v1, R) + . . .

=

[
1 + ln

R

r

p∑

k=1

(−1)kKk

(
p

k

)
+

1

2!

(
ln
R

r

)2 p∑

k=1

(−1)kKk

(
p

k

) p∑

l=1

(−1)lKl

(
p

l

)
+ . . .

]
〈
(δRv)p+q

〉

=

[
1− ln

R

r
ζ(p) +

1

2!

(
ln
R

r

)2

ζ(p)2 + . . .

]
〈
(δRv)p+q

〉
= exp

[
−ζ(p) ln

R

r

] 〈
(δRv)p+q

〉

= exp
[
ζ(p) ln

r

R

] 〈
(δRv)p+q

〉
=

rζ(p)

Rζ(p)
〈
(δRv)p+q

〉
=
〈(δrv)p〉
〈(δRv)p〉 〈(δRv)p+q〉 . (43)

Here, we made use of relation (38) and inserted
〈(δrv)p〉 ∼ rζ(p) in the last step. In other words, the op-
erator product expansion can be conceived as a Markov
process of velocity increments in scale, a direct conse-
quence of the multiplicative process (5) and its uncorre-
lated multipliers. Empirical evidences suggest that the
multiplicative uncorrelated fusion-rules prediction (43)
breaks down in the limit of r → R. In terms of the
Markov property (28), such a violation can be explained
by the existence of non-trivial correlations in the energy
transfer for not too separated scales.

In conclusion, the application of the fusion rules (4)
necessarily entails two aspects:

i.) the validity of the Markov property of velocity in-
crements in scale (28), which implies that the KM
expansion for the transition PDF (31) conforms with
the KM expansion for the one-increment PDF (30).

ii.) the specific form of the KM coefficients (34) which
was chosen in a way to ensure the existence of scaling
solutions 〈δrvn〉 ∼ rζ(n).

For the sake of completeness, we want to end this
section with a generalization of fusion rules (4) to n-
increment statistics (n+ 1-point statistics in terms of or-
dinary moments). The procedure follows along the same
lines than the derivation of the fusion rules from the KM
expansions of the Markov process (43) and is explained
in Appendix A. We obtain

〈(δrnv)pn . . . (δr2v)p2(δr1v)p1〉 (44)

=

∫
dvn . . . dv2 dv1 v

pn
n . . . vp22 vp11 fn(vn, rn; . . . v1, r1)

=

n−1∏

i=1

〈
(δri+1v)

∑i
k=1 pn+1−k

〉

〈
(δriv)

∑i
k=1 pn+1−k

〉
〈

(δr1v)
∑n
k=1 pn+1−k

〉
,

where fn is the n-increment PDF (25). These generalized
fusion rules imply a reduction of a n+ 1-point statistical
quantity to a two-point quantity.
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IV. APPLICATION TO BURGERS
TURBULENCE

In contrast to the dissipation anomaly that arises in
the MF description (Section II), the dissipation anomaly
that arises in the multi-scale description of Burgers tur-
bulence bears a clear physical meaning: Due to absence of
nonlocal pressure contributions, singular structures con-
sist of localized shocks whose widths are determined by
the viscosity ν. E.g., consider the single shock solution
of Eq. (47)

v(x, t) = 1− tanh

(
x− xc − t

2ν

)
, (45)

where the width of the shock is inversely proportional to
ν. It can be readily seen that the averaged local energy
dissipation rate 〈ε〉, where

ε(x) = 2ν

(
∂v(x)

∂x

)2

(46)

is independent of the viscosity ν. In the following, we
will further discuss multi-scale properties of the Burg-

ers equations, including inertial-viscous cases as the ones
described by the correlations (17).

A. Dissipation anomaly in a multi-increment PDF
hierarchy in Burgers turbulence

We consider the Burgers equation

∂

∂t
v(x, t) + v(x, t)

∂

∂x
v(x, t) = ν

∂2

∂x2
v(x, t) + F (x, t) ,

(47)
with a white-noise in time Gaussian forcing F (x, t) de-
fined by the second order moment

〈F (x, t)F (x′, t)〉 = χ(x− x′)δ(t− t′) , (48)

where χ(x − x′) is the spatial correlation function, as-
sumed to be concentrated around a characteristic scale
|x − x′| ∼ lf . The evolution equation for the velocity
increment δrv(x, t) is

∂δrv(x, t)

∂t
+ v(x, t)

∂δrv(x, t)

∂x
+ δrv(x, t)

∂δrv(x, t)

∂r

= ν
∂2δrv(x, t)

∂x2
+ F (x+ r, t)− F (x, t) . (49)

The temporal evolution of the one-increment PDF (2) is
derived in Appendix B according to

∂

∂t
f1(v1, r1, t) + v1

∂

∂r1
f1(v1, r1, t) + 2

∫ v1

−∞
dv′1

∂

∂r1
f1(v′1, r1, t)

= −ν ∂

∂v1

∫
dr2 [δ(r2 − r1)− δ(r2)]

∂2

∂r22

∫
dv2v2f2(v2, r2; v1, r1, t) + [χ(0)− χ(r1)]

∂2

∂v21
f1(v1, r1, t) . (50)

Due to the viscous coupling to the two-increment PDF,
we have a hierarchy formally similar to the BBGKY sta-
tistical physics case [26, 41].

It is useful to reformulate the dissipative terms in or-
der to introduce the local energy dissipation rate (46).
First, we assume the stationarity of the velocity incre-
ment statistics, i.e., ∂

∂tf1(v1, r1, t)=0. Second, as shown
in Appendix C, the unclosed viscous term in Eq. (50) can
be rewritten in terms of the joint velocity gradient and
velocity increment statistics as

v1
∂

∂r1
f1(v1, r1) = −2

∫ v1

−∞
dv′1

∂

∂r1
f1(v′1, r1)

− ∂2

∂v21

[〈
ε(x)

2
[δ(v1 − δr1v(x)) + δ(v1 + δ−r1v(x))]

〉

+[χ(0)− χ(r1)]f1(v1, r1)

]
+ 2ν

∂2

∂r21
f1(v1, r1) . (51)

From the above expression, the existence of the dissipa-

tive anomaly becomes more apparent than in Eq. (50)
due to the non-vanishing local energy dissipation rate in
the limit ν → 0. Taking the moments of Eq. (51) and
dropping the index of r1 yields
(

1− 2

n

)
∂

∂r
〈(δrv(x))n〉

= 2ν
∂2

∂r2
〈(δrv(x))n−1〉

− (n− 1)(n− 2)

2

〈
ε(x)[(δrv(x))n−3 + (−δ−rv(x))n−3]

〉

+(n− 1)(n− 2)[χ(0)− χ(r)]
〈
(δrv(x))n−3

〉
. (52)

For n = 3, we recover the equivalent of Kolmogorov’s
4/5-law for Burgers turbulence

1

3

∂

∂r

〈
(δrv(x))3

〉
= −2〈ε〉+ 2ν

∂2

∂r2
〈(δrv(x))2〉

+2[χ(0)− χ(r)] , (53)

which reduces to
〈
(δrv)3

〉
= −6〈ε〉r in the inertial range.
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In the general case, i.e., for n 6= 3, we start by dis-
carding the forcing contribution in the inertial range
η � r � L in assuming that χ(r) decreases sufficiently
fast for increasing r. Moreover, in the limit of high
Reynolds numbers, i.e., ν → 0, the smooth subleading

viscous term 2ν ∂2

∂x2 〈(δrv)n−1〉 can be neglected. Hence,

in the inertial range where
〈
(δrv

n−3〉 should admit scal-
ing, we obtain

〈ε(x)(δrv(x))n〉 ∼ |r|ζ(n+3)−1 , (54)

which agrees with the first result (9) of the MF approach.
Hence, the prediction made by the MF approach (9) be-

x

v(
x)

 

(x)v(x r)

v(x + r)

(a)

x

v(
x)

 

(x)

v(x r) v(x + r)

(b)

FIG. 1. (a) Schematic depiction of a shock in Burgers tur-
bulence. The local energy dissipation rate is peaked at the
center of the shock ε(x). Depending on the strength of the
shock, the velocity field at v(x− r) and at v(x+ r) possesses
the symmetry v(x − r) = −v(x + r), which leads to Burgers
scaling (55). (b) In the case of cusp-like structures, ε(x) is still
peaked in the center of the cusp. The symmetry of the cusps,
however, leads to the vanishing of the dissipation anomaly in
Eq. (52).

comes exact for the case of Burgers turbulence, some-
thing not known before to the best of our knowledge. It

must be stressed that (52) does not further specify the
scaling exponent ζ(n). It is well known that in order to go
beyond it, we need some heuristic arguments about the
dissipative term based on the geometrical structures of
the flow. In high-Reynolds number Burgers turbulence,
we are faced with shock-like structures similar to the one
in Fig. (1)(a). In this case, the local energy dissipation
rate is peaked at the center of the shock and the veloci-
ties v(x+r) and v(x−r) are arranged anti-symmetrically
around v(x) = 0. In the limit of small viscosities and for
small r, v(x ± r) possesses a negligible dependence on r
and we obtain

〈
ε(x)[( δrv(x)︸ ︷︷ ︸

=v(x+r)

)n−3 + (−δ−rv(x)︸ ︷︷ ︸
=−v(x−r)

)n−3]
〉

∼ 〈v2〉(n−3)/2〈ε〉 ∼ rζ(n)−1 → ζ(n) = 1 . (55)

This is exactly the celebrated Burgers-shock scaling from
Table (I).

The influence of smooth velocity field structures can be
seen as follows: Consider Eq. (52) for small r, in which
case, we can neglect the nonlinear and forcing contribu-
tions.

2ν
∂2

∂r2
〈(δrv(x))n−1〉

≈ (n− 1)(n− 2)

2

〈
ε(x)[(δrv(x))n−3 + (−δ−rv(x))n−3]

〉

≈ 2ν(n− 1)(n− 2)

〈(
∂v(x)

∂x

)n−1
rn−3

〉
, (56)

where we performed a Taylor expansion δrv(x) = v(x +

r) − v(x) ≈ ∂v(x)
∂x r inside the ensemble average on the

r.h.s. and replaced the local energy dissipation rate ε(x)
by its definition (46). Integrating Eq. (56) and inserting
back the definition of the local energy dissipation rate
(46) yields

〈(δrv(x))n〉 = 2−n/2−1/2
〈εn/2〉
νn/2−1/2

rn . (57)

Obviously, this result bears the signature of smooth
ramp-like velocity field contributions u(x) in between
shocks and is the leading term for n < 1. Hence, by
including the heuristic result (55), we obtain the well-
known Burgers scaling

〈|δrv|n〉 ∼
{
rn for n < 1 ,

r for n ≥ 1 .
(58)

In order to understand the importance of the exact
shape of the singularity, it is instructive to consider the
case of the Burgers equation with an additional nonlo-
cality [21, 42].

∂

∂t
v(x, t) + w(x, t)

∂

∂x
v(x, t) = ν

∂2

∂x2
v(x, t) + F (x, t),

(59)
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where the convective velocity field is given by

w(x, t) = αv(x, t) + (1− α)p.v.

∫
dx′

v(x′, t)
x− x′ . (60)

Here, α = 1 corresponds to the case of Burgers turbu-
lence, whereas α = 0 corresponds to the purely non-
local case that exhibits self-similar behavior [42]. In
the latter case, the velocity field is dominated by cusp-
like structures similar to the one depicted in Fig. 1 (b).
Consequently, the velocity field possesses the symmetry
v(x−r) = v(x+r) leading to the vanishing of the dissipa-
tive term

〈
ε(x)[(δrv(x))n−3 + (−δ−rv(x))n−3]

〉
for even

n. Furthermore, the nonlinear terms in the PDF hierar-
chy are changed due to the presence of the nonlocality in
the generalized Burgers equation (59) and are necessar-
ily unclosed [22]. Accordingly, the nonlinear terms in the
purely nonlocal case are balanced by the forcing terms.
Depending on the properties of the forcing correlation
function this scaling can be associated with the results of
the renormalization group (see [43] for further references)
and necessarily implies non-intermittent scaling.

Another important case of Eq. (52) is when the local
dissipation rate and the velocity increment are statisti-
cally independent

〈
ε(x)[(δrv(x))n−3 + (−δ−rv(x))n−3]

〉

=
〈
[(δrv(x))n−3 + (−δ−rv(x))n−3]

〉
︸ ︷︷ ︸

∼rζ(n−3)
1

〈ε(x)〉

∼ rζ(n)−1 → ζ(n)− 1 = ζ(n− 3) → ζ(n) = n/3 .

(61)

which necessarily implies K41 scaling.
The case of Burgers scaling (55) must be considered

as the opposite case: the energy dissipation rate is fully
correlated with the velocity increment, leading to strong
intermittency. Furthermore, it has been shown that the
intermediate case 0 < α < 1 in Eq. (59) bears many
resemblances with the original Navier-Stokes equation
[21, 42]. Accordingly, the pressure must have a regu-
larizing effect on the velocity field structures that enter
the dissipation anomaly.

In the following section, we will evaluate both the fu-
sion rules from Section III as well as the multifractal
prediction from direct numerical simulations of Burgers
turbulence.

B. Direct numerical simulations of Burgers
turbulence

In order to validate the theoretical considerations of
the previous sections, we performed direct numerical sim-
ulations (DNS) of the stochastically driven Burgers equa-
tion (47). The numerical setup consists of a second order
Adams-Bashforth explicit solver paired with an Euler-
Maruyama step to account for the large-scale Gaussian

run #1 #2 #3

urms 1.16 1.16 1.15

ν 3.6 · 10−4 1.2 · 10−3 6.8 · 10−3

Re 1800 550 90

Reλ 100 56 23

〈ε〉 1 1 1

dt 1.53 · 10−5 1.53 · 10−5 1.53 · 10−5

dx 3.83 · 10−4 3.83 · 10−4 3.83 · 10−4

η 2.61 · 10−3 6.31 · 10−3 2.37 · 10−2

λ 0.031 0.056 0.134

L 1.564 1.555 1.526

T in TL 760 762 772

N 214 214 214

kF 5 5 5

TABLE II. Characteristic parameters of the numerical sim-
ulations: root mean square velocity vrms =

√
〈v2〉, viscosity

ν, averaged rate of local energy dissipation 〈ε〉 = 2ν
〈(

∂v
∂x

)2〉
,

grid spacing dx, timestep dt, dissipation length η =
(
ν3

〈ε〉

)1/4

,

Taylor length λ = vrms
√

2ν
〈ε〉 , Taylor-Reynolds number Reλ =

vrmsλ
ν

, integral length scale L =
E

3/2
kin
〈ε〉 , kinetic energy Ekin =

1
2
v2
rms, large-eddy turn-over time TL = L

vrms
, number of grid

points N , and kF is the maximum forced wavenumber of the
power law forcing. The physical domain size is 2π.

random forcing. We also consider the variable transfor-
mation, v̂′k(t) = exp(−ν k2 dt)v̂k(t), which implies the
exact integration of the viscous term. It relaxes the re-
striction on the time step by the diffusive term and sig-
nificantly improves the convergence for large wave num-
bers. The spatial correlation function of the forcing (48)
follows a power law ∝ k−2 in Fourier space and has a
cut-off at kF = 5. Table II contains a list of the charac-
teristic parameters in use for the simulations presented in
Figs. 3-5. The resolution was fixed such that η/dx ≈ 6 at
the highest Reynolds number. To improve the statistics
we averaged over two hundred independent runs.

1. Evaluation of inertial-inertial fusion rules from DNS of
Burgers turbulence

First, we investigate the validity of the fusion rules (4)
for the Burgers equation. To this end, we consider the
quantity

Fp,q(r,R) = 〈(δrv)p(δRv)q〉 . (62)
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FIG. 2. Parametric space of the exponents of Eq. (62) and the
corresponding fusion rules prediction. I-III correspond to the
three regions that emerge from the bifractal Burgers scaling
(58).

The application of the fusion rules (4) in conjunction with
Burgers scaling (58) yields three di↵erent possible scaling
properties, depending on the order of the moments p, q. If
both increments are dominated by the shock we have case
(I), if both are dominated by the smooth ramps we have
the case (II), while if the small scale is smooth and the
large scale is dominated by the shock we have case (III).
The scaling prediction in the plane (p, q) is summarized
in Fig. (2) and in Eq. (63).

Fp,q(r, R) ⇠

8
><
>:

r for p > 1 ,

rp Rq for p < 1 & p + q  1 ,

rp R1�p for p < 1 & p + q � 1 .

(63)

In the following, we fix the large scale R to ⇡/2 and
vary the small scale r. R is fixed so that R/⌘ ⇡ 600 for
Re = 1800, R/⌘ ⇡ 250 for Re = 550, and R/⌘ ⇡ 70
for Re = 90. We have also tested the opposite scenario
by fixing the small scale r to ↵⌘ with ↵ 2 [2, 10], which
yielded similar results that will therefore not be shown
here. Fig. 3 depicts Fp,q(r, R) for three values in the
three regions of Fig. 2: p = 2, q = 4 (top, region I),
p = q = 0.4 (center, region II), and p = 0.6, q = 2 (bot-
tom, region III). As one can see, all three cases agree
fairly well with the theoretical predictions (black lines
with corresponding predicted scaling). This becomes
even more apparent from the insets in Fig. 3, which shows
Fp,q(r, R) compensated by the corresponding prediction.
We observe constant (r-independent) regions over a few
decades of r/R. However, as r approaches larger values
and tends towards R, the compensated function becomes
r-dependent, which indicates a breakdown of the fusion
rules for small scale separations. As discussed in Sec-
tion III, the breakdown of the fusion rules for small scale
separations can also be interpreted in terms of the vi-
olation of the Markov property (28). In the following
section, we will consider the special case of F (r, R) for
r ! ⌘ to check the viscous-inertial scaling.
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FIG. 3. Examination of the inertial-inertial fusion rules
Eq. (63) for runs #1-#3 via the quantity Fp,q(r, R) defined
in Eq. (62) as a function of r/R for di↵erent values of p and
q and for di↵erent Reynolds numbers. The black line corre-
sponds to the fusion rules prediction in Burgers turbulence
summarized in the three regions I-III of Fig. 2. The inset
depicts Fp,q(r, R) divided by this prediction. Top: p = 2 and
q = 4 (region I). Center : p = q = 0.4 (region II). Bottom:
p = 0.6 and q = 2 (region III).

2. Evaluation of the viscous-inertial fusion rules prediction
from DNS of Burgers turbulence

In the following, we consider the viscous-inertial multi-
scale correlation function given

Dp,q(Re, R) = h(@xv)p(�Rv)qi (64)

FIG. 2. Parametric space of the exponents of Eq. (62) and the
corresponding fusion rules prediction. I-III correspond to the
three regions that emerge from the bifractal Burgers scaling
(58).

The application of the fusion rules (4) in conjunction with
Burgers scaling (58) yields three different possible scaling
properties, depending on the order of the moments p, q. If
both increments are dominated by the shock we have case
(I), if both are dominated by the smooth ramps we have
the case (II), while if the small scale is smooth and the
large scale is dominated by the shock we have case (III).
The scaling prediction in the plane (p, q) is summarized
in Fig. (2) and in Eq. (63).

Fp,q(r,R) ∼





r for p > 1 ,

rpRq for p < 1 & p+ q ≤ 1 ,

rpR1−p for p < 1 & p+ q ≥ 1 .

(63)

In the following, we fix the large scale R to π/2 and
vary the small scale r. R is fixed so that R/η ≈ 600 for
Re = 1800, R/η ≈ 250 for Re = 550, and R/η ≈ 70
for Re = 90. We have also tested the opposite scenario
by fixing the small scale r to αη with α ∈ [2, 10], which
yielded similar results that will therefore not be shown
here. Fig. 3 depicts Fp,q(r,R) for three values in the
three regions of Fig. 2: p = 2, q = 4 (top, region I),
p = q = 0.4 (center, region II), and p = 0.6, q = 2 (bot-
tom, region III). As one can see, all three cases agree
fairly well with the theoretical predictions (black lines
with corresponding predicted scaling). This becomes
even more apparent from the insets in Fig. 3, which shows
Fp,q(r,R) compensated by the corresponding prediction.
We observe constant (r-independent) regions over a few
decades of r/R. However, as r approaches larger values
and tends towards R, the compensated function becomes
r-dependent, which indicates a breakdown of the fusion
rules for small scale separations. As discussed in Sec-
tion III, the breakdown of the fusion rules for small scale
separations can also be interpreted in terms of the vi-
olation of the Markov property (28). In the following
section, we will consider the special case of F (r,R) for
r → η to check the viscous-inertial scaling.
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FIG. 3. Examination of the inertial-inertial fusion rules
Eq. (63) for runs #1-#3 via the quantity Fp,q(r,R) defined
in Eq. (62) as a function of r/R for different values of p and
q and for different Reynolds numbers. The black line corre-
sponds to the fusion rules prediction in Burgers turbulence
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depicts Fp,q(r,R) divided by this prediction. Top: p = 2 and
q = 4 (region I). Center : p = q = 0.4 (region II). Bottom:
p = 0.6 and q = 2 (region III).

2. Evaluation of the viscous-inertial fusion rules prediction
from DNS of Burgers turbulence

In the following, we consider the viscous-inertial multi-
scale correlation function given

Dp,q(Re, R) = 〈(∂xv)p(δRv)q〉 (64)
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We specialize to the Burgers case for which the MF pre-
diction is given in Fig. 4 and in Eq. (65) by inspecting
Eq. (17).

Dp,q(Re, R) ∼





Rep−1 for p > 1 ,

Rq for p < 1 & p+ q ≤ 1 ,

R1−p for p < 1 & p+ q ≥ 1 .

(65)

In the following, we will also refer to these relations as
the MF prediction for the viscous-inertial fusion rules.
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The top panel in Fig. 5 depicts ⌫D2,4(Re, R) as a func-
tion of R for di↵erent Reynolds numbers (see also Table
II). As it can be seen, ⌫D2,4(Re, R) is independent of the
scale R in the inertial range, which is in accordance with
the MF prediction in region I of Fig. 4. The collapse
of the data comes in agreement with the existence of a
generalized dissipative anomaly as discussed in Section II
and Eq. (9). The flat region increases as ⌫ ! 0. The mid-
dle and the bottom panels in Fig. 5 depict D0.4,0.4(Re, R)
and D0.6,2(Re, R) respectively, with combinations of ex-
ponents p, q corresponding to regions II and III of Fig. 4,
accordingly. The black line with scaling Rm, m 2 R,
is the viscous-inertial fusion rules prediction following
Eq. (65) for the chosen exponents p, q. The inset plot
depicts the data divided by Rm. All three cases show a
good agreement of the data with the viscous-inertial fu-
sion rules prediction which improves as we increase Re.

3. Evaluation of the velocity gradient statistics from DNS
of Burgers turbulence

Finally, we want to consider the special case where
Eq. (64) reduces to the ordinary moments of the velocity
gradient, i.e., Dp,0(Re). As it can be seen from Fig. 4,
the MF prediction for Burgers reduces to the Reynolds
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and for di↵erent Reynolds numbers. The inset plots depict
the results divided by the corresponding viscous-inertial fu-
sion rules prediction of regions I-III of Fig. 4. Top: p = 2 and
q = 4 (region I). The quantity ⌫ D2,4(Re, R) is shown here.
It is independent of R, and the collapse of the data within
errorbars supports the suggestion of a generalized dissipative
anomaly discussed in Sec. II and Eq. (9). Center : p = q = 0.4
(region II). Bottom: p = 0.6 and q = 2 (region III).
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(region II). Bottom: p = 0.6 and q = 2 (region III).

number scaling

Dp,0 ∼ Rep−1 for p > 1 . (66)

Moreover, for the particular case of Burgers turbulence
with ζ(n) = 1, both the MF prediction (17) and the re-
sult from [30–32] in Eq. (23) yields relation (66), which
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was already discussed in Section II. It is convenient to
introduce the quantity

Mp =

〈(
∂v
∂x

)p〉

〈(
∂v
∂x

)2〉p/2 (67)

for even p. Recent numerical investigations of hydrody-
namic turbulence [44] suggest that the moments (67) ex-
hibit a transition from Gaussian to anomalous behavior
if one increases the Reynolds number. Hence, we expect
Mp to behave according to

Mp ∼
{

(p− 1)!! for Re ∼ O(1) ,

Rep/2−1 ∼ Rep−2λ for Re� O(1)
(68)

for even p. Here, we made use of the fact that the Taylor-
Reynolds number Reλ = urmsλ/ν is related to Re accord-
ing to Re ∼ Re2λ in the high-Reynolds number regime.
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FIG. 6. Top: Moments Mp from Eq. (67) as a function of
the Taylor-Reynolds number in Burgers turbulence. The low-
Reynolds number regime exhibits Gaussian statistics (dashed
black lines), whereas the high-Reynolds number regime agrees
well with the multifractal/Yakhot prediction (filled black line)
for Burgers turbulence (68). The lines correspond to flat re-
gions of the logarithmic derivative of the moments χ(n), see
panel below. Bottom: Logarithmic derivative of the moments
(69). The straight black lines correspond to the theoretical
predictions (68), χ(4) = 2, χ(6) = 4, and χ(8) = 6

Fig. 6 is in quantitative agreement with Eqs. (68). The
top panel depicts the moments (67) as a function of the
Taylor-Reynolds number. For small Reλ, the moments
exhibit Gaussian statistics similar to the case of hydrody-
namic turbulence [44], whereas the anomalous behavior
for larger Reλ is much more pronounced in comparison to
the latter case. Obviously, this result can be attributed
to the strong intermittency behavior in Burgers turbu-
lence. Nevertheless, in the high-Reynolds number regime
we can confirm prediction (68) to a great extend. The
fits (black lines) in the top of Fig. 6 correspond to flat
regions in the logarithmic derivative of the moments (67)

χ(p) =
d logMp

d log Reλ
, (69)

which is displayed in the bottom panel of Fig. 6. The
flat regions are indicated as flat lines which correspond
to the theoretical predictions (68), χ(4) = 2, χ(6) = 4,
and χ(8) = 6. Hence, we can conclude that the MF
prediction also applies to the single gradient statistics in
Burgers turbulence.

V. CONCLUSIONS

We have presented an overview of prevalent concepts
that allow for multi-scale descriptions of turbulent flows.
A main result of this paper is that the operator prod-
uct expansion/fusion rules approach [14–16, 26] that em-
anated from quantum field theory is a direct consequence
of the Markov property of velocity increments in scale
devised in [19], provided that the structure functions
exhibit scaling in the inertial range. This means an
amalgamation of two fields that co-existed for nearly 20
years. By contrast, our results might also lead to a novel
stochastic interpretation of the operator product expan-
sion in quantum field theory [24]. At difference from
other closure methods, e.g. the quasi-normal approxima-
tion [45], renormalization methods [46, 47], renormaliza-
tion group methods [48], eddy-damped quasi-normal ap-
proximation [43, 49–51], both the Markov approach and
the operator product expansion are non-perturbative, i.e.,
are not based on properties of Gaussian-distributed ve-
locity field fluctuations. The latter property makes both
approaches suitable candidates for a closure of the multi-
increment PDF hierarchy [22].

Regarding the breakdown of the fusion rules in the
limit of small scale separations, it is tempting to inves-
tigate the influence of non-Markovian cascade processes.
Here, a generalization of the KM expansion for the tran-
sition PDF (31) to arbitrary stochastic processes as em-
phasized in [52], might yield a generalization of the fusion
rules to arbitrary cascade processes. A dissipative cut-
off of the structure functions [53] can also be achieved
by a dissipative KM expansion and will be presented
elsewhere. In addition, the Markov property could be
considered as a first step in an approximation of multi-
increment statistics. The natural next step would be an
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extension incorporating one additional level of ”memory
in scale” [22], e.g. assuming

p(v4, r4|v3, v3; r2, r2; v1, r1) ≈ p(v4, r4|v3, v3; r2, r2) (70)

and thus allowing to capture correlations between the
inertial and viscous-inertial range.

Furthermore, we have shown that a specific prediction
of the MF model for joint velocity gradient and velocity
increment statistics (9) can be obtained from the basic
fluid dynamical equations under the neglect of pressure
contributions, i.e., from the Burgers equation. It must
be stressed that this result can be derived without any
further assumptions apart from the scaling of structure
functions in the inertial range. However, at this point,
we could not validate the generalization of the MF re-
sult to arbitrary powers of the velocity gradient given by
Eq. (13). In order to derive such a generalization, one
has to operate at the next level of the multi-increment
hierarchy (50). Here, a possible closure is the Markov
property (28) which leads to a self-consistent equation
for the two-increment PDF [22].

The numerical part of this work was devoted to the
verification of fusion rules and the prediction of the MF
prediction in DNS of Burgers turbulence. Both fusion
rules and MF prediction could be established to a cer-
tain extend. The limitation of the fusion rules arises
for vanishing scale separations and could be understood
from the violation of the Markov property (28). A fur-
ther examination of this regime will be the task of future
research.
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Appendix A: Generalization of fusion rules to
n-increment statistics

We consider the moments of the n-increment PDF

〈(δrnv)pn . . . (δr2v)p2(δr1v)p1〉 (A1)

=

∫
dvn . . . dv2 dv1 v

pn
n . . . vp22 vp11 fn(vn, rn; . . . ; v1, r1) ,

where the pi’s denote arbitrary exponents and were we
impose the scale ordering η ≤ rn ≤ rn−1 ≤ . . . ≤ r2 ≤
r1 ≤ L. First, we rewrite the n-increment PDF according
to Bayes’ theorem

fn(vn, rn; . . . v1, r1)

= p(vn, rn|vn−1, rn−1; . . . ; v1, r1)

×fn−1(vn−1, rn−1; . . . v1, r1) . (A2)

The general form of the Markov property in scale implies
that

p(vn, rn|vn−1, rn−1; . . . ; v1, r1) = p(vn, rn|vn−1, rn−1) .
(A3)

Hence, Eq. (A1) simplifies to

∫
dvn . . . dv2 dv1 v

pn
n . . . vp22 vp11 p(vn, rn|vn−1, rn−1)

×fn−1(vn−1, rn−1; . . . ; v1, r1) (A4)

Under the assumption of the scaling of structure func-
tions in combination with the Markov property, we can
express the conditional probability p(vn, rn|vn−1, rn−1)
in terms of a Dyson series (39)

p(vn, rn|vn−1, rn−1) = δ(vn − vn−1) + ln
rn−1
rn

∞∑

k=1

Kk

k!

∂k

∂vkn
vknδ(vn − vn−1)

+
1

2!

(
ln
rn−1
rn

)2 ∞∑

k=1

Kk

k!

∂k

∂vkn
vkn

∞∑

l=1

Kl

l!

∂l

∂vln
vlnδ(vn − vn−1) + . . . (A5)

Inserting (A5) into (A4) and performing the partial in- tegrations with respect to vn similar to Eq. (43) yields
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[
1 +

pn∑

k=1

(−1)kKk

(
pn
k

)
ln
rn−1
rn

+
1

2!

pn∑

k=1

(−1)kKk

(
pn
k

) pn∑

l=1

(−1)lKl

(
pn
l

)(
ln
rn−1
rn

)2

+ . . .

]
(A6)

∫
dvn−1 . . . dv2 dv1 v

pn+pn−1

n−1 . . . vp22 vp11 fn−1(vn−1, rn−1; . . . ; v1, r1) .

Here, the square bracket can be written as an exponential
function according to

[
. . .
]

= exp

[
ln
rn−1
rn

pn∑

k=1

(−1)kKk

(
pn
k

)]
. (A7)

The sum in the exponential function can be identified as
the scaling exponent ζ(pn) = −∑pn

k=1(−1)kKk

(
pn
k

)
and

we obtain
〈
(δrnv)pn(δrn−1

v)pn−1 . . . (δr2v)p2(δr1v)p1
〉

= exp

[
ln

rn
rn−1

ζ(pn)

]

×
〈
(δrn−1

v)pn+pn−1 . . . (δr2v)p2(δr1v)p1
〉
, (A8)

Furthermore, the scaling of the structure functions im-

plies that 〈(δrnv)pn〉 ∼ rζ(pn)n , which yields
〈
(δrnv)pn(δrn−1

v)pn−1 . . . (δr2v)p2(δr1v)p1
〉

(A9)

=
〈(δrnv)pn〉〈
(δrn−1

v)pn
〉 〈(δrn−1

v)pn+pn−1 . . . (δr2v)p2(δr1v)p1
〉
.

Successive application of this relation yields
〈
(δrnv)pn(δrn−1

v)pn−1 . . . (δr2v)p2(δr1v)p1
〉

=
〈(δrnv)pn〉〈
(δrn−1

v)pn
〉 ×

(
〈δrn−1v)pn+pn−1

〉
〈
(δrn−2

v)pn+pn−1
〉 × . . .

×〈(δr2v)pn+...+p2〉
〈(δr1v)pn+...+p2〉 ×

〈
(δr1v)pn+...+p1

〉
, (A10)

or in a more compact notation

n∏

i=1

〈(δriv)pi〉 (A11)

=

n−1∏

i=1

〈
(δri+1v)

∑i
k=1 pn+1−k

〉

〈
(δriv)

∑i
k=1 pn+1−k

〉
〈

(δr1v)
∑n
k=1 pn+1−k

〉
,

which is the counterpart to Eq. (45).

Appendix B: Derivation of multi-increment
hierarchy in Burgers turbulence

In order to derive the evolution equation (50) we take
the temporal derivative of the one-increment PDF

∂

∂t
f1(v1, r1, t) =

∂

∂t
〈δ(v1 − δr1v(x, t))〉 = − ∂

∂v1

〈
δ(v1 − δr1v(x, t))

∂

∂t
δr1v(x, t)

〉
(B1)

=
∂

∂v1

〈
δ(v1 − δr1v(x, t))

[
v(x, t)

∂

∂x
δr1v(x, t) + δr1v(x, t)

∂

∂r1
δr1v(x, t)− ν ∂

2

∂x2
δr1v(x, t)− F (x+ r1, t) + F (x, t)

]〉
,

where Eq. (49) was used in order to replace the temporal
evolution of the velocity increment. Each term can now

be treated separately. Starting with the first advective
term we obtain

− ∂

∂v1

〈
δ(v1 − δr1v(x, t))v(x, t)

∂

∂x
δr1v(x, t)

〉
=

〈
v(x, t)

∂

∂x
δ(v1 − δr1v(x, t))

〉
=

∂

∂x
〈v(x, t)δ(v1 − δr1v(x, t))〉

︸ ︷︷ ︸
=0, homogeneity

−
〈
∂v(x, t)

∂x
δ(v1 − δr1v(x, t))

︸ ︷︷ ︸
=
[
∂δr1v(x,t)

∂r1
− ∂δr1v(x,t)∂x

]
×δ

〉
=

∫ v1

−∞
dv′1

∂

∂r1
〈δ(v′1 − δr1v(x, t))〉︸ ︷︷ ︸

=f1(v′1,r,t)

−
∫ v1

−∞
dv′1

∂

∂x
〈δ(v′1 − δr1v(x, t))〉

︸ ︷︷ ︸
=0, homogeneity

. (B2)
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Here, we made use of the inverse chain rule in the first and last step. The second advective term can be treated
in the same way according to

− ∂

∂v1

〈
δ(v1 − δr1v(x, t))δr1v(x, t)

∂

∂r1
δr1v(x, t)

〉

=

〈
δr1v(x, t)

∂

∂r1
δ(v1 − δr1v(x, t))

〉
=

∂

∂r1
〈δr1v(x, t)δ(v1 − δr1v(x, t))〉 −

〈
∂δr1v(x, t)

∂r1
δ(v1 − δr1v(x, t))

〉

= v1
∂

∂r1
〈δ(v1 − δr1v(x, t))〉︸ ︷︷ ︸

=f1(v1,r1,t)

+

∫ v1

−∞
dv′1

∂

∂r1
〈δ(v′1 − δr1v(x, t))〉︸ ︷︷ ︸

=f1(v′1,r1,t)

, (B3)

where we made use of the sifting property of the δ-
function, i.e., δr1v(x, t)δ(v1 − δr1v(x, t)) = v1δ(v1 −
δr1v(x, t)). The nonlinear terms can thus be expressed
solely in terms of the one-increment PDF or its associated
cumulative PDF which is a particularity of the Burgers
equation (for the Navier-Stokes equation we would be

facing unclosed terms from the pressure [54]). However,
the viscous contributions in Eq. (B2) confront us with un-
closed terms and we have to introduce the two-increment
PDF which results in an infinite hierarchy of PDF equa-
tions. This can be seen from the following calculation of
the viscous term in Eq. (B2)

− ν
〈
δ(v1 − δr1v(x, t))

∂2δr1v(x, t)

∂x2

〉
= −ν

〈
δ(v1 − δr1v(x, t))

[
∂2δr1v(x, t)

∂r21
− ∂2v(x, t)

∂x2

]〉

= −ν
∫

dr2 [δ(r2 − r1)− δ(r2)]
∂2

∂r22
〈δr2v(x, t)δ(v1 − δr1v(x, t))〉

= −ν
∫

dr2 [δ(r2 − r1)− δ(r2)]
∂2

∂r22

∫
dv2v2 〈δ(v2 − δr2v(x, t))δ(v1 − δr1v(x, t))〉︸ ︷︷ ︸

=f2(v2,r2;v1,r1,t)

. (B4)

The forcing contributions in Eq. (B2) can be handled by
the usual trick of the Langevin equation. Inserting the

above calculations yields the evolution equation for the
one-increment PDF

∂

∂t
f1(v1, r1, t) + v1

∂

∂r1
f1(v1, r1, t) + 2

∫ v1

−∞
dv′1

∂

∂r1
f1(v′1, r1, t)

= −ν ∂

∂v1

∫
dr2 [δ(r2 − r1)− δ(r2)]

∂2

∂r22

∫
dv2v2f2(v2, r2; v1, r1, t) + [χ(0)− χ(r1)]

∂2

∂v21
f1(v, r1, t) . (B5)

Appendix C: Reformulation of the viscous term in
the multi-increment hierarchy

In this Appendix, we want to show that the unclosed
term in the evolution equation of the one-increment PDF
(50) involves the local energy dissipation rate. To this
end, we rewrite the viscous contributions in their original
form according to

ν

∫
dr2 [δ(r2 − r1)− δ(r2)]

∂2

∂r22

∫
dv2v2f2(v2, r2; v1, r1)

= ν

〈[
∂2δr1v(x)

∂r21
− ∂2u(x)

∂x2

]
δ(v1 − δr1v(x))

〉
. (C1)

A further treatment of these terms yields
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+ν
∂

∂r1

〈
∂δr1v(x)

∂r1
δ(v1 − δr1v(x))

〉
− ν

〈
∂δr1v(x)

∂r1

∂δ(v1 − δr1v(x))

∂r1

〉

−ν ∂

∂x

〈
∂v(x)

∂x
δ(v1 − δr1v(x))

〉

︸ ︷︷ ︸
=0, homogeneity

+ν

〈
∂v(x)

∂x

∂δ(v1 − δr1v(x))

∂x

〉

= −ν
∫ v1

−∞
dv′1

∂2

∂r21
〈δ(v′1 − δr1v(x))〉+ ν

∂

∂v1

〈(
∂δr1v(x)

∂r1

)2

δ(v1 − δr1v(x))

〉

−ν ∂

∂v1

〈
∂v(x)

∂x

(
∂δr1v(x)

∂x

)

︸ ︷︷ ︸
=
∂δr1

v(x)

∂r1
− ∂v(x)∂x

δ(v1 − δr1v(x))

〉
(C2)

Inserting the one-increment PDF f1(v′1, r1) into the first term on the right hand side yields

= −ν
∫ v1

−∞
dv′1

∂2

∂r21
f1(v′1, r1) + ν

∂

∂v1

〈(
∂v(x+ r1)

∂r1

)2

δ(v1 − δr1v(x))

〉

+ν
∂

∂x

〈 (
∂v(x)

∂x

)

︸ ︷︷ ︸
=
∂δr1v(x)

∂r1
− ∂δr1v(x)∂x

δ(v1 − δr1v(x))

〉
+ ν

∂

∂v1

〈(
∂v(x)

∂x

)2

δ(v1 − δr1v(x))

〉

= −ν
∫ v1

−∞
dv′1

∂2

∂r21
f1(v′1, r1) + ν

∂

∂v1

〈(
∂v(x+ r1)

∂r1

)2

δ(v1 − δr1v(x))

〉

−ν
∫ v1

−∞
dv′1

∂2

∂r21
f1(v′1, r) + ν

∫ v1

−∞
dv′1

∂2

∂r1∂x
f1(v′1, r1)

︸ ︷︷ ︸
=0, homogeneity

+ν
∂

∂v1

〈(
∂v(x)

∂x

)2

δ(v1 − δr1v(x))

〉
. (C3)

Under the assumption of homogeneity, we obtain
〈(

∂v(x+ r1)

∂r1

)2

δ(v1 − δr1v(x))

〉

=

〈(
∂v(x+ r1)

∂r1

)2

δ(v1 − v(x+ r1) + v(x))

〉

=

〈(
∂v(x)

∂x

)2

δ(v1 − v(x) + v(x− r1))

〉

=

〈(
∂v(x)

∂x

)2

δ(v1 + δ−r1v(x))

〉
(C4)

which allows us to introduce the local energy dissipation
rate in Eq. (50) according to

v1
∂

∂r1
f1(v1, r1) = 2

∫ v1

−∞
dv′1

∂

∂r1
f1(v′, r1)

− ∂2

∂v21

[〈
ε(x)

2
[δ(v1 − δr1v(x)) + δ(v1 + δ−r1v(x))]

〉

+[χ(0)− χ(r1)]f1(v1, r1)

]
+ 2ν

∂2

∂r21
f1(v1, r1) , (C5)
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