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Abstract. The dynamics of two-dimensional three-component (2D3C) flows is relevant to describe the
long-time evolution of strongly rotating flows and/or of conducting fluids with a strong mean magnetic
field. We show that in the presence of a strong helical forcing, the out-of-plane component ceases to behave
as a passive advected quantity and develops a nontrivial dynamics which deeply changes its large-scale
properties. We show that a small-scale helicity injection correlates the input on the 2D component with
the one on the out-of-plane component. As a result, the third component develops a non-trivial energy
transfer. The latter is mediated by homochiral triads, confirming the strong 3D nature of the leading
dynamical interactions. In conclusion, we show that the out-of-plane component in a 2D3C flow enjoys
strong non-universal properties as a function of the degree of mirror symmetry of the small-scale forcing.

1 Introduction

Two-dimensional three-component (2D3C) flows are char-
acterised by a velocity field u = (u1, u2, u3) whose com-
ponents only depend on two spatial coordinates, e.g. ui =
ui(x, y; t) for 1 6 i 6 3. Such a flow is relevant also for
much more complicated systems whose dynamics appear
to be directly connected with this simplified 2D geom-
etry, i.e. three-dimensional turbulence under strong ro-
tation [1,2,3,4,5,6,7,8,9], or conducting flows with strong
background magnetic fields [10,11,12,13,14,15]. In both
the aforementioned examples, the development of a back-
ward energy cascade is observed. A possible explanation
for this behaviour arises from the decoupling between the
2D3C manifold and the rest of the 3D domain [16], with
the consequent constraint for the energy to follow channels
living on the 2D3C plane. Furthermore, the 2D3C Navier-
Stokes equations are identical to those for the advection
of a passive scalar by a two dimensional flow, because
the z-component, u3(x, y; t), is only advected by the 2D-
component u2D = (u1, u2, 0). We define θ ≡ u3 such that
the 2D3C-Navier-Stokes equations for incompressible flow
read

∂tu
2D = −(u2D · ∇)u2D −∇P + ν∆u2D ,

∂tθ = −(u2D · ∇)θ + ν∆θ , (1)

where P = P (x, y) is the pressure, ν the kinematic vis-
cosity and ∇ ·u2D = 0. The density has been set to unity
for convenience. A turbulent 2D3C flow can thus be ex-
pected to display a split energy cascade: The energy of the
2D-component shows an inverse cascade, while the energy
of the passive third component develops a direct cascade
according to classical results for passive scalar advection
in 2D turbulence [17] and arguments based on triadic dy-
namics [18].

In a 2D3C flow, the vorticity of u2D points to the z-
direction only, that is ∇ × u2D = ωẑ, where z denotes

a e-mail: moritz.linkmann@physik.uni-marburg.de

the unit vector in z-direction. The latter has interesting
consequences concerning the dynamics of the inviscid in-
variants, which are the total 2D energy, E2D, the total
energy of θ, Eθ, and the kinetic helicity H. The latter is
the normalised L2-inner product of velocity and vorticity

H = 〈u · ω〉 =
1

|V |

∫
V

dx u · ω , (2)

where ω = ∇× u is the 3D vorticity. In the present case,
H depends on θ and ω only [19,18]

H = 2〈θω〉 . (3)

Hence, a nonzero helicity in a 2D3C flow implies a cor-
relation between the out-of-plane scalar and the vorticity
of the advecting 2D velocity field. In this setting, nonzero
helicity implies that the out-of-plane component is in fact
no longer passive as it is correlated to the vorticity of the
2D velocity field [18]. Such a case is of particular interest
for rapidly rotating flows, where it is known that the pres-
ence of helicity affects the cascade dynamics [20,21,22,23].
In the presence of static forcing helicity can also be gen-
erated dynamically in rotating flows [24].

How to enforce a correlation of the out-of-plane compo-
nent with the 2D vorticity and its consequences are the
focus of the present work. Our main findings are the fol-
lowing. (i) In the presence of a strong small-scale helical
forcing, the out-of-plane component develops a non-trivial
inverse energy transfer, at difference from what happens
when mirror symmetry is respected. We interpret this as
evidence of non-universality of the whole 2D3C dynam-
ics, i.e. of its strong sensitivity to the helical properties
of the external forcing. (ii) In the presence of the non-
trivial inverse transfer also for the third component, there
is a strong asymmetry among the dynamics of homochiral
and heterochiral Fourier triads, signature of the 3D fea-
tures of the underlying dynamics [18,25,26]. This paper is
organised in the following way. In section 2 we discuss how
the passive scalar and the 2D-vorticity can be correlated
through a particular choice of forcing, that is, a force with
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maximal helicity. The latter is investigated numerically in
section 3, where we describe the generated database and
the main results. We summarise and discuss our results in
section 4.

2 The dynamics of 2D3C flows

In order to create a connection between θ and ω, with-
out altering the equations of motion, we need to use an
external force which is fully helical. A fully helical force
is constructed through a projection operation in Fourier
space applicable to any square-integrable vector field v,
which we assume here to be solenoidal. Owing to the lat-
ter, each Fourier mode v̂k of v has two degrees of freedom
given by fully helical basis vectors [27,28], such that

v̂k(t) = v̂+
k (t) + v̂−k (t) = v̂+k (t)h+

k + v̂−k (t)h−k , (4)

where h±k are normalised eigenvectors of the curl operator
in Fourier space. That is, the Fourier modes of the vector
field v are described by two components satisfying

ik × v̂skk = skkv̂
sk
k , (5)

and sk = ±. Since h±k are orthonormal, a projection op-
eration onto helical subspaces defined as the span of ei-
ther h+

k or h−k can be carried out. Here, we apply the
helical projection to a square-integrable external force f ,
which is assumed to be solenoidal, too, in order to com-
ply with the incompressibility constraint on the velocity

field. More precisely, we decompose f̂k into its positively

and negatively helical components f̂+
k and f̂−k , such that

the helicity of the forcing can be adjusted through suit-

able linear combinations of f̂+
k and f̂−k , leading to the

following equations of motion in Fourier space

∂tω̂k = −
∑

q=k−p
(ik·û2D

p )ω̂q+νk2ω̂k+k(f̂+
k −xf̂−k )z , (6)

∂tθ̂k = −
∑

q=k−p
(ik · û2D

p )θ̂q + νk2θ̂k + (f̂+
k +xf̂−k )z , (7)

where the evolution equation of the 2D-component has
been written in vorticity form in order to highlight the
specific nature of the forcing. The factor x, 0 ≤ x ≤ 1,
is a coefficient to regulate the fraction of helicity injected
by the forcing. In particular, for x = 0 the forcing is fully
helical while for x = 1 we recover the non-helical forc-
ing. The structure of the 2D3C Navier-Stokes equations
remains unaltered, only the properties of the forcing have
been adjusted. As such, the dynamical system described
by eqs. (6)-(7) can be realised in the laboratory, if precise
control over the helicity of the forcing can be achieved.

In case of fully helical forcing, i.e. for x = 0 and hence

f̂ = f̂+, the evolution of the 2D vorticity and of the out-
of-plane component or the velocity field are forced in a
correlated way. As a result, Eq. (7) does not correspond

any more to the evolution of a linear passive quantity, be-
cause of the link between the injection and the advection
velocity term. It is well known that in the latter case the
scalar field must not necessarily develop a forward cascade
even if advected by an incompressible velocity field [29].

Moreover, if f̂+
k is acting only in a single shell at k = kf ,

then ω̂k/kf and θ̂k obey the same equation of motion. In
configuration space, single-shell helical forcing results in
∇× f+ = αf+, where α is a coefficient inversely propor-
tional to the characteristic length scale of the force and

f+ the inverse Fourier transform of f̂+. The specific na-
ture of the force then results in the following equation for
the difference ξ ≡ θ − αω

∂tξ = −(u2D · ∇)ξ + ν∆ξ = 0 , (8)

where the forcing is absent from the equation of motion for
ξ. Furthermore, the structure of the equation shows that
|ξ|2 is an inviscid invariant. Hence Eq. (8) implies that ξ
will decay in time. The latter can be used to connect the
energy spectra of θ and u2D

Eθ(k, t) =
1

2

∑
|k|=k

|θ̂k(t)|2 , (9)

E2D(k, t) =
1

2

∑
|k|=k

|û2D
k (t)|2 , (10)

in order to predict the scaling of Eθ(k, t). According to

eq. (8), we expect limt→∞ ξ(x, t) = 0 and therefore θ̂k =
ω̂k/kf asymptotically in time, which results in

Eθ(k, t) =
1

2k2f

∑
|k|=k

|ω̂k(t)|2 =
k2

k2f
E2D(k, t) . (11)

In the inverse energy cascade regime, i.e. for k < kf ,

E2D(k, t) ∼ k−5/3 [30,31,32,33,34,35], resulting in Eθ(k, t) ∼
k1/3.

However, in the more generic case, when f+ acts in
a wavenumber band, the forcing is no longer absent from
the evolution equation for ξ. That is, in the band-forced
case the asymptotic spectral scaling of Eθ(k, t) can only
be investigated numerically. In what follows such an inves-
tigation is carried out by means of several series of direct
numerical simulations (DNS). Numerical results, reported
in the next section, show a very similar behaviour for the
single shell and the band-forced systems, confirming also
in the latter case a non-universal nature for the dynamics
of the passive scalar.

3 Numerical simulations

We study numerically the dynamics of incompressible 2D3C
flows given by eqs. (1) subject to helical and nonhelical
forcing in order to shed light on the effect of the forcing-
induced correlation between θ and ω on the energy flux
from small to large scales. Furthermore, we investigate
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Run id N U ε [×10−3] ` ν F x kf t/Tf #

Hel1 256 0.49 1.25 1.33 1.8 × 10−13 0.55 0 20 67 20
NonHel1 256 0.42 1.27 1.25 1.8 × 10−13 0.55 0 20 54 15

Hel2 256 0.48 1.56 1.36 1.8 × 10−14 0.88 0 32 67 1
Hel3 256 0.48 0.99 1.32 1.8 × 10−14 0.13 0 16-32 67 1
Hel4 256 0.48 1.52 1.22 1.8 × 10−14 0.42 0 30-34 67 1
Hel5 512 0.48 1.69 0.97 1.5 × 10−16 1.80 0 64 69 1
Hel6 2048 0.34 1.12 0.5 5.7 × 10−20 20.0 0 200 32 2
Hel7 2048 1.5 25.0 0.8 5.7 × 10−20 20.0 0 180-200 35 2

FracHel1 2048 0.35 1.13 0.55 5.7 × 10−20 20.0 0.2 200 32 1
FracHel2 2048 0.38 1.15 0.58 5.7 × 10−20 20.0 0.5 200 32 1
FracHel3 2048 0.5 1.22 0.6 5.7 × 10−20 20.0 1 200 32 1

Table 1. Specifications of the numerical simulations. N is the number of grid points in each Cartesian coordinate,
U =

√
2E the root-mean-square velocity, ε the dissipation rate, ` = (π/2U2)

∫
dk E(k)/k the integral scale, ν the

kinematic hyperviscosity, F the magnitude of the forcing, kf the wavenumber at which the forcing is active, t/Tf the

run time in units of forcing-scale eddy turnover time Tf = (2π/(Fkf ))1/2, and # the ensemble size. The values for U ,
` and ε are taken at the end of the simulations.
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Fig. 1. Time evolution of the total energy for datasets
with either fully helical or nonhelical forcing. Inset: Time
evolution of Eθ(t) and E2D(t) up to t/Tf = 20 for one
realisation of datasets (Hel1) and (NonHel1), respectively.
The color scheme of the inset is the same as that of the
main graph.

the influence of forcing on a bandwidth on the scaling
properties of Eθ(k). For this purpose, it is necessary to
inject energy into the system at the small scales, to en-
sure large scale separation between the forcing scale and
the largest resolved scale in order to study the inverse cas-
cade, while still resolving small-scale dynamics. We con-
sider the Navier-Stokes equations with the Laplace oper-
ator replaced by higher-order hyperviscous dissipation

∂tu = −∇ · (u⊗ u)−∇P + ν(−1)n+1∆nu + f , (12)

∇ · u = 0 , (13)

where n = 4. Equations (12)-(13) are solved numerically
on a triply periodic domain V = [0, 2π]3 using a pseu-
dospectral code with full dealiasing by truncation follow-
ing the two-thirds rule. The forcing is given by a white-

in-time random process in Fourier space

〈f̂k(t)f̂∗q (t′)〉 = F 2δk,qδ(t− t′)Q̂k, (14)

where Q̂k is a projector applied to guarantee incompress-
ibility and F is nonzero in a given band of Fourier modes
concentrated at intermediate to small scales, see table 1
for details. Since the 2D component of u displays an in-
verse energy transfer and no large-scale energy removal is
used, the simulations will reach a statistically stationary
state only after very long evolution times. Here, we termi-
nate the simulations before the formation of a condensate
at the largest resolved scales. In order to obtain statistical
measurements we therefore generate ensembles over inde-
pendent runs. The simulations differ in the level of helicity
injection, in the scale separation between the forcing scale
and the largest resolved scale and in the width of the forc-
ing band. Runs with fully helical forcing are labelled (Hel)
followed by a number while those carried out with heli-
cally neutral forcing are labelled (NonHel) and those with
fractionally helical forcing are labelled (FracHel). Further
details on runtime, ensemble size, number of grid points,
location of the forcing band, etc., are given in table 1.

In order to compare between different datasets, the pa-
rameters are chosen such that the growth rate of the total
energy (per unit volume), dE/dt, remains the same be-
tween different datasets. The energy is given as

E(t) =
∑
k 6=0

E(k, t) , (15)

where E(k, t) = E2D(k, t) + Eθ(k, t) is the total energy
spectrum. The energy of the 2D-component, E2D(t), and
that of the out-of-plane component, Eθ(t), are defined
analogously. The time evolution of E(t) for all datasets
is shown in the main graph of Fig. 1. The time evolution
of E2D(t) and Eθ(t) for dataset (Hel1) and dataset (Non-
Hel1) is presented in the inset of Fig. 1, where one can see
that the energy growth is due to the 2D component only,
while the θ-component reaches a statistically stationary
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state, with Eθ(t) being larger for dataset (Hel1) compared
to dataset (NonHel1). We will come back to this point in
section 3.2.

In what follows we distinguish between two main ques-
tions. Firstly, for helical forces we investigate the influence
of extending the domain where the forcing is active from
a single shell to a wider band of Fourier modes. Second,
we compare the effect of helical and nonhelical forces both
active in a wavenumber shell centered at kf in order to in-
vestigate the effect of forcing-induced correlation between
θ and ω on the dynamics. The main observables will be
energy fluxes and spectra.
In order to clearly distinguish between the dynamics of
helically and nonhelically forced 2D3C flows, we gener-
ated two ensembles of runs from random initial data with
identical parameters concerning resolution, forcing band,
forcing magnitude and run time. The two ensembles only
differed with respect to the helicity of the forcing. In both
cases the forcing is active on a single wavenumber shell.
According to the discussion in section 2, it can be expected
that θ and ω/kf behave similarly for dataset (Hel1). In
contrast, no connection between θ and ω/kf is given through
the equations of motion for dataset (NonHel1). Visualisa-
tions of θ compared with contour lines of |ω| are shown
in Fig. 2 for single realisations taken from datasets (Hel1)
(left panel) and (NonHel1) (right panel) at t/Tf = 25.
As can be seen from the figures, intense regions of θ in-
deed coincide clearly with intense regions of |ω| for dataset
(Hel1), while no such effect can be identified for dataset
(NonHel1). Visualisations of rapidly rotating flows sub-
ject to helical forcing show similar correlations between
vorticity and the velocity component parallel to the rota-
tion axis [23].

3.1 Spectral scaling

A further quantitative assessment of the correlation be-
tween θ and ω can be carried out through a comparison
of the energy spectra. In particular, we consider the en-
ergy spectra of the full velocity field, of its θ- and 2D-
components. All three energy spectra obtained from datasets
(Hel1) and (NonHel1) are shown in Fig. 3 at t/Tf =
25. Two main phenomenological results can be obtained
from this figure. Firstly, as expected, the 2D-component
is unaffected by helicity of the forcing, as u2D displays
inverse-cascade spectra in both cases with a spectral in-
dex close to the predicted −5/3 for 2D turbulence [30].
Furthermore, the 2D spectra are also qualitatively very
similar in regions outwith the inertial range. Second, the
θ-component is clearly sensitive to the helicity of the forc-
ing, as Eθ(k) shows the expected 2D absolute equilib-
rium scaling, Eθ(k) ∼ k, for k < kf in case of dataset
(NonHel1), while no such scaling is observed for Eθ(k) for
dataset (Hel1). Figure 4 provides a comparison between
Eθ(k) and (k/k∗f )2E2D(k) for single-shell and band forc-

ing. The left panel presents the single-shell cases (Hel1),
(Hel2) and (Hel5). It can clearly be seen that the scaling

predicted by Eq. (11) is in agreement with the data for
all k except the smallest two wavenumbers, independent
of the separation between the forcing shell and the small-
est resolved wavenumber. Similar results are obtained for
the band-forced case shown in the right panel for runs
(Hel3) and (Hel4), provided kf is replaced by an ‘effective
forcing wavenumber’ k∗f ' (kmin + kmax)/2 for a forcing

band given by the interval [kmin, kmax]. In summary, the
scaling given by Eq. (11) for helical forcing also applies
for the more general case of band forcing to a good ap-
proximation. For this reason we restrict our attention to
single-shell forcing in the remainder of this paper, where
we focus on the nonuniversal dynamics of θ. In Fig. 5 the
comparison between Eθ(k) and (k/k∗f )2E2D(k) for frac-
tionally helical forcing is presented. In this analysis we
have used the following sets of simulations, (Hel6) x = 0,
(FracHel1) x = 0.2, (FracHel2) x = 0.5 and (FracHel3)
x = 1 at 20482 collocation points. From Fig. 5 it is visible
that upon decreasing the helicity injected by the forcing,
hence upon decreasing the value of x, the two spectra
tend to overlap perfectly following the prediction given in
Eq. (11). Important deviations are already visible at val-
ues of x around 0.5 while for x = 1 the scalar component
is again completely passive as expected and it develops
an absolute equilibrium spectrum at wavenumbers smaller
than kf . The results presented in Fig. 5 clearly show a non-
universal nature of the passive component, which changes
its behaviour depending on the helical properties of the
external forcing.

3.2 Fluxes and nonuniversal dynamics

As discussed earlier, while u2D undergoes an inverse en-
ergy cascade, θ appears to become statistically stationary
after an initial transient in both cases (Hel1) and (Non-
Hel1). In case (NonHel1), such observation is in agreement
with the results on passive scalar advection in 2D turbu-
lence, where θ cascades from large to small scales and at-
tains equipartition at scales larger than the forcing scale.
However, in case (Hel1) the out-of-plane component is ac-
tive and forced in a finite band of Fourier modes (here,
a single shell), which implies that the large-scale dynam-
ics of θ is connected to the nonstationary inverse-cascade
dynamics of u2D. In particular, Eθ(k, t) cannot be statisti-
cally stationary at k < kf according to Eq. (11), however,

the scaling Eθ(k, t) ∼ k1/3 results in Eθ(k, t) → 0 for
k → 0. The latter implies that the total energy of θ in
the region k 6 kf is dominated by the contribution at the
forcing shell

Eθ(t)|k6kf '
∫ kf

k0(t)

Eθ(k, t)dk = k
4/3
f − k0(t)4/3 , (16)

where k0(t) is the smallest wavenumber at which θ con-
tains a significant amount of energy at time t. Since k0(t)→
0 for t → ∞, Eθ(t) indeed tends to a constant for t →
∞, even though Eθ(k, t) is not stationary according to
eq. (11).
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helical nonhelical

Fig. 2. Visualisations of θ snapshots for datasets (Hel1) (left) and (NonHel1) (right) at t/Tf = 25, the white contour
lines indicate the regions with vorticity |ω| = 0.5.
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Fig. 3. Energy spectra for (a) dataset (Hel1), and (b) dataset (NonHel1) at t/Tf = 25.

In order to understand the matter more clearly, it is in-
structive to consider the energy fluxes

Π(k) = −
k∑

k′=1

∑
|k|=k′

ûk ·
∑

k+p+q=0

(ik · ûp)ûq , (17)

Πθ(k) = −
k∑

k′=1

∑
|k|=k′

θ̂k
∑

k+p+q=0

(ik · û2D
p )θ̂q , (18)

Π2D(k) = −
k∑

k′=1

∑
|k|=k′

û2D
k ·

∑
k+p+q=0

(ik · û2D
p )û2D

q . (19)

While Πθ(k) must vanish in case (NonHel1) for k < kf ,
the correlation between θ and ω in case (Hel1) should re-
sult in a subleading correction which vanishes in the limit
t→∞. That is, Πθ(k) should be nonzero during the tran-
sient stage for case (Hel1), i.e., before Π2D(k) = const for
k < kf and Πθ(k) = const for k > kf is established.
The fluxes Π2D(k, t) and Πθ(k, t) are shown in Fig. 6
for two times at t/Tf = 3.4 and t/Tf = 8.4. As can be
seen, Π2D(k, t) is nearly identical at both times for (Hel1)
and (NonHel1), while the two cases are distinct concern-
ing the behaviour of Πθ(k, t). In case (NonHel1), only a
direct transfer of Eθ(k) with a well-established forward
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to different datasets are shifted in order to facilitate the
readability of the figure.

flux is present at t/Tf = 3.4. In particular, there is no
inverse Eθ(k)-flux. In contrast, for case (Hel1), Πθ(k, t) is
depleted in the direct transfer region k > kf with nonzero
inverse Eθ(k)-flux, which decreases with time as can be
seen by comparing Figs. 6(a) and (b). Figure 7 presents
the fluxes Π(k), Πθ(k) and Π2D(k) at t/Tf = 25, where
Eθ(t) is statistically stationary. In the region k < kf we in-
deed find Πθ(k) = 0 in both cases, while the entire inverse
energy flux is carried by the 2D component. As can be

seen from the figure, the fluxes Πθ(k) and Π2D(k) are now
very similar for the two datasets. The absolute equilibrium
spectral scaling of Eθ(k) is in accord with Πθ(k) = 0 in
the region k < kf for case (NonHel1), while for the heli-
cally forced case θ(k) is out of equilibrium. In summary,
under helical forcing the out-of-plane component θ devel-
ops a transient inverse transfer, which is absent in case
(NonHel1).

The differences we find in the behaviour of θ must be
caused by a superabundance of helical velocity field modes
of one sign close to the forcing shell. Furthermore, it is
known that helicity cannot play a role in the 2D-dynamics,
that is, any interaction of helical modes should participate
democratically in the inverse energy cascade of u2D. In
this context, it is important to note that the transient in-
verse energy flux of θ is a three-dimensional effect which is
intrinsically connected to the breaking of mirror symme-
try by strongly helical forcing. In fact, a fully 3D inverse
cascade can be achieved by breaking mirror symmetry at
all scales through projection onto one helical component
[25,26], and interactions of helical modes of the same sign
also contribute to a subleading 3D inverse energy transfer
in full Navier-Stokes dynamics [36]. Here, we only project
the Fourier components of the force onto the positively
helical sector letting the nonlinear interactions generate
velocity field modes of either sign of helicity. This leads
to a dominance of positively helical modes in the presence
of a strong 2D inverse transfer. It is therefore of interest
to establish which interactions of helical modes are now
mediating the inverse energy transfer.

We first define the energy subfluxes which correspond to
helical interactions involving only velocity modes of a fixed
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Fig. 6. Fluxes of Eθ(k) and E2D(k) at early times for datasets (Hel1) and (NonHel1): (a) t/Tf = 3.4, (b) t/Tf = 8.4.

−1.5

−1

−0.5

0

0.5

1

1.5

1 10 100

(a)
helical

Π
(k

)
[×

10
−
3
]

k

Π(k)

Πθ(k)

Π2D(k)
−1.5

−1

−0.5

0

0.5

1

1.5

1 10 100

(b)
nonhelical

Π
(k

)
[×

10
−
3
]

k

Π(k)

Πθ(k)

Π2D(k)

Fig. 7. Energy fluxes for (a) dataset (Hel1), and (b) dataset (NonHel1) at t/Tf = 25.

sign of helicity

ΠHO
+ (k) = −

k∑
k′=1

∑
|k|=k′

û+
k ·

∑
k+p+q=0

(ik · û+
p )û+

q , (20)

ΠHO
− (k) = −

k∑
k′=1

∑
|k|=k′

û−k ·
∑

k+p+q=0

(ik · û−p )û−q , (21)

where the label HO stands for homochiral. As mentioned
above, ΠHO

+ (k) and ΠHO
− (k) contribute to a subleading

inverse energy transfer even in 3D. Their combined con-
tribution is the total homochiral flux [18,36]

ΠHO(k) = ΠHO
+ (k) +ΠHO

− (k) , (22)

while interactions involving velocity modes of oppositely-
signed helicity are combined to define the heterochiral flux
[18,36]

ΠHE(k) = Π(k)−ΠHO(k) . (23)

Fully helical forcing leads to an imbalance between homo-
and heterochiral energy fluxes as shown in Fig. 8. For
the case (Hel1) we can see that close to the energy in-
jection scale, where the dynamics is dominated by Fourier

modes of positive helicity,Π(k) is mainly given byΠHO(k)
with ΠHE(k) being negligible, see Fig. 8(a). For the case
(NonHel1) the two contributions are almost identical, as
it should be for a 2D simulation where helicity does not
play any role, see Fig. 8(b). Owing to the positively helical
forcing, in case (Hel1) the homochiral flux can be expected
to be mostly given by its component consisting of posi-
tively helical modes, i.e. ΠHO

+ (k). This is indeed the case
as can be seen in Fig. 9(a), which presents a comparison
between ΠHO

+ (k) and ΠHO
− (k) for case (Hel1). Fig. 9(b)

instead shows that ΠHO
+ (k) and ΠHO

− (k) are the same in
case (NonHel1).

4 Conclusions

It is known that a sustained 3D inverse energy cascade
can be achieved by projecting the Navier-Stokes equa-
tions onto one helical subspace (homochiral turbulence)
[25,26,28]. In a homochiral 2D3C flow, the 2D vorticity
would be fully correlated with the out-of-plane component
at all times. As a result, the out-of-plane component is not
passive anymore and develops an inverse cascade similarly
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Fig. 8. Homo- and heterochiral subfluxes at t/Tf = 25. (a) Π(k) (squares), ΠHO(k) (triangles) and ΠHE(k) for
helical forcing. (b) The same for nonhelical forcing.
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to what the 2D velocity field does [18]. Although inter-
esting from a theoretical point of view, such a system is
somewhat artificial because the projection operation must
be carried out dynamically in order to remove modes of
opposite helicity which are generated by nonlinear inter-
actions. The latter implies that a system described by the
helically projected Navier-Stokes equations can be stud-
ied numerically only. Here, we present the application of
helical forcing as a way of making the out-of-plane compo-
nent active while maintaining the full 2D3C Navier-Stokes
equations. As such, it is potentially realizable also in a lab-
oratory. We show that even in this most realistic case the
turbulent transfer for the out-of-plane component can be
changed through an appropriate forcing, with a sign rever-
sal in the direction of the energy cascade in the presence
of a strong helical stirring mechanism. Also here, nonzero
helicity input results in a correlation of the vorticity of
the 2D-velocity field with the third component. Such cor-
relation implies that the out-of-plane component can be
thought as an active scalar advected by the 2D velocity
field.

The correlation between the 2D vorticity and the third
component leads to a nonequilibrium large-scale dynam-
ics which is reflected in the scaling of its energy spectrum.
While the energy spectrum of one uncorrelated passive
scalar would display absolute equilibrium scaling, that of
the correlated out-of-plane component does not. More-
over, we show that the correlation induces a transient
inverse energy transfer which is mediated by homochiral
interactions. In other words, a helical input in a 2D3C
flow results in a transient 3D contribution to the inverse
energy transfer, which would be, otherwise, a purely 2D
effect in case of no helicity input. A similar effect should
be present in helically forced flows under rapid rotation
and in conducting flows in the presence of a strong mean
magnetic field [14,37].

Our study provides further evidence that scalar quanti-
ties transported by a velocity field might develop non-
universal transfer properties in the presence of a correla-
tion among the injection and the advecting velocity. Sim-
ilar effects exist for 2D MHD, where the magnetic poten-
tial performs an inverse cascade while a passive scalar de-
velops a forward transfer. Furthermore, for surface quasi-
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geostrophic flows, although both the potential tempera-
ture and a passive dye would perform a direct cascade,
they have different scaling laws already at the level of
low-order statistical objects. These significant differences
are due to the correlations between the active scalar input
and the advected velocity, as can be seen also by studying
the evolution of Lagrangian trajectories of the two active
and passive fields [29].
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