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We study the effects of thermally induced capillary waves in the fragmentation of a liquid liga-
ment into multiple nano-droplets. Our numerical implementation is based on a fluctuating lattice
Boltzmann (LB) model for non-ideal multicomponent fluids, including non-equilibrium stochastic
fluxes mimicking the effects of molecular forces at the nanoscales. We quantitatively analyze the
statistical distribution of the break-up times and the droplet volumes after the fragmentation pro-
cess, at changing the two relevant length scales of the problem, i.e., the thermal length-scale and
the ligament size. The robustness of the observed findings is also corroborated by quantitative com-
parisons with the predictions of sharp interface hydrodynamics. Beyond the practical importance
of our findings for nanofluidic engineering devices, our study also explores a novel application of LB
in the realm of nanofluidic phenomena.
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I. INTRODUCTION

The hydrodynamical description of a non-ideal interface at the microscales is generically assessed via the combined
effects of viscous dissipation and surface tension forces [1–7]. Pushing such description towards smaller scales faces
two main difficulties. From one side, hydrodynamics itself cannot hold true at all scales of motion, and its coarse-
grained foundations are inevitably weakened whenever the physics gets closer to atomistic level. From the other side,
if hydrodynamics needs to be corrected by atomistic effects, one faces the issue of the appropriate description to adopt.
The equations of fluctuating hydrodynamics [8, 9] provide a promising route, accounting for molecular collisions via
the introduction of stochastic contributions to the non-equilibrium fluxes, as originally proposed by Landau [8]. Such
treatment has the major appeal to retain the generic hydrodynamic approach, since it does not enter into a detailed
characterization of the atomistic motion, but rather takes a coarse-grained perspective, where molecular effects are
modeled via the fluctuation-dissipation balance [10]. So far, a consistent body of work considered various aspects of
interfacial flows in open and confined geometries [2, 5, 11–14], while there are only very few works considering the
effect of thermal fluctuations [15–22]. At small scales, thermal fluctuations promote interface excitations with energy
kBT ; these are resisted by the surface tension γ, which opposes a force (per unit length) against the deformation of
the interface. This balance determines a new length scale, named thermal lengthscale, defined as [23]

`T =

√
kBT

γ
,

which is typically in the nanometer range (or fractions of it) [24, 25]. On general grounds, thermal fluctuations
are expected to become increasingly more relevant and produce measurable effects when moving from micrometer
scales down to smaller nanometer scales. This is the case, for example, of nanojets, were stochastic hydrodynamic
equations have been used to study the interface dynamics [19, 20] with extensive comparisons with fully atomistic
descriptions [19]. It was convincingly shown that thermal fluctuations impact the break-up properties of nanojets. For
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the spreading of viscous drops on a solid substrate, thermal fluctuations have been shown to accelerate the spreading
in comparison to the deterministic case [26]. This has been studied with the help of fluctuating hydrodynamics in the
lubrication limit [15], and later confirmed by mesoscale numerical simulations [21]. Other numerical methods were
used to study dewetting of thin liquid films, and it was observed that thermal fluctuations accelerate the rupture of
films [17]. Also, experimental studies exist [18, 22], concerning the break-up of a nanojet in the presence of thermal
fluctuations. In these studies, it is observed that thermal noise suppresses the formation of satellite droplets [22], but
no quantitative characterization of the distribution of droplets size has been provided. In the study [18], the pinch-off
process has also been found to be affected by thermal fluctuations, since an initial visco-capillary regime is followed
by a fluctuation-dominated regime when the characteristic size of the neck approaches the thermal length.

The focus of this paper is on the quantitative analysis of the effects of thermal fluctuations on the statistics of the
break-up times and on the droplet volume distribution, following the contraction and fragmentation of a liquid nano-
ligament. Similarly to other studies [19, 20] we rely on a hydrodynamical description coupled to the effects of thermal
noise. However, we do not solve the continuum equations of interfacial hydrodynamics with a sharp interface directly,
but instead, utilize the fluctuating multicomponent lattice Boltzmann (LB) [27]. The study here presented contributes
to show a realistic application of fluctuating LB for nanofluidic phenomena. Our main findings can be summarized
as follows: we confirm that thermal fluctuations are able to accelerate nano-ligament fragmentations process, as it
was previously reported [19, 20]. Furthermore, we give quantitative information on how much the thermal noise
can accelerate the break-up process, and we present effects of thermal fluctuations on the polydispersity of droplets
distribution. Last but not least, we find that the LB simulations with thermal noise are consistent with sharp interface
hydrodynamics results. The paper is organized as follows: in Section II we briefly review the fluctuating LB used; in
Section III we present technical details of the numerical simulations; in Section III A we report on the destabilization
process driven by the Plateau-Rayleigh instability and the qualitative effects of thermal fluctuations; in Section III B
we discuss results on the statistics of break-up times, while in Section III C we report on the statistics of the droplet
volumes; in Section III D we provide quantitative comparison between the LB results and the results of sharp interface
hydrodynamics; conclusions will follow in Section IV.

II. MODEL: FLUCTUATING LATTICE BOLTZMANN FOR MULTI-COMPONENT FLUIDS

Beyond the traditional problems of homogeneous hydrodynamics [28–30], LB models have proven particularly
suitable for the modeling of complex fluids with multiple phases and/or components [31]. Moreover, stimulated by
earlier contributions for homogeneous fluids [32–34], recently there has been a significant work to include the effects
of thermal fluctuations in LB for multiphase [35, 36] and multicomponent flows [27, 37]. Technical details of the
fluctuating LB have already been extensively presented in [27], and here we only briefly recall the most important
facts for the sake of completeness. We employ the D3Q19 LB model, which discretizes the momentum lattice into
19 directions. The method describes the physics of a mixture with 2 fluid components (say A and B) in terms of
probability distributions functions fli(x, t) evaluated at a lattice position x at time t, with i being a discrete index
associated to a discrete velocity, ci(i = 0, ..., 18), and l being the index for the fluid component (l = A,B). The
distribution function is updated via the combined effect of streaming, collisions, interaction forces and stochastic
noise:

fli(x + ci, t+ 1)− fli(x, t) = L(fli(x, t)) + Fli(x, t) + ξli(x, t) l = A,B (1)

where L is a collision kernel, Fli is a source coming from non-ideal forces, and ξli is a stochastic source. For simplicity
we have used a unitary time step. The macroscopic quantities such as density ρl (one for each component), and global
velocity v are readily evaluated from the distribution functions:

ρl(x, t) =
∑
i

fli(x, t), v(x, t) =

∑
i,l fli(x, t)ci

ρtot(x, t)
(2)

where ρtot = ρA + ρB is the total density. Regarding the collisional operator L, we use a MRT (multi-relaxation
time) scheme [34, 38, 39]. The basic idea behind the MRT scheme is to introduce a vector basis en(n = 0, ..., 18)
to decompose the probability distribution functions into “modes”, Mln = Σienifli. The lowest order modes coincide
with hydrodynamic modes (density, momentum, stress tensor) while higher order modes (“ghost” modes) do not
contribute to the hydrodynamic behaviour of the LB models [34, 38]. Each one of the modes is relaxed with its own
relaxation frequency towards the corresponding equilibrium mode calculated from the equilibrium distribution

f
(eq)
li (x, t) = ρl(x, t)ωi

(
1 +

ci · v(x, t)

c2s
+

(ci · v(x, t))2

2c4s
− v2(x, t)

2c2s

)
(3)
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where cs is the speed of sound (a constant in the model) and ωi are weights associated to the discrete lattice directions.
The non-ideal forces are chosen in the Shan-Chen formulation [31, 40–43]:

Fl(x, t) = −Gϕl(x, t)
∑
l′ 6=l

∑
i

ωiϕl′(x + ci, t)ci (4)

where G is a coefficient that regulates the strength of the interactions between the two components. The pseudo-
potential ϕl is set equal to the density, for the sake of simplicity, i.e. ϕl(x, t) = ρl(x, t). When the coupling strength is
large enough, the system can show phase segregation with the formation of diffuse interfaces separating bulk regions
with majority of one of the two components. Diffuse interfaces display widths of the order of a few grid sizes and a
positive surface tension γ which increases at increasing G. The term ξli in Eq. (1) is a noise term that is assumed to
be a zero-mean Gaussian random variable, uncorrelated in time and with constant variance (which can however be
space-dependent). While noise does not introduce stochastic forces on the density modes, it does so in momentum
modes with the following correlations

〈ξln(x, t)ξln′(x
′, t′)〉 = −〈ξln(x, t)ξl′n′(x

′, t′)〉 = (2κ−κ2)kBT
ρlρl′

ρl + ρl′
δnn′δ(x−x′)δ(t−t′) n, n′ = 1, 2, 3 l = A,B l 6= l′

(5)
where n, n′ refer to the modes and κ represents the relaxation frequency of the momentum modes in the MRT scheme.
The noise correlations on higher modes satisfy

〈ξln(x, t)ξln′(x
′, t′)〉 = (2κ− κ2)Nn

kBT

c2s
ρlδnn′δ(x− x′)δ(t− t′) n, n′ = 4, ..., 18 (6)

where Nn are normalization constants fixed by Nnδnn′ =
∑
i wienien′i. Notice that all other noise correlation vanish.

At hydrodynamical scales, the fluctuating LB allows to obtain – via the Chapman Enskog analysis [34, 39] – the
stochastic hydrodynamic equations for a binary fluid (repeated indexes are meant summed upon) [9]

∂tρtot + ∂α(ρtotvα) = 0, ∂tρA + ∂α(ρAvα) = ∂α [D∂αµ+ Ψα] (7)

∂t(ρtotvα) + ∂β(ρtotvαvβ) = −∂βPαβ + ∂β [η(∂αvβ + ∂βvα) + Σαβ ]. (8)

The equilibrium properties are fully encoded in the chemical potential µ and the pressure tensor Pαβ which depend
on the interaction model chosen at the level of LB [40, 41] and whose expressions may be found elsewhere [43]. The
terms Ψα and Σαβ are stochastic fluxes and tensors, respectively. Specifically, the stochastic vector field Ψα is the
term due to the thermal noise that must be added to the diffusion flux D∂αµ [9], with D the diffusion constant; the
stochastic tensor Σαβ is added to the viscous stress tensor η(∂αvβ + ∂βvα) [8], with η the dynamic viscosity for the
bulk. Requiring that the fluctuation-dissipation relation holds for our hydrodynamical problem, and using (5) and
(6), one can derive a unique choice for the intensity of the stochastic contributions [9, 27]:

Σαβ =
√
ηkBT (Wαβ +WT

βα) Ψα =
√

2DkBTW̃α (9)

where kB is the Boltzmann constant, and Wαβ and W̃α are random Gaussian tensors and a random Gaussian vector
field respectively, with independent components and variance equal to unity.

III. NUMERICAL SET-UP AND RESULTS

Numerical simulations are conducted in a 3D fully periodic domain with sizes Lx×Ly ×Lz. A cylindrical ligament
with a majority of phase A and radius R0 is set-up with a symmetry axis along the z coordinate (see Fig. 1). By
keeping fixed the ratio between the system sizes Lx,y,z and the ligament initial radius R0, we have performed different
numerical simulations at changing the thermal length `T and the domain resolution Lx×Ly×Lz. For each realization
of the thermal length and domain resolution, we performed hundreds of simulations to gather sufficient statistics
over the break-up time and the droplet volumes after break-up. For computational reasons, larger resolutions are
associated with a smaller number of simulations. All these parameters are summarized in Table I.
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R0 (lbu) Lx (lbu) Ly (lbu) Lz (lbu) `2T (lbu2) # of simulations

7.0 48 48 128 7 · 10−5 − 3 · 10−3 1000
10.0 72 72 180 1 · 10−4 − 3 · 10−3 500
14.0 96 96 256 1 · 10−4 200
18.0 122 122 324 1 · 10−4 200
28.0 192 192 512 1 · 10−4 100

TABLE I: Summary of the different numerical simulations conducted. All the numerical simulations that we describe
in this paper are performed with a coupling coefficient G = 1.5 LB units (lbu hereafter) in Eq. (4). Inside the
ligament, the density for the two components are set to ρA = 2.21 lbu and ρB = 0.09 lbu, with a corresponding total
density ρtot = 2.3 lbu. The surface tension of the system is γ = 0.1515 lbu. The surface tension is kept fixed in all
the numerical simulations, while the noise intensity is varied in equations (7)-(8) to achieve different thermal lengths.
The viscosity ratio between the dispersed and continuous phases is set equal to unity.

We remark that applications of LB in the problem of ligament contraction have already been proposed in the
literature. In particular, in [44] a comparison among axisymmetric LB and the predictions of deterministic sharp
interface hydrodynamics has been provided. The use of an axisymmetric LB obviously reduces the computa-
tional effort; however, in presence of thermal noise, it does not provide a realistic description of the interfacial
fluctuations typical of 3D interfaces [24, 25]. For this reason we have used a fully 3D fluctuating LB without
any axial symmetry. In all the simulations that we conducted, the length of the domain size is chosen to be
Lx ≈ 18R0, which is well suited to accommodate roughly 2 wavelengths λfast of the fastest-growing mode of the
Plateau-Rayleigh instability [45] (see also Fig. 1 for quantitative details). The numerical simulations are then
conducted for a set of parameters for which the Ohnesorge number Oh is small, (Oh < 1). The Ohnesorge number
quantifies the importance of the viscous forces with respect to the inertial and surface tension forces, and is
defined as Oh = η/

√
ρmax

A γR0, where ρmax

A indicates the maximum density of the ligament and η is the dynamic

viscosity. The fastest-growing mode has a wave-number kfastR0 ≈ 0.697 , where λfast = k−1fast, independently on Oh [45].

A. Effects of thermal fluctuations

We are interested to understand what is the effect of the thermal noise on the ligament break-up in combination with
the Plateau-Rayleigh instability. To this aim we have designed three different simulation cases, as shown in Fig. 1.
In the first case (left panels), we evolve the ligament without thermal noise, i.e. we use Eqs. (7)-(8) with kBT = 0.
We set an initial small perturbation with wavelength λfast and very small amplitude. Due to the Plateau-Rayleigh
instability, the unstable mode along the interface grows and eventually determine the break-up of the ligament into
droplets. In the second case (middle panels), we evolve the same equations with a different initial condition: beyond
the perturbation on the fastest growing mode, we also add a random Gaussian perturbation on the less unstable
Fourier modes; the evolution is kept deterministic, i.e. again we use Eqs. (7)-(8) with kBT = 0. In the third case
(right panels), we show results coming from numerical simulations with the same initial condition used for the middle
panels followed by the fluctuating hydrodynamics evolution, i.e. Eqs. (7)-(8) with kBT > 0. In all cases, after a

few capillary times tcap =
√
ρmax

A R3
0/γ the ligament breaks into two “mother” droplets and two “satellite” droplets.

The presence of two mother droplets is clearly due to the fact that we choose an axial length that corresponds
to twice the wavelength of the fastest growing mode. The presence of small satellite droplets is generated by the
combined effect of viscosity and surface tension at the late stage of pinch-off, as already described in the literature
[13, 46, 47]. This qualitative feature is robust and independent of the thermal noise and of the initialization protocol
used. For the pure deterministic case (left panels), the fragmentation process evolves in a symmetric way, and it
leads to two identical mother droplets and two identical satellite droplets. However, when we add noise either in the
initial configuration or during the entire evolution, things become more complicated: the break-up time is a random
variable and a volume polydispersity in both mother and satellite droplets is observed. In particular, the presence of
thermal noise in the evolution (right panels) manifestly accelerates the break-up, which is consistent with previous
studies [19, 20]. This is because the effects of thermal fluctuations dominate at the late stage of pinch-off regime. It is
apparent from Fig. 1 that during the ligament fragmentation process both the random initial conditions and thermal
fluctuations have a role; more importantly, numerical simulations offer the possibility to quantitatively disentangle
the two contributions by using two complementary simulations protocols: we can change the random initial condition
and integrate a deterministic dynamics without thermal noise (kBT = 0) in Eqs. (7)-(8) (“without-TN” protocol,
as in middle panels of Fig. 1) or we can include the effects of thermal noise in the dynamics by using kBT 6= 0 in
Eqs. (7)-(8) (“with-TN” protocol, as in right panels of Fig. 1). Based on these two simulation protocols, in the
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following we aim at characterizing the statistics of the droplet break-up times and the droplet volume distribution.
The quantitative characterization of the droplet volume statistics naturally poses the question of the specificity of the
results, due to the fact that LB is a diffuse interface hydrodynamics solver. To address this point we will perform
a quantitative comparison between the droplet volume statistics from the simulations and the predictions of sharp
interface hydrodynamics.

z y
x

FIG. 1: Ligament break-up with LB simulations. Left column panels: LB deterministic evolution of a liquid ligament
destabilized by the Plateau-Rayleigh instability. The system is initialized with a small perturbation on the fastest
growing mode with wavelength λfast. The axial system size of the numerical simulations is chosen to accommodate 2
λfast. After the break-up, we observe that the volumes of the two “mother” droplets are equal to each other, the same
happens for the “satellite” droplets. Middle column panels (“without-TN” protocol): random initial condition followed
by LB deterministic evolution (see text for details on preparation). Right column panels (“with-TN” protocol):
random initial condition followed by fluctuating hydrodynamics evolution with thermal noise (details are reported in
the text).

B. Statistics of break-up times

Based on previous experimental and numerical works [18, 20, 22], we know that the thermal noise results in
accelerating the late stage of the pinch-off. Beyond this accelerated dynamics, here we focus on characterizing the
statistics of the break-up times. We have conducted numerical simulations for a fixed ligament radius R0 = 7 lbu and
different thermal lengths, `T ranging from 7 · 10−5 to 3 · 10−3 lbu, in the two simulation protocols “with-TN” and
“without-TN”. To measure the break-up time, we follow the ligament fragmentation evolution and record the time
when a discontinuity in the density profile is observed along the ligament axis. In Fig. 2, we study the probability
density function (PDF) of the break-up time t∗. Overall, we observe that the shapes of the PDFs are similar to
the break-up time distribution reported in a previous fluctuating thin films study [48]. Comparing the “without-
TN” protocol (first row) and the “with-TN” protocol (second row) for each thermal length, we see that the thermal
fluctuations increase the probability for the ligament to break-up sooner, which makes the peaks of the distribution of
t∗ moving closer to the origin. Similarly, for both simulation protocols, we find a systematic speed-up of the break-up
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time by increasing the amplitude of the thermal fluctuations, as shown by comparing PDFs on the same row at
increasing thermal length (from left to right).

“without-TN” protocol
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“with-TN” protocol
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FIG. 2: PDFs for the break-up time t∗ as a function of the thermal length squared `2T for different simulations protocols
(see Fig. 1): “without-TN” protocol (Panels (a)-(c)) and “with-TN” protocol (Panels (d)-(f)). The break-up time is
made dimensionless with the capillary time tcap.

In Fig. 3(a), we show the PDFs of t∗ for both protocols normalized by their mean 〈t∗〉 and the standard deviation
σt∗ . The break-up time data for both protocols follow similar trends which are well reproduced by the log-normal fit

flog(x) =
1

(x− x0)σlog

√
2π
e−(log(x−x0)−µ)2/2σ2

log

with σlog = 0.32, µ = 2.82 and x0 = −2.97. Also, Fig. 3(b) presents results for the average break-up time 〈t∗〉 as a
function of the thermal length squared `2T for both protocols. We observe a power-law like behaviour

〈t∗/tcap〉 ∼ (`2T)−0.07

in both cases “with-TN” and “without-TN”, with the latter case always systematically below the former.
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with− TN ℓ2T = 5 · 10−4 lbu

with− TN ℓ2T = 3 · 10−3 lbu

without− TN ℓ2T = 7 · 10−5 lbu

without− TN ℓ2T = 5 · 10−4 lbu

without− TN ℓ2T = 3 · 10−3 lbu

lognormal fit

10−4 10−3
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〈t∗
〉/

t c
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(b)

∼ (ℓ2T)
−0.07

with− TN

without− TN

FIG. 3: Panel (a): PDF of normalized break-up time at changing thermal length `T for fixed ligament radius R0 for
both simulation protocols fitted with lognormal distribution. Panel (b): dimensionless mean break-up time 〈t∗〉 /tcap
as a function of thermal length square for the two different simulation protocols used (see Fig. 1). Red and blue
dotted lines are power fits for the dimensionless mean break-up time. Error bars are estimated from the standard
deviation (see Fig. 2).

C. Droplet volumes

In this section we study the droplet volumes after break-up. For this analysis, the droplet volumes are measured
using the marching tetrahedra method [49] with Paraview software and a Python interface. This ensures a very
accurate measurement of the droplets volume which is a key ingredient to differentiate the small changes induced by
thermal fluctuations. In Fig. 4 we show the PDFs for the droplets volumes for the “with-TN” protocol at changing
the thermal length `T for fixed ligament radius R0 (top row, Panels (a)-(c)) or at changing the ligament radius R0 for
fixed thermal length (bottom row, Panels (d)-(f)). We show only the volume distribution of the “mother” droplets
(see Fig. 1): this is done to limit the range of V and allow for a more insightful comparison. We have separately
analyzed the PDFs of the satellite droplets and the conclusions drawn for Fig. 4 are valid for them as well. From
Fig. 4, we can see that when the thermal length increases the PDFs develop larger standard deviation (Panels (a)-(c)),
the same happens when we increase the ligament radius R0 at fixed thermal length (Panels (d)-(f)). The shape of the
PDFs and the dependency of the standard deviation σV on both `2T and R0 are quantitatively summarized in Fig. 5(a)
and Fig. 6(a). In particular, in Fig. 5(a) we report the standardized PDFs at changing the thermal lengths for fixed
ligament radius for both protocols. We observe that the rescaled PDFs collapse well on the same master curve,
independently of the thermal length and the simulation protocol. This indicates that the presence of randomness
in the initial condition plays the major role in determining the shape of the distributions. A tendency towards a
slight sub-Gaussain behaviour is detectable for small (normalized) volume fluctuations, whereas larger fluctuations
are associated with tails higher than Gaussian. The analysis of the standard deviation σV (Fig. 5(b)) shows that
in the “with-TN” protocol the droplets polydispersity is enhanced by a factors around 40% with respect to what
we obtain in the “without-TN” protocol. In both cases, however, signatures of a scaling law with exponent ∼ 0.14
are observed. In the following Section III D we will provide more insight on this scaling law. In Fig. 6 we show the
results of a similar analysis but at changing the ligament radius for fixed thermal length for the physically relevant
“with-TN” protocol. Again, we observe that the rescaled PDFs collapse well on the same master curve. Data are
more scattered with respect to Fig. 5 due to the smaller number of simulations used to compute the PDFs. Regarding
the standard deviation (Fig. 6(b)), we observe a scaling law close to 3, σV ∼ R3

0 that is what one would expect based
on pure geometrical considerations.
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“with-TN” protocol at fixed R0 = 7 lbu
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(b) ℓ2T = 5 · 10−4 lbu

−5 0 5
(V − 〈V 〉)/R3

0

0.00

0.25

0.50

0.75

P
D
F
(V

)

(c) ℓ2T = 3 · 10−3 lbu
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FIG. 4: PDFs for the droplets volumes after break-up based on the “with-TN” protocol (see Fig. 1) at changing the
thermal length `T for fixed ligament radius R0 (top row, panels (a)-(c)) or at changing the ligament radius R0 for
fixed thermal length (bottom row, panels (d)-(f)). To make figures comparable at changing R0, we have subtracted
the average volume and rescaled by R3
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FIG. 5: Panel (a): standardized PDFs at changing the thermal length `T at fixed ligament radius R0 for both
simulation protocols (“with-TN” and “without-TN”). Panel (b): standard deviation, σV , as a function of the thermal
length squared `2T at fixed ligament radius R0 = 7 for both simulation protocols. Error bars are estimated from the
standard deviation of different groups of the configurations.
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FIG. 6: Panel (a): standardized PDFs of the droplet volumes at changing the ligament radius R0 for fixed thermal
length `T. Only data for the “with-TN” protocol are analyzed. Panel (b): standard deviations σV at changing
ligament radius R0, for fixed thermal length squared `2T = 1 · 10−4. Error bars are estimated from the standard
deviation.

D. Comparison with sharp-interface hydrodynamics

In the previous sections we observed that rescaled PDFs of droplet volumes display a sub-Gaussian shape for small
volume fluctuations, and higher tails for larger fluctuations (see Fig. 5(a) and Fig. 6(a)); moreover the standard
deviation displays signatures of scaling laws in `2T (see Fig. 5(b)). To better reveal the origin of the shape of the PDFs
and the scaling law for the standard deviation, we conducted additional numerical simulations with deterministic
sharp interface hydrodynamics [45, 50]. This comparison with sharp interface hydrodynamics can also elucidate the
role of the diffuse interfaces which are inherent to the LB approach. We numerically considered an axisymmetric
formulation of the lubrication equation of sharp interface hydrodynamics [45, 50, 51] using a finite difference scheme
with total variation diminishing method [51]. In this approach, the periodic axisymmetric ligament is placed along the
x axis and the whole evolution is described by its height, h(x, t), and its axial velocity, with v(x, t). The dimensionless
lubrication equation becomes:

∂th
2 + ∂x(h2v) = 0 (10)

∂tv + v∂xv = −∂xPlap + 3Ohh−2 ∂x(h2∂xv) (11)

where Plap is the Laplace pressure that can be written as

Plap =

[
1

h(1 + (∂xh)2)
1
2

− ∂xxh

(1 + (∂xh)2)
3
2

]
. (12)

To study the droplet size distributions in the sharp interface hydrodynamics approach, we imposed an initial pertur-
bation on the radius in the form R0 + εΞ(x), with Ξ(x) a random Gaussian variable with unitary variance and zero
mean and ε a small number that is the analogous of `T that we have used in the LB simulations. By varying the
realization of the variable Ξ(x) in the initial conditions we can compute the PDFs for droplet volumes. In other words,
the hydrodynamic solver is the sharp interface counterpart of the “without-TN” protocol. Results are displayed in
Fig. 7. The agreement of the rescaled PDFs is remarkable (Panel (a)), suggesting that the main effect fixing the
shape of the standardized PDF is due to the destabilization of multiple modes in the deterministic hydrodynamic
framework. Further insight is conveyed by the analysis of the standard deviation σV (Panel (b)). Notice that both
σV , ε, `T have been made dimensionless with the characteristic scale R0 in order to allow for a fare comparison. The
direct comparison against the “with-TN” protocol reveals that the two curves are offset by a constant factor. This
may be due to the diffusive interface of the LB or the different viscosity ration between the LB simulations (where
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the viscosity ratio is 1) and the sharp interface approach (where the viscosity ratio is infinity). Further investigation
needs to be developed to clarify these points. Nevertheless, we wish to point it out that the scaling properties with
respect to the characteristic amplitude of the initial perturbation is consistent in all three cases.
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V−〈V 〉
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P
D
F
(V

)
·σ
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with− TN ℓ2T = 7 · 10−4 lbu

without− TN ℓ2T = 7 · 10−4 lbu

random + lubrication theory

Standard Gaussian

10−5

ζ = (ℓT/R0)
2, (ǫ/R0)

2

100

(σ
V
/R

0
)3

(b)

∼ ζ0.14

with− TN R0 = 7 lbu

without− TN R0 = 7 lbu

Lubrication theory

FIG. 7: Panel (a): comparison among the standardized PDFs of the droplet volumes following the two LB evolution
protocols or the lubrication equations with initial random disturbance (see text for details). Panel (b): rescaled
standard deviation (σV /R0)3 at changing the rescaled thermal length squared (`T/R0)2 and rescaled Gaussian noise
amplitude (ε/R0)2 for lubrication theory. Error bars are estimated from the standard deviation of different groups of
the configurations.

IV. CONCLUSIONS

We have used numerical simulations based on fluctuating multicomponent lattice Boltzmann (LB) models [27] to
study the effects of thermal fluctuations on the break-up time of a liquid ligament and the associated polydispersity in
droplets volumes after break-up. To quantitatively understand the role of thermal fluctuations during the dynamical
process of the break-up, we have designed two different simulation protocols that allowed to evolve with or without
thermal fluctuations a random initial condition realized over the ligament interface. From one side the thermal
fluctuations allow to speed-up the break-up process [20, 22] and to obtain larger polydispersity; from the other side
the shape of the resulting PDF for droplet volume appears to be largely generated by a dynamical process that does
not involve fluctuating hydrodynamics. The leading mechanism is that of a fastest-growing mode that is destabilized
by the Plateau-Rayleigh instability, and other unstable modes (growing at smaller rate) that provide – if initialized
with random phases and amplitudes – an effective noise broadening the final distributions of droplet volumes. As
a future perspective, there are various interesting issues to be investigated. For example, it could be an interesting
challenging problem to predict the observed shape for the PDFs directly from sharp interface hydrodynamics, as well
as the scaling laws for the standard deviations or the break-up time. We also remark that the thermal lengths that
we explored are quite small in comparison to the ligament radius. Hence, it could be a challenging computational
task to extend our study in a range of parameters with larger thermal lengths [18, 22].
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