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We introduce a variant of the Hybrid Monte Carlo (HMC) algorithm to address large deviation
statistics in stochastic hydrodynamics. Based on the path integral approach to stochastic (partial)
differential equations, our HMC algorithm samples space-time histories of the dynamical degrees of
freedom under the influence of random noise. First, we validate and benchmark the HMC algorithm
by reproducing multi-scale properties of the one-dimensional Burgers equation driven by Gaussian
and white-in-time noise. Second, we show how to implement an importance sampling protocol to
significantly enhance, by order-of-magnitudes, the probability to sample extreme and rare events,
making it possible for the first time to estimate moments of field variables of extremely high order
(up to 30 and more). By employing reweighting techniques, we map the biased configurations
back to the original probability measure in order to probe their statistical importance. Finally, we
show that by biasing the system towards very intense negative gradients, the HMC algorithm is
able to explore the statistical fluctuations around instanton configurations. Our results will also
be interesting and relevant in lattice gauge theory since they provide a new insight on reweighting
techniques.

I. INTRODUCTION

Intermittency and anomalous scaling are two key fea-
tures of turbulent flows important for both fundamental
questions of out-of-equilibrium systems and applied flow
configurations [1, 2]. Although these phenomena have
been subject of research for decades it is fair to say that
we are still far from understanding their origin and con-
trolling their statistical properties from first principles.
Intermittency is connected to the strong non-Gaussian
nature of turbulent energy dissipation, which is domi-
nated by localized, quasi-singular structures. Anomalous
scaling is connected to intermittency via the inertial-
range turbulent energy cascade, which proceeds from
large to small scales, breaking self-similarity, with power-
law correlation functions that do not follow dimensional
scaling. The two phenomena are correlated, with the
small-scale energy dissipation being the result of the
inertial-range energy transfer [2]. The problem is there-
fore how to characterize the statistical properties of in-
tense, but rare hydrodynamical fluctuations, an issue
that is difficult to attack with brute force forward-in-
time-evolution of the underlying partial differential equa-
tions due to the unpredictability and sparsity of such
events. This sobering state of affairs prompted repeated
speculations whether techniques developed for quantum
field theory (QFT) might eventually turn out to be use-
ful to attack the existence of these (quasi-)singular struc-
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tures in a nonperturbative way, free from any modeling
assumptions [3–10].

The way to proceed is to use the Janssen-de Dominicis
[11, 12] path integral approach based on the seminal work
by Martin, Siggia, and Rose (MSR) [5, 13–17] to describe
the space-time flow configuration when stirred by a ran-
dom external forcing. This formalism is based on the
introduction of an action that depends on the flow con-
figuration and constructs the measure as a weighted sum
of all possible flow-realizations. This opens up the pos-
sibility to address Navier-Stokes equations using Markov
Chain Monte Carlo (MCMC) methods well-known from
lattice QFT and/or statistical mechanics by sampling full
space-time histories. Although computationally challeng-
ing, this provides a unique perspective on the problem of
turbulence in the sense that it allows to consider system-
atic improvements of the importance sampling in regions
of the phase space where standard (forward-in-time) nu-
merical integration faces difficulties, e.g., due to insuf-
ficient statistics. In particular, it allows us to address
questions regarding the probability of rare events asso-
ciated with exceptionally large fluctuations, which are
at the focus of turbulence research and often attacked
by semi-analytical tools based on instanton calculus and
large deviations theory.

Instantons were introduced in turbulence theory in [18]
where the probability densities of positive velocity gra-
dients and increments (smooth ramps) were calculated
analytically. The calculation of the probability densities
of negative velocity gradients and increments (shocks)
were performed in [19] where the asymptotic behavior
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could be determined utilizing the Cole-Hopf transforma-
tion [20, 21]. Using instantons in the calculation of rare,
irregular transitions between different attractors in fluid
flows is presented in [22, 23]. Other important meth-
ods not related to instantons are, e.g., adaptive mul-
tilevel splitting techniques (see [24–26] and references
therein). Comparison of these methods with our path
integral based approach is envisaged for future studies.

The objective of this work is to implement, test, and
employ a Hybrid Monte Carlo algorithm [27, 28] for hy-
drodynamic turbulence. The HMC algorithm was de-
veloped to tackle outstanding problems in the theory of
strong interactions [29] and is advantageous for problems
where the classical action involves nonlocal terms. We
address the case of the one-dimensional random-noise-
driven Burgers equation [30], which is widely considered
the perfect testbed for new ideas in turbulence [31]. A
previous attempt based on the path integral for hydro-
dynamical systems was explored in [32–34], based on a
local successive over-relaxation algorithm [35, 36].

From a methodological point of view, our first impor-
tant result is the validation of the HMC against pseudo-
spectral (PS) forward-time-integration techniques that
are widely used in simulations of the random-noise-driven
Burgers equation. We clearly stress that while the HMC
is certainly not competitive with standard PS methods
whenever the interest is confined to low order flow mo-
ments, e.g., the total mean energy and total mean energy
dissipation, it becomes unavoidable if the focus is on very
large fluctuations, e.g., either high order moments of ve-
locity increments or extreme events for the space-time
distribution of the energy dissipation. Indeed, the main
quantitative new result about the properties of Burgers’
equation is the implementation of an importance sam-
pling technique to steer the HMC algorithm to explore
the phase-space region where rare and extreme fluctu-
ations happen. We show later that thanks to several
technical improvements of the basic HMC algorithm we
are able to probe fluctuations 30 (and more) standard
deviations away from the mean for the velocity gradi-
ent probability distribution function (PDF), something
that would be simply impossible to achieve with stan-
dard time-advancing algorithms.

The outline of this article is as follows: In Sec. II we
briefly discuss the phenomenology of the random-noise-
driven Burgers equation and in Sec. III we introduce the
path integral for stochastic dynamics. Sec. IV introduces
the HMC algorithm and details the individual steps of
our implementation. Then, in Sec. V we show that the
HMC algorithm successfully reproduces the results of a
standard PS forward-time-integration method (hereafter
also referred to as direct numerical simulation, or DNS)
at the example of the stochastic Burgers equation. In the
following section, Sec. VI, we investigate different bound-
ary conditions and constraints in space and time. First,
in Sec. VI A we impose periodic boundary conditions in
time, while in Sec. VI B we show how the HMC is capa-
ble to consistently enhance the sampling of extreme and

rare events by imposing field-force constraints to system-
atically support the occurrence of strong negative veloc-
ity gradients. Here, we will also discuss the significant
performance improvements by the HMC compared to a
standard DNS method in regards to the sampling of the
tails of the probability distribution function of observ-
ables. Finally, in Sec. VII we emphasize the significance
of instantons for the theory of turbulence and derive the
instanton configuration for Burgers’ equation. We also
show numerical results associated with the methods de-
veloped in Sec. VI B to support the relevance of instan-
tons in extreme events.

II. STOCHASTIC BURGERS’ EQUATION: A
SIMPLE MODEL FOR HYDRODYNAMIC

TURBULENCE

In this work we are concerned with the one-
dimensional, random-noise-driven Burgers equation [30],
which can be seen as a prototype system for compressible
hydrodynamic turbulence and is given by

∂tv + v∂xv − ν∂2
xv = η. (1)

Specifically, we consider the time evolution of the scalar
velocity field v in a periodic spatial domain x ∈
[−L/2, L/2] on a given time interval t ∈ [t0, tf ] of length
T = tf − t0; ν is the kinematic viscosity and the ran-
dom noise η = η(x, t) is assumed to be centered and
Gaussian-distributed. Thus, the random noise can be
fully characterized in terms of two-point correlations

〈η(x, t)η(x′, t′)〉 ≡
∫
DηPη η(x, t)η(x′, t′), (2)

where Pη ≡ P[η] is the random-noise probability distri-
bution functional and the integration

∫
Dη · · · is taken

over all field configurations η = η(x, t).

Generally, in the following, Dφ will denote a func-
tional measure associated to the field φ. Path integrals∫
Dφ · · · will always be supplied with “boundary con-

ditions” in field space. Furthermore, where appropri-
ate, ensemble averages will be denoted by angular brack-
ets, 〈 · · · 〉. E.g., for an observable Oφ ≡ O[φ], we have
〈Oφ〉 =

∫
DφPφOφ, and

∫
DφPφ = 1. Depending on

context we might drop the index indicating the field de-
grees of freedom to be averaged over.

In this paper, we restrict our attention to the case
where the random noise is self-similar in space and delta-
correlated in time; the corresponding two-point Fourier
correlation given by

〈η(k, t)η(k′, t′)〉 = Γ(k)δk+k′,0δ(t− t′), (3)

where k, k′ ∈ Z and Γ(k) = Γ0|k|β with negative power-
law exponent β that controls the scale-by-scale energy
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FIG. 1. (a) Shock wave as a particular realization of Burgers’ equation. Its two main features are the ramps and jumps of
finite width. (b) PDF of velocity gradients of Burgers’ equation for two different Reynolds numbers compared with a Gaussian
distribution. The finite jumps in the shock wave profile are responsible for the heavy left tail, while the right tail is due to the
ramps.

injection.1

From Eq. (1) it is easy to derive the evolution equation
for the energy spectrum, E(k, t) = |v(k, t)|2:

∂tE(k, t) = T (k, t)− 2νk2E(k, t) + 2Re{v(k, t)∗η(k, t)},
(4)

where T (k, t) = (k/L)
∑
k′ Im{v(k, t)∗v(k′, t)v(k− k′, t)}

is the energy transfer [2]. Eq. (4) can be further sim-
plified if we average over noise realizations and assume
stationarity:

〈T (k)〉 − 2νk2〈E(k)〉+ 2Γ(k) = 0. (5)

The ensemble-averaged cumulative energy injection due
to the stochastic forcing η is given by 〈εin(k)〉 =
(2/L)

∑
|k′|≤k Γ(k′) and is dominated by the infrared

regime only if β < −1. Thus, in order to mimic the stan-
dard large-scale injection we will always keep β = −3 in
this paper (see [37–40] for a detailed investigation of the
statistical properties at changing the forcing slope).

It is well known that the evolution to Burgers’ equa-
tion is characterized by the formation of quasi-singular
shocks, i.e., localized events with a steep negative veloc-
ity gradient where all the dissipation is concentrated. In
the small-viscosity limit the typical width of the shock
becomes smaller, but the ensemble-averaged mean en-
ergy dissipation 〈εdiss〉 = (2ν/L)

∑
k k

2〈E(k)〉 remains
nonvanishing. Since T (k) only transfers the energy be-
tween different modes, but does not contribute to the
total energy, the total energy injection matches the en-
ergy dissipation:

lim
k→∞

〈εin(k)〉 = 〈εdiss〉. (6)

Writing Eq. (1) in a dimensionless way, reveals that the
problem has only one control parameter, the Reynolds

1 In practice, when β < −1, the correlator will be regularized by
an infrared cutoff kIR ∼ 1/L, kIR > 0.

number, Re. This is made manifest by introducing char-
acteristic scales of length L0, and velocity V0, and a time
scale T0 = L0/V0. We change x, t, v, and η according to

x 7→ xL0, v 7→ v V0, t 7→ t T0 = t L0/V0,

η 7→ η V0/T0 = η V 2
0 /L0, (7)

to obtain the dimensionless stochastic Burgers equation

∂tv + v∂xv −
1

Re
∂2
xv = η, (8)

with Re ≡ L0V0/ν. Consequently, in the remainder of
this paper we will speak about the large Reynolds number
and the small-viscosity limits interchangeably.

In Fig. 1 two of the most characteristic elements of
“Burgers turbulence” are shown. Fig. 1(a) depicts the
shock formation as a solution of Burgers’ equation, which
is described by the finite width jumps and approximately
linear ramps. The localized jumps at the shock are the
source of intermittency in this model, and they are re-
sponsible for the heavy left tail in the PDF of negative
velocity gradients (see Fig. 1(b)), while the ramps are
related to the right tail (we refer to [31] for an in-depth
review of Burgers turbulence). From the previous discus-
sion the question we ultimately want to address becomes
clear: Is it possible to develop new algorithms which are
able to focus specifically on phenomenon of shock forma-
tion by exploring only the far left tail of the PDF shown
in Fig. 1(b)? This will be the aim of the novel HMC
approach we propose.

III. PATH INTEGRAL FOR STOCHASTIC
DYNAMICS

The path integral for stochastic dynamics was first in-
troduced in Refs. [41–43]. To make our exposition self-
consistent, however, we briefly repeat the main steps of
its derivation. While we employ the same notation as in
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Eq. (1) we emphasize that the following reasoning is in
principle applicable to any stochastic (partial) differen-
tial equation (SPDE) driven by Gaussian random noise,
delta-correlated in time. We will denote these SPDEs by
the following short-hand notation:

F (x, t, v, ∂mx v, ∂
n
t v) = η, (9)

with m,n ∈ N0. F ≡ F (x, t, v, ∂mx v, ∂
n
t v) should be inter-

preted as a (nonlinear) differential operator, which acts
on the dynamical field v = v(x, t). We will only make
some minimal assumptions regarding its form, namely
that it should yield a well-posed initial value problem.
By well-posed we mean that for any given random noise
realization η, there exists one and only one solution v to
Eq. (9) in the domain −L/2 ≤ x ≤ L/2 and for finite
times 0 ≤ t ≤ T .

To derive the path integral associated to Eq. (9) we
define the partition sum Z by integrating Pη over all
noise realizations. Since η is Gaussian and white in time,
we have

Pη ∝ e−
1
2

∫
dt

∫
dx η(x,t)

∫
dx′ Γ−1(x−x′)η(x′,t), (10)

where Γ−1 is the inverse of the correlation function of
the noise defined in Eq. (3). Accordingly, we define the
partition sum as

Z =

∫
Dη e− 1

2

∫
dt (η,Γ−1∗η), (11)

where the binary operator ∗ denotes the convolution,
i.e., (f ∗ g)(x) =

∫
dx′ f(x′)g(x − x′) and by (· , ·) we

designate the integral over the (bounded) spatial do-
main [−L/2, L/2], i.e., (f , g) ≡

∫
dx f(x) g(x), with

||f ||2 ≡ (f, f). Changing the integration in Eq. (11) from
η to v modifies the functional measure as

Dη = Dv |det (δF/δv)| , (12)

where J = |det (δF/δv)| is the Jacobian associated to
the map v 7→ η. The latter is assumed to be nonsingular
and therefore J > 0.

Putting everything together, we may write the parti-
tion sum in the form of a path integral over v

Z =

∫
DvJ e− 1

2

∫
dt (F,Γ−1∗F ) ≡

∫
Dv e−S , (13)

with action

S =
1

2

∫
dt (F, Γ−1 ∗ F )− lnJ , (14)

associated to the stochastic PDE (9). Note that the
action bares resemblance to the well-known Onsager-
Machlup functional [44].2 The probability distribution

2 More generally, one arrives at the following action:

S = − ln{ZPη [η = F ]} − lnJ , (15)

functional Pv for the dynamical field v is given by
Pv = Z−1e−S and satisfies the normalization condition∫
DvPv = 1.
Specifically, for Burgers’ equation, F = ∂tv + v∂xv −

ν∂2
xv and J = const. (which holds for causal, forward-

time propagation, see, e.g., [45] and Sec. V of this paper),
the action Eq. (14) takes the following form:

S =
1

2

∫
dt

∫
dx
(
∂tv + v∂xv − ν∂2

xv
)

×
∫
dx′ Γ−1(x− x′)

(
∂tv + v∂x′v − ν∂2

x′v
)
,
(16)

where we dropped the constant contribution from the
Jacobian.

IV. HYBRID MONTE CARLO ALGORITHM

The Hybrid Monte Carlo algorithm, originally intro-
duced in [27], has become a standard computational tool
to tackle demanding numerical simulations of quantum
field theories in the path integral formulation (see [46, 47]
for reviews). It belongs to the broad class of Markov
Chain Monte Carlo methods, and uses artificial Hamilto-
nian dynamics to advance the dynamical degrees of free-
dom in Monte Carlo time to generate unbiased field sam-
ples. A main feature of the HMC is that dynamical fields
and their conjugate momenta can be evolved in parallel
in a given time step of the evolution, if, e.g., a leap-frog
type integrator is used. This makes the HMC most suit-
able for problems where the classical action of the theory
features strong, nonlocal interactions (as is the case in
Burgers’ equation).

In this work, for the first time, we apply the HMC
algorithm for a stochastically driven PDE at the exam-
ple of Burgers’ equation. In order to be self-contained,
we will first briefly review its basic elements. Then, we
proceed to discuss important improvements to the HMC
algorithm, which allow for a significant enhancement of
performance to sample various statistical estimators in a
stable and consistent way.

In the HMC algorithm a set of momenta is introduced
which are conjugate to the, in our case, velocity fields.
Adding these momenta to the partition sum of Eq. (13)
leads to an (artificial) Hamiltonian, which governs the dy-
namics in Monte Carlo time s via Hamilton’ equations of
motion. In practice, the numerical solution of Hamilton’s
equations starting from some initial Monte Carlo time,
say s = 0 to a final time, s = τ , has to be performed in
discrete steps, which leads to the fact that the energy of
the artificial Hamiltonian system is not conserved. This
can be repaired by adding a global reject/accept step
which makes the algorithm exact and guarantees the con-
vergence to the desired probability distribution. See [48]
for a general review on the HMC algorithm.

To be more concrete, the HMC algorithm starts by
generating a set of Gaussian-distributed momenta π =
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v0, π0
NΔτ Δτ

τ

vτ, πτ

1. π~Gaussian

2. MD integration

3. i) Accept with
       p=min{1,e-ΔH}
    ii) If rejected, 
          restart from  v0

v2τ, π2τ

NΔτ Δτ

τ

1. resample
    π~Gaussian

CI
CII

CIII

2. MD integration
3. i) Accept with
       p=min{1,e-ΔH}
    ii) If rejected,
          restart from  vτ

FIG. 2. Top: HMC evolution steps (1-3) as described in Sec. IV A. The dashed arrows represent the N∆τ number of intermediate
steps of size ∆τ . Bottom: Example of three successive velocity field configurations generated by the HMC algorithm (note, the
conjugate momentum fields are not shown).

π(x, t) such that the partition sum is modified as

Z ∝
∫
Dπ e− 1

2

∫
dt ||π(t)||2

∫
Dv e−S . (17)

Identifying K = 1
2

∫
dt ||π(t)||2 as the “kinetic term” and

S as the “potential” we may interpret H = K+ S as the
Hamiltonian of the system, with probability distribution
functional: Pv,π ∝ e−H. Since

∫
DπP(v,π) = Pv, the

ensemble average of any velocity-dependent observable
Ov remains unaltered. The so constructed Hamiltonian
system can now be evolved using Hamilton’s equations
of motion. In this evolution, the role of “time” is played
by s. In order to make the dependence on s explicit, we
will introduce vs(x, t) and πs(x, t) where the subscript
indicates the Monte Carlo time. Hamilton’s equations
for the Hamiltonian H, with the action as in Eq. (16),
are then given by

dvs
ds

=
δH

δπs(x, t)
= πs(x, t), (18a)

dπs
ds

= − δH
δvs(x, t)

= − δS
δvs(x, t)

. (18b)

In the case of the one-dimensional Burgers equation, the
forces fπ ≡ − δS

δvs(x,t) acting on the conjugate momenta

are given by:

fπ =
(
∂t + v∂x + ν∂2

x

)
×
∫
dx′ Γ−1(x− x′)

(
∂tv + v∂x′v − ν∂2

x′v
)
.

(19)

A. HMC implementation

The equations of motion (18) are solved for (vs, πs),
0 ≤ s ≤ τ , starting at Monte Carlo time s = 0 and in-
tegrating up to s = τ ; τ defines the trajectory length.
We apply a symmetric symplectic integrator (leapfrog

scheme) with stepsize ∆τ = τ/N∆τ , with N∆τ a pa-
rameter that gives the number of steps to complete the
trajectory of length τ .

Due to the finite integration step size error the Hamil-
tonian reached at s = τ will be different from the ini-
tial Hamiltonian. To correct for this deficiency, we ap-
ply a global Metropolis accept/reject step of the pro-
posed new momentum and velocity field configuration:
the new field configuration is accepted with probability
p = min

(
1, e−∆H), where ∆H = H[vτ , πτ ] − H[v0, π0],

i.e., the difference of the Hamiltonian at the beginning
and the end of the trajectory. If the proposal is rejected,
we resample the conjugate momenta and restart from the
old set v = v0. The resampling of the momenta is neces-
sary to satisfy ergodicity. Other important requirements
for the HMC algorithm to be exact is preservation of the
phase space volume and the reversibility in the fictitious
time s. In particular the latter requirement needs to be
monitored in the actual simulation and indeed, we con-
stantly checked that reversibility violations are negligible
in our simulations.

Let us finally briefly summarize the three basic steps
of the HMC algorithm:

1. Momentum heat-bath: Sample π according to the
Gaussian distribution

Pπ ∝ e−
1
2

∫
dt ||π(t)||2 . (20)

2. Hamiltonian evolution: Use a symplectic integrator
to numerically solve the system of Eqs. 18 starting
from (v0, π0) and propose (vτ , πτ ).

3. Metropolis step: Accept the proposed field configu-
ration (vτ , πτ ) with probability

p = min
(
1, e−∆H) , (21)

where ∆H = H[vτ , πτ ]−H[v0, π0].
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Steps (1-3) are repeated multiple times to generate a
statistically significant sample of velocity configurations
on which physical observables of interest can be com-
puted. In the simulation the number of integration steps
are tuned such that acceptance rate originating from step
(3) is close to 90%. This ensures that the autocorrela-
tion time does not become too large and also avoids too
many rejected velocity configurations. Steps (1-3) are
also illustrated at the top of Fig. 2, where the we show
how the HMC moves inside the configuration space of
(1+1)-dimensional velocity fields.

B. Fourier acceleration

We observe that the application of the standard HMC,
based on Eq. (17), leads to very large autocorrelation
times. The problem with the large autocorrelation time
is essentially due to the multi-scale nature of the stochas-
tic forcing, which in turn means that different Fourier
modes are forced with different intensity. In order to deal
with this problem, we made use of a well-known approach
from the area of lattice field theory, i.e., the method of
Fourier acceleration [49–52]. The latter assigns different
effective trajectory lengths to the evolution of the Fourier
modes. Indeed, this technique proved highly effective in
our approach and it improved the performance of the
HMC algorithm by considerably decreasing autocorrela-
tion effects.

In practice, we apply the Fourier acceleration by intro-
ducing the space-time dependent kernel Ω(x, t) to multi-
ply the momenta πs(x, t). This gives rise to the following
“Hamiltonian”:

Heff =
1

2

∫
dt(πs,Ω ∗ πs) + S. (22)

It is important to note that Ω(x, t) does not depend on
the Monte Carlo time s. The introduction of the ker-
nel Ω(x, t) and the redefinition of the Hamiltonian does
not affect the physical results, as the redefined kinematic
term is still independent of the velocity field, and can be
factored out of the path integral (17).

V. BENCHMARKING THE HMC AGAINST A
FIRST-ORDER EULER-MARUYAMA EXPLICIT

SOLVER

A. Fixed/open boundary conditions in time

As this is a novel approach for the sampling of stochas-
tic PDEs, we took considerable care to benchmark the
HMC with standard numerical methods that are em-
ployed in computational fluid dynamics. In the following
we will demonstrate that our simulations match results
obtained via a first-order Euler-Maruyama explicit solver
(referred in short by DNS, i.e., direct numerical simula-
tion) for a wide range of viscosities [53, 54].

In both implementations, Burgers’ equation is ex-
pressed in Fourier space, and the nonlinear term is writ-
ten in a flux-conservative form, i.e., v∂xv = 1

2∂x(v2). We

apply the pseudospectral method, i.e., first v2 is mea-
sured in real space and afterwards transformed to Fourier
space so that the partial derivative can be conveniently
treated as ∂x 7→ ik. Therefore, the nonlinear term is
calculated as ik

2 FT(v2), where by FT we denote the (for-
ward) Fourier transform. To further ensure stability we
apply two further steps in the numerics: First, we trans-
form v(k, t) → exp(−ν k2 ∆t)v(k, t), which corresponds
to an exact integration of the viscous term in the limit
∆t → 0. It relaxes the restriction on the time step ∆t
by the diffusive term and significantly improves the con-
vergence for large wave numbers. Second, we effectively
remove the aliasing error by setting v(k ≥ Nx/3, t) = 0.

Here, we present three different runs, with parame-
ters summarized in Tab. I. Both the DNS and the HMC,
share the same setup, i.e., the same forcing correlation
function, same discretization, and same periodic bound-
ary conditions in space. As for the HMC, we choose
fixed/open boundary conditions in time, corresponding
to a standard initial-value problem. Note, that this
choice yields a Jacobian J that is field-independent [45],
which therefore can be neglected for the purposes of im-
portance sampling.

In Fig. 3(a) we compare the HMC and DNS tem-
poral evolution of the mean kinetic energy, ε̄kin(t) =
||v(t)||2/L, for configurations corresponding to three dif-
ferent viscosities. As one can see the overall intensity
of fluctuations are very similar. More quantitatively, in
Fig. 4(a) we show the temporal evolution of the ensem-
ble average of the mean kinetic energy, i.e., 〈ε̄kin(t)〉,
starting from v(x, t0) = 0. Around time ts ≈ 3 the
system reaches stationarity, meaning that the dissipa-

ν Re vrms `d ` 〈ε̄diss〉 T` τint

0.08 90 1.14 0.15 1.5 1 1.31 7

0.1 70 1.12 0.18 1.4 1 1.24 4

0.2 30 1.03 0.3 1.1 1 1.03 1

TABLE I. Parameters and observables of the numerical simu-
lations for fixed/open boundary conditions. Here, we employ
the following parameters: Nt = 1056 number of grid points
in time, Nx = 128 number of grid points in space, T = 6
and L = 2π. The Reynolds number is defined as Re = vrms L

ν

with root-mean-square velocity vrms = 〈
√
||v||2/L〉. `d =

(ν3/〈ε̄diss〉)1/4 defines the Kolmogorov dissipation length scale

and ` =
ε̄
3/2
kin
〈ε̄diss〉

is the integral length scale with ε̄kin = v2
rms.

〈ε̄diss〉 denotes the ensemble-averaged mean energy dissipa-
tion, i.e., 〈ε̄diss〉 = 2ν

〈
||∂xv||2

〉
/L and T` = `/vrms is the

large-eddy turnover time. The last column contains τint, the
integrated autocorrelation time of the kinetic energy, when
we measure every 10 MD trajectories. τint is an HMC-related
observable and is averaged in the stationary regime. For the
HMC we fix the trajectory length τ = 1024, and number of
steps of the MD integrator N∆τ = 20480.
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FIG. 3. Kinetic energy as a function of time for three samples
corresponding to three different viscosities, (a) HMC and (b)
DNS.

tive and injection forces are balanced and the system is
driven to a nonequilibrium steady state – beyond ts, the
〈ε̄kin(t)〉 is constant in time. Fig. 4(b) shows the tempo-
ral evolution of the ensemble-averaged mean energy dis-
sipation 〈ε̄diss(t)〉, where ε̄diss(t) = 2ν||∂xv(t)||2/L, while
in Fig. 5(a) we consider the ensemble average of the en-
ergy spectrum 〈Ē(k)〉, which is averaged in time t, i.e.,

Ē(k) = 1
T ′

∫ tf
ts
dtE(k, t), T ′ = tf − ts.

In Fig. 5(b) we show the probability distribution func-
tion of the velocity gradients, defined as

P (w) = 〈δ(∂xv(x, t)− w)〉. (23)

In practice, the PDF is approximated by determining the
counts of a fixed number of bins (wmin, wmax) with equal
width δw. The velocity gradients measured on the gen-
erated ensemble are counted only if t > ts. The resulting
histogram is normalized by dividing with the total num-
ber of counts, in other words

∑
i

∫ wi+δw/2

wi−δw/2
dw P (w) = 1. (24)

From Figs. 3, 4, and 5, we conclude that the HMC
produces the same results as the DNS. Furthermore, we
identify the same discretization effects in both implemen-
tations, which can be removed by taking the continuum
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FIG. 4. (a) Temporal evolution of the ensemble-averaged
mean kinetic energy, 〈ε̄kin(t)〉. (b) Temporal evolution of the
ensemble-averaged mean energy dissipation 〈ε̄diss(t)〉. Note,
that 〈ε̄diss(t > ts)〉 = 1 because the energy injection is fixed
to lim

k→∞
〈ε̄in(k)〉 = 1; filled, gray points correspond to DNS

results (lines denotes their interpolation) and colored open
points HMC results.

limit. This has been thoroughly checked but we skip this
discussion here.

There are two interesting remarks regarding the behav-
ior of the HMC and in connection with Tab. I. First, we
notice that for fixed resolution and trajectory length τ ,
the integrated autocorrelation times τint increase with de-
creasing viscosity. Second, we manage to perform highly
efficient simulations simply by increasing the trajectory
length τ , while keeping ∆τ fixed. Contrary to common
practice in Lattice QCD, where τ is kept of order O(1),
to avoid energy and reversibility violations [55], in our
case it proved a safe and beneficial choice to set τ of
order τ ≈ 102 or τ ≈ 103 without introducing signifi-
cant effects of reversibility violations or loss of acceptance
rate. This allowed to significantly decrease autocorrela-
tion times, and avoided the disposal of many generated
configurations between measurements. In principle we
can increase the trajectory length to higher values that
will allow to generate statistically independent configu-
rations at each MD trajectory, as it is done for the runs
in Sec. VI, but we did not check this systematically for
the present section.

Finally, a key element of a Monte Carlo based approach
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is a rigorous error analysis, for which there are well estab-
lished methodologies [56–58]. Since Markov chain Monte
Carlo simulations, are known to be prone to autocorre-
lation effects, we had to go through a thorough inves-
tigation of the integrated autocorrelation times τint for
each observable. Therefore, as a post-production step,
we used the data analysis package provided in [59], as
a tool to estimate the errors of the observables, which
takes into account the corresponding autocorrelation ef-
fects. This recipe for the error calculation will be followed
throughout this article.

VI. CONSTRAINED SPACE-TIME EVOLUTION
USING HMC

Now that we have benchmarked the HMC against a
standard DNS algorithm, we will present the new fea-
tures and advantages that this novel path integral based
approach can bring to the numerical studies of turbulent
models, and stochastic PDEs in general. First, since the
HMC considers the full temporal evolution of the field,
this provides an additional flexibility towards the choice
of boundary conditions in time. Therefore, in Sec. VI A
we show, for instance, that one can apply periodic bound-
ary conditions in time, i.e., v(x, t) ≡ v(x, t+T ). Then in
Sec. VI B we turn towards the motivation for this article.
That is to introduce field constraints, which will affect
the Monte Carlo sampling in a controlled way, in order
to favor the generation of specific configurations, that will
comply with the imposed constraint. More specifically, as
a first application, we apply a protocol to systematically
generate configurations where a large negative velocity
gradient is produced at a prescribed space-time point.
This also provides with some insight on the underlying
dynamics of how the system evolved in time t to reach
this extreme condition.

A. Time-periodic boundary conditions

As a first application, we discuss the use of periodic
boundary conditions in time. Under this scenario, we
observe that after the system has equilibrated (to the de-
sired target distribution), the ensemble consists of con-
figurations that have reached stationarity at any time
t ∈ [t0, tf ]. This can be better understood by looking at
Fig. 6, where the ensemble average of the mean kinetic
energy (a) and the mean energy dissipation (b) are con-
stant in time in the example of the HMC (colored points).
We also show the results of the DNS (lines and points in
gray color) using zero initial conditions as a further com-
parison. The parameters used for the three different runs
are summarized in Tab. II.

The use of periodic boundary conditions in time leads
to a field-dependent Jacobian J [45] and therefore we
must expect it to affect the importance sampling. Nev-
ertheless, in this work, we have consistently neglected
the evaluation of the Jacobian (which, in the lattice field
theory literature, is often referred to the quenched limit).
To get a better impression of the systematic error asso-
ciated with this approximation, we have chosen to com-
pare our results with periodic boundary conditions to
the case of fixed/open boundary conditions. As can be
seen from Fig. 6 our results overlap with the stationary

ν Re vrms `d ` 〈ε̄diss〉 T` τint

0.3 20 0.93 0.40 0.81 1 0.87 5

0.6 7 0.64 0.68 0.26 0.99 0.41 1.3

1.4 1 0.31 1.29 0.03 0.97 0.09 0.5

TABLE II. Parameters and observables of the numerical sim-
ulations for periodic boundary conditions of the HMC. Here
the fixed parameters for both implementations are Nt = 1056,
Nx = 128, T = 6, and L = 2π. Also for the HMC τ = 128,
and N∆τ = 2560, while τint is derived from the kinetic energy,
when we measure after every MD trajectory. See also Tab. I
for definitions.
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regime attained by using fixed/open boundary conditions
with reasonable accuracy. In fact, it is possible to show
that the error by neglecting the Jacobian vanishes in the
limit T → ∞. Thus, for those cases considered here,
the systematic error is likely neglibible. We delegate the
evaluation of the Jacobian determinant to future work.

B. Enhanced sampling of extreme and rare events

We will now describe the important steps towards con-
straining the sampling of the HMC to generate a large
negative velocity gradient at a specified space-time point.
Also, we will explain how to directly compare the ob-
servables obtained from the constrained ensemble with
the ones related to an unconstrained ensemble, by using
reweighting techniques, and therefore estimate their rel-
ative importance with respect to the typical statistics of
the system. We note two important points. First, that
we will use the same boundary conditions as in Sec. V,
i.e., periodic in space and fixed/open in time. Second,
the statistics of the DNS will be referred to as the ones
related to the unconstrained system. We could use the
corresponding ones from the HMC with unconstrained
sampling, but another purpose of ours is to demonstrate
the benefits of employing this method for the purpose of
systematically sampling extreme and rare events, com-
pared to a standard DNS implementation, where such
instances are a matter of chance.

a. Reweighting Reweighting is a standard technique
introduced in [60] that proved very helpful in the study
of phase transitions and critical phenomena. In short,
it allows one to exploit the information of a generated
ensemble of a single Monte Carlo simulation performed
at a certain parameter (e.g., at fixed inverse temperature
β) and obtain results for a range of nearby parameters
(e.g., βi). Reweighting can also provide a way to mod-
ify the sampling in a Monte Carlo simulation, which is
how we use it here by constraining the sampling of the
HMC to enhance the generation of strong negative gra-

dients. What is common in both cases is that we include
a reweighting factor in the ensemble averages to obtain
the desired ensemble (see [61] for a review on the topic).

In our application, reweighting is employed at the post-
production stage as a means to relate the observable
〈O〉′, measured using the ensemble which is generated
by sampling with respect to the action S ′, to 〈O〉, mea-
sured on the ensemble sampled sampled with the ac-
tion S. We briefly revisit here the standard steps of the
derivation. Note that any probability density functional
P ′v = e−S

′
/Z ′ can be related to another Pv for the same

field configuration v = v(x, t), via

Pv =
1

Z
e−S =

Z ′

Z
e−(S−S′) P ′v, (25)

The expectation value of an observable 〈O〉 using S is
given by:

〈O〉 =

∫
DvPv O

=
Z ′

Z

∫
DvP ′v e−(S−S′)O

=
Z ′

Z
〈e−(S−S′)O〉′, (26)

where the notation 〈 · · · 〉′ implies that the expectation
value is evaluated with the action S ′. From the identity
〈1〉 = 1 we may derive the following relation Z/Z ′ =
〈e∆S〉′ with ∆S = S ′ − S, whereby

〈O〉 =
〈e∆SO〉′

〈e∆S〉′
. (27)

As a next step we determine the error of the estimator
〈O〉. Notice that in Eq. (27) both the numerator and
denominator have fluctuations. Furthermore, as they are
calculated from the same ensemble we expect that both
errors are correlated. As explained in [62] to estimate the
error δ〈O〉 of 〈O〉 we employ the propagation of error of
two dependent variables including the covariance and the
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cross-covariance of the nominator and the denominator.
Simplifying Eq. (27) to 〈O〉 = A/B the final expression
is

δ〈O〉 = 〈O〉

√(
δA

A

)2

+

(
δB

B

)2

− 2

(
δ(AB)

AB

)2

, (28)

where δ(AB) = 〈AB〉−〈A〉〈B〉+2
∑
i,j>i(Ai−〈A〉)(Bj−

〈B〉).
b. Implementation of sampling constraints The idea

is to define a different action S ′ to sample via the HMC,
which consists of the original S (14) in addition to a
constraint functional ∆S:

S ′ = S + ∆S. (29)

The choice of ∆S cannot be arbitrary. If there is no
overlap of the distributions e−S and e−S

′
is small, the

reweighting procedure will likely not work. Therefore,
it is not clear from the beginning, for which parameter
values a successful reweighting can be performed. We
remark that in cases where reweighting fails, it could be
attempted to insert intermediate reweighting steps as ex-
plained in [63]. We also need to stress that any constraint
functional ∆S will contribute to the MD forces through
the functional derivative δS ′/δv = δS/δv+ δ∆S/δv and
this contribution needs to be evaluated exactly.

Nevertheless, the histograms of the HMC are not di-
rectly comparable with the DNS. In the following, we
will explain how to directly compare the statistics of the
HMC using the action S ′, with the typical unconstrained
statistics using the action S, by utilizing reweighting
techniques.

As a demonstration of reweighting techniques Eq. (27),
we first discuss the example of the ensemble-averaged
mean kinetic energy before and after reweighting. This
is also a sufficient step to further ensure the consistency
with the unconstrained statistics, meaning that after
reweighting the observable measured by the constrained
ensemble should collapse, within error bars, with the cor-
responding unconstrained one. Following Eq. (27) the
reweighted ensemble-averaged mean kinetic energy will
be

〈ε̄kin(t)〉 =
〈e∆S ε̄kin(t)〉′

〈e∆S〉′
, (30)

As a first attempt we tried a series of local constraint
functionals, with a suitable shape, that enhance the prob-
ability to produce a large negative velocity gradient at a
certain point in the middle of the spatial domain at the
last timeslice (i.e., x = 0, t = tf ). The parameters that
we used for the HMC are summarized in Table III. A
general way to define the local functional ∆S is

∆Si = ci

∫
dt

∫
dx fi(∂xv/wi) δ(x)δ(t− tf ), (31)

where ci is a prefactor to characterize the strength of the
functional and wi is an imposed velocity gradient value
around which we want the functionals ∆Si to sample.
The index i we label the different choices of fi, for which
we have tested the following

f1(z) = z, (32a)

f2(z) = (z + 1)
2
, (32b)

f3(z) =
(
z2 − 1

)2
. (32c)

The HMC will sample around the region where e−S
′

is
maximal, i.e., where S ′ is minimal, and the constraint
functionals ∆Si contribute towards this procedure. In
particular, the constraints imposed by ∆S2 and ∆S3 are
of a localization nature in the sense that the generated
configurations comply with the constraint by sampling in
a narrow region around the imposed gradient wi, where
∆S2 and ∆S3 are minimal. In the same spirit, as ∆S1

is a linear function of ∂xv, then for any negative ∂xv it
will have a negative contribution to the action, which
will favor the sampling towards this direction. It there-
fore allows us to sample across a wider range of negative
velocity gradients. Nevertheless, we can redefine ∆S1,
as in this case w1 can be absorbed by c1. Thus, we set
w1 = 1 and show only values of c1.

As for the numerical stability, we note that the grid
resolution should always be sufficient to “fit” the strong
shock. Therefore, we cannot increase ci and wi uncondi-
tionally for a fixed resolution. In practice, for a particu-
lar discretization, there is a threshold beyond which the
HMC is not reliable anymore.

To identify the impact of constraining the sampling of
the HMC on the generated configurations, we show three
independent samples in Fig. 7. A large negative veloc-
ity gradient at (x = 0, t = tf ) is achieved in all cases.
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only HMC

c1 w1 Re` Re′` Re Re′ vrms v′rms 〈ε̄diss〉 〈ε̄diss〉′ ` κ τint

1.2 1 1.02(3) 3 10(2) 20 0.8(1) 1.6 0.96(3) 5 0.61(2) 1.12 5.2(2)

1.6 1 1.0(2) 5 10(4) 30 0.8(3) 2.4 0.9(1) 13 0.6(1) 1.21 4.1(2)

1.9 1 0.7(4) 7 9(5) 37 0.7(4) 3 0.7(2) 22 0.5(2) 1.93 3.8(2)

c2 w2 Re` Re′` Re Re′ vrms v′rms 〈ε̄diss〉 〈ε̄diss〉′ ` κ τint

80 12 0.83(5) 5 10(2) 30 0.8(2) 2.4 0.79(4) 11 0.55(3) 418 0.50(5)

80 18 0.8(2) 7 9(4) 35 0.8(4) 2.8 0.8(2) 17 0.6(1) 2.6 · 105 0.50(4)

160 24 1.4(6) 8 12(6) 42 1.0(5) 3.3 1.2(3) 31 0.7(3) 5 · 109 0.50(4)

160 30 1.7(6) 9 14(7) 46 1.1(5) 3.7 1.6(4) 39 0.8(2) 2.6 · 1011 0.50(5)

c3 w3 Re` Re′` Re Re′ vrms v′rms 〈ε̄diss〉 〈ε̄diss〉′ ` κ τint

80 12 1.5(4) 5 12(6) 29 1.0(5) 2.3 1.3(3) 10 0.8(2) 3.9 · 105 0.50(4)

80 18 1.0(3) 7 11(5) 35 0.8(4) 2.8 1.0(2) 17 0.6(1) 5.4 · 108 0.50(5)

80 24 1.2(4) 7 11(5) 38 0.9(4) 3 1.1(3) 24 0.7(2) 5.2 · 1011 0.50(5)

120 30 1.2(3) 9 11(5) 45 0.9(4) 3.6 1.0(2) 37 0.7(2) 4.5 · 1016 0.50(5)

only DNS

– – 1.01 – 10.5 – 0.83 – 0.95 – 0.61 – –

TABLE III. Parameters for HMC simulations with constrained sampling. The integral length scale Reynolds number is
defined as Re` = vrms `

ν
, while the large scale Reynolds as Re = vrms L

ν
. The results for the HMC have been reweighted, and

the temporal interval for averaging corresponds to the stationary regime. The parenthesis gives the error of the last digit of
the mean. The primed observables (e.g., Re′) are calculated without reweighting and consider only the last timeslice t = tf ,
since the system is not stationary in time (see Fig. 10(a)). Here the fixed parameters for both DNS and HMC are: Nt = 144,
Nx = 64, T = 6, L = 2π, ν = 0.5, and `d = 0.59. κ is defined in Eq. (35). The integrated autocorrelation time τint is calculated
considering the time series of the velocity gradient measured at the point that we constrain, namely (x = 0, t = tf ), after every
MD trajectory. Finally, specifically for the HMC, τ = 128, and N∆τ = 2560.

The general idea here is that we provide the HMC with
a certain constraint, local or global, by which the HMC
will consider all the possible realizations in the configu-
ration space to fulfill the corresponding condition on the
velocity field. In the case of extreme and rare events, for
instance, the HMC provides a systematic way to sample
the fluctuations around a particular extreme event (e.g.,
the occurrence of a strong velocity gradient).

Focusing now on the constraint functionals of Eqs.
(32), Fig. 8(a) shows the ensemble average of the velocity
field for the final timeslice 〈v(x, t = tf )〉′ at changing c1.
It further indicates the functionality of c1 and the effect
it has on the sampled configurations, i.e., the larger the
c1, the more negative the sampled gradient will be. This
can also be justified from Fig. 8(b), which, for different c1,
depicts the PDF of the velocity gradients measured only
at the point that we constrain, i.e., at (x = 0, t = tf ). It
is defined as

P ′(w) = 〈δ(∂xv(0, tf )− w)〉′, (33)

where w is the value of the bin which is incremented
according to the value of the velocity gradient ∂xv(0, tf ),
and is generated using the action S ′. In this plot we see
that by increasing c1, the peak of the histogram moves
to the left towards larger negative velocity gradients.

As for the prefactors c2 and c3, they have a slightly
different behavior with respect to c1. In fact, as we in-
crease c2 and c3, the HMC will sample more system-
atically around the prescribed velocity gradient wi. In
Fig. 9 we show P ′(w) at varying ci, wi, with i = 2, 3.
In Fig. 9(a) the functional ∆S2 has been used, and in

Fig. 9(b), the functional ∆S3. For the same parameters,
the quartic functional ∆S3 has a slightly better perfor-
mance towards sampling the prescribed velocity gradient
w than the quadratic functional ∆S2. Notice that in Fig.
8(b) and both plots of Fig. 9 we also include the PDF of
the velocity gradients of the DNS (black line) to give a
qualitative description of how the constrained sampling
compares with the original statistics.

To be more specific, we first refer to Fig. 10(a), where
we show the non-reweighted ensemble-averaged mean ki-
netic energy, defined as 〈ε̄kin(t)〉′ at changing c1, us-
ing the functional ∆S1, and we compare it with the
ensemble-averaged kinetic energy of the DNS (black line
– unconstrained statistics). The larger the value of c1,
the more pronounced the kinetic energy will be closer
to the final time t = tf , where the constraint is ap-
plied. Fig. 10(b) depicts the corresponding reweighted
data, i.e., 〈ε̄kin(t)〉, by using (30), where both the DNS
and the reweighted HMC collapse within error bars.

We remark two points. First, through Fig. 10(a), we
can also get an estimate of how important the constraint
is as a function of time. For instance, on average, at time
t ≈ 3 the effects of ∆S1 seem to have decayed. Second,
for the particular observable, by increasing here c1 we
get increased error bars after reweighting. For instance,
in the case of 〈ε̄kin(t)〉 for c1 = 1.2 we notice small erro-
bars and a very good agreement with the DNS, while for
c1 = 1.9 the 〈ε̄kin(t)〉 has much more pronounced error
bars. This is related to a previous comment on the appli-
cability of reweighting, for which we stated that the dis-
tributions e−S and e−S

′
should have a sufficient overlap.
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FIG. 8. (a) Ensemble average of the velocity field v(t = tf )
using the HMC with action S ′ = S+ ∆S1 for different values
of c1. (b) PDF of velocity gradients (DNS versus the HMC);
for the HMC we measure P ′(w) only at the space-time point
where we constrain the ensemble, i.e., at x = 0, t = tf .

In this example, for c1 = 1.2, the distribution of ε̄kin(t),
for t = tf , of the constrained ensemble, and the distribu-
tion of ε̄kin(t), for t > ts, of the unconstrained system do
overlap considerably, as seen in Fig. 10(c) (blue and black
lines accordingly), which leads to the resulting collapse of
the data (same colors in Fig. 10(b)). The difference with
c1 = 1.9 (red line in Fig. 10(a)) is that the correspond-
ing overlap with the DNS is marginal. Also c1 = 1.9
favors more the sampling of extreme velocity gradients
∂xv, which, together with a (finite) characteristic dissi-
pation scale `d, implies large values of vd ∼ (∂xv)`d (see
Fig. 8(a)). The averaged kinetic energy is a global observ-
able, which is mostly related to the bulk of the statistics
of v, and consequently not sensitive to very strong and
rare fluctuations. Therefore, if we did wanted to improve
the behavior of 〈ε̄kin(t)〉 for c1 = 1.9, we should simply in-
crease the statistics of the particular constrained ensem-
ble to capture, by chance, events with smaller v that are
more representative of the unconstrained ensemble. This
translates to the fact that for the constrained ensemble, a
rare event can be an event, which, for the unconstrained
ensemble, is a typical one.

To sum up, reweighting of the ensemble-averaged ki-
netic energy is a sufficient but not a necessary condition
to determine whether the particular constrained ensem-
ble is representative of the original system. In fact, here it
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FIG. 9. PDF of velocity gradients (DNS versus the HMC),
i.e., P ′(w), generated using the action S ′, and measured only
at the point that we constrain, i.e., at (x = 0, t = tf ), for
different values of ci and wi, i = 2, 3. (a) Using ∆S2. (b)
Using ∆S3.

was a simple demonstration of the reweighting technique
(27) in our application. As we shall see in the following,
we can achieve a very well behaved reweighting for the
PDF of the velocity gradients for any ci, wi, considering
that the latter are appropriately chosen, as stated earlier,
so that the HMC is numerically stable.

C. Velocity gradient statistics

To assess the performance of generating extreme and
rare events, we compare the HMC, when using sampling
constraints, with the DNS, by studying the statistics re-
lated to the velocity gradients, such as their PDF. We
note that, in the following, the observables that we con-
sider are measured only at the single point that we con-
strain, i.e., at (x = 0, t = tf ). This is related to the
introduction of the local constraint ∆S, which breaks
the space-time symmetry of the system. In principle, af-
ter applying Eq. (27) we restore the symmetries of the
system, in the limit of infinite statistics, but in practice
this is not the case. However, for histogram reweighting,
by considering only the site on which the local constraint
acted, we restore homogeneity and we will show that it
is sufficient to obtain a systematic comparison with the
unconstrained statistics, regardless the mutual overlap of
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FIG. 10. (a-b): Ensemble-averaged mean kinetic energy of HMC vs DNS using ∆S1 for different c1. (a): Before reweighting.
(b): After reweighting. Notice that the error bars for the c1 = 1.9 case after reweighting are pronounced as for this choice,
the fluctuations introduced by the reweighting factor become significantly large. (c): PDF of the non-reweighted mean kinetic
energy ε̄kin(t) measured only for the last timeslice t = tf , in the case of the HMC, and using ∆S1 for different c1.
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FIG. 11. PDF of velocity gradients for the HMC (blue/red
points) versus DNS (black line). For HMC we use the con-
straint ∆S1 with c1 = 1.9, and P ′(w) is measured considering
only the site (x = 0, t = tf ) on which the constraint is en-
forced. The inlet plot shows the chosen interval [−12,−6].
(a) Without rescaling, (b) rescaling the reweighted HMC his-
togram by dividing it with κ = 1.93.

the non-reweighted histogram and the unconstrained his-
togram (e.g., of the DNS). For instance, in Fig. 9(b) the
case of the HMC with c3 = 120, w3 = 30 has no over-
lap with the DNS – even though there would be if we
increased the statistics to infinite – yet in the following
we will demonstrate that this particular PDF, together
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FIG. 12. PDF of velocity gradients for HMC (blue/red points)
against DNS (black line). We consider only the extracted
histogram from the lattice point on which the constraint ∆S2

acted (i.e., x = 0, t = tf ) in the case of the HMC, with c2 = 80
and w2 = 18. The inlet plot shows the chosen interval [-16,-
11] for the rescaling. (a) Without rescaling, (b) rescaling the
reweighted HMC histogram by dividing it with κ = 2.63 ·105.

with other similar cases, will be successfully reweighted
to the unconstrained statistics. Nevertheless, if we con-
sider other sites, we encounter similar problems as the
ones discussed already in the previous section, e.g., for
the kinetic energy, where by increasing ci, wi we notice
increasing error bars.



14

10-30

10-25

10-20

10-15

10-10

10-5

100

-40 -35 -30 -25 -20 -15 -10 -5  0  5

PD
F

Velocity Gradients

(a)

ΔS1

DNS
HMC c1=1.9
HMC c1=1.6
HMC c1=1.2

10-30

10-25

10-20

10-15

10-10

10-5

100

-40 -35 -30 -25 -20 -15 -10 -5  0  5

PD
F

Velocity Gradients

(b)

ΔS2

DNS
HMC c2=80 w2=12
HMC c2=80 w2=18

HMC c2=160 w2=24
HMC c2=160 w2=30

10-30

10-25

10-20

10-15

10-10

10-5

100

-40 -35 -30 -25 -20 -15 -10 -5  0  5

PD
F

Velocity Gradients

(c)

ΔS3

DNS
HMC c3=80 w3=12
HMC c3=80 w3=18
HMC c3=80 w3=24

HMC c3=120 w3=30
10-30

10-25

10-20

10-15

10-10

10-5

100

-40 -35 -30 -25 -20 -15 -10 -5  0  5

PD
F

Velocity Gradients

(d)

Mixed

DNS
HMC c1=1.9

HMC c3=80 w3=12
HMC c2=160 w2=24
HMC c3=120 w3=30

FIG. 13. PDF of velocity gradients P (w) for HMC and DNS. We consider here only the extracted histogram from the lattice
point on which the constraint ∆S acted (i.e.,x = 0, t = tf ) in the case of the HMC. We show the effect of reweighting for
different parameters of the constraints. (a) Using ∆S1. (b) Using ∆S2. (c) Using ∆S3. (d) A mixture of different ∆Si.
Regarding rescaling, for those P (w) of which the overlap with the DNS was marginal or nonexistent, the rescaled P (w) for
c1 = 1.9 was used.

To reweight the PDF of the velocity gradients P ′(w) =
〈δ(∂xv(0, tf )− w)〉′, we use Eq. (27) to get

P (w) =
〈δ(∂xv(0, tf )− w)e∆S〉′

〈e∆S〉′
, (34)

where in practice, for each measurement i of the en-
semble, we increment the bin w by e∆Si . In Fig. 11
we apply (34) on the ensemble that generated the non-
reweighted PDF, P ′(w) (blue open squares), to produce
the reweighted histogram P (w) (red open circles), and
compare it with the corresponding PDF of the DNS
(black line). In Fig. 11(a) we identify a slight discrep-
ancy between the P (w) and the DNS (seen more clearly
in the inlet plot), while the trend is similar. This is re-
lated to the fact that the HMC is constrained to system-
atically sample large negative velocity gradients (far left
tail), and therefore the support on the right tail is lim-
ited. As a result, by strictly applying (34), and since
it normalizes the area under P (w) to 1, the compar-
ison between the HMC and the DNS is not straight-
forward, as P (w) is actually an excerpt of the original
PDF of velocity gradients, which is assumed to be the
curve of the DNS here. For the same reason, P (w)
cannot be considered as a PDF. What is missing is to
rescale P (w) with an appropriate factor κ, so that both
the DNS and the HMC calculate the same probability

p(a, b) to sample in a particular interval (a, b) of veloc-

ity gradients. By definition, p(a, b)HMC =
∑b
a P (w)δw,

and p(a, b)DNS =
∑b
a PDNS(w)δw, with δw being the bin

width, so κ is defined as the ratio of the two probabilities
measured by the HMC and the DNS:

κ =
p(a, b)HMC

p(a, b)DNS
, (35)

where we have tested that by increasing the statistics of
the HMC, κ → 1. We also assume that the DNS has
enough support in both tails, to be claimed as a PDF,
and therefore to be considered as a reliable benchmark for
the rescaling of P (w). In Fig. 11(b) we show the rescaled
P (w)/κ, with κ = 1.93. Also here, κ is measured in
the interval [−12,−6] for the rescaling. In this way we
achieve a collapse of the HMC and the DNS data. What
is striking, in this example, is the unique ability of the
HMC to systematically sample intense gradients that are
up to ∼ 30σ and more, with σ = 0.99, far from the mean.

Another example, where the need to further treat the
reweighted velocity gradients histogram P (w), by rescal-
ing it with an appropriate factor κ, becomes more evi-
dent, is when we consider one of ∆S2 or ∆S3. In Fig.
12 we show P ′(w) (blue open squares) and P (w) (red
open circles) using the functional ∆S2, with c2 = 80 and
w2 = 18 in the case of the HMC, against the DNS (black
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FIG. 14. (a-c) Velocity gradient PDF multiplied by a moment wq. The P (w) of the HMC is reweighted, rescaled with κ, and
we consider only the lattice point that the constraint acts. Here, we used ∆S1 for c1 = 1.9.
(d-f) Computational time to stabilized running average of velocity gradient moment 〈(∂xv)q〉, divided with respect to the final
stabilized value. Regarding DNS, any site belonging to the stationary regime is considered.

line). In Fig. 12(a), P (w) (red points) is derived by ap-
plying (34) to the PDF of the HMC (blue points). As
before, the area below P (w) is equal to 1. However, by
considering P (w), the probability p(a, b)HMC to sample
within an interval (a, b) of velocity gradients does not
correspond to the one of the DNS, p(a, b)DNS, so we em-
ploy again (35), to get κ = 2.63 · 105. In Fig. 12(b) we
plot P (w)/κ (red points), instead, in order to achieve the
collapse with the PDF of the DNS.

Now that we have clarified how to derive P (w)3 and
explained the need for a further rescaling with a constant,
we can do the same procedure for all the different runs
using the three different constraint functionals of Eqs.
(32). This is done in Fig. 13, where we compare P (w)
for different combinations of ∆Si, ci, and wi, with the
velocity gradients PDF of the DNS (black line).

In Fig. 13(a) we show P (w) for ∆S1 and different c1,
while in Fig. 13(b) the results correspond to P (w) for
∆S2 and different c2, w2. Then, Fig. 13(c) depicts the
P (w) for ∆S3 and different c3, w3, while Fig. 13(d) shows
a mixed selection of P (w) for ∆Si and different ci, wi,
to simply prove consistency among themselves. An im-
portant remark is that for those cases of the reweighted
histogram P (w), where the overlap with the DNS is
marginal or absent, we used the rescaled P (w) for ∆S1,
c1 = 1.9, as a guide to rescale them. For instance, this
was necessary for w = 24, 30. Furthermore, the different
κ that were used for each case are shown in Table III.

Then we move towards quantifying the performance of
the HMC for the purpose of systematically sampling very

3 Note that for the rest of article, when referring to P (w), it is
implied that P (w) is rescaled with an appropriate κ.

intense velocity gradients. The top row of Fig. 14 shows
P (w)wq, i.e., the reweighted and rescaled histogram of
the velocity gradients multiplied by a moment wq. The
idea is that the higher the power q, the more we focus to-
wards larger negative gradients. If the statistics of P (w)
are sufficient in the corresponding “focused” region, then
P (w)wq has a clear peak and shape. The bottom row of
Fig. 14 depicts the computational cost that the ensem-
ble running average of a moment of a velocity gradient
〈(∂xv)q〉 requires in order to stabilize at a certain value
and stop fluctuating. Here, for the HMC we used the
functional ∆S1, for c1 = 1.9, and we consider only the
velocity gradient at the point (x = 0, t = tf ). The data
here are the same as the red and black datasets of Fig.
11 for the HMC and the DNS, respectively. Also, the ob-
servable is reweighted according to Eq. (27) so that the
comparison is equivalent. Finally, for visualization pur-
poses, we normalize to one the observables by dividing
them with the final value of the stabilized line (depending
on q this might be either the line of HMC or DNS).

The plots in Fig. 14 are complementary, as a specific
power q is chosen for each column. The plots in the left
column (a and d) are for a small q = 6. In this region the
DNS performs better as here the data of the HMC are
only measured on the site on which the constraint acts,
and therefore the appearance of relatively small negative
gradients is suppressed. For q = 16 (middle column – b
and e) we see that both the HMC and the DNS are equiv-
alent in terms of the computational cost and quality of
the statistics. Finally, for q = 30 (right column – c and f)
the HMC significantly outperforms the DNS, as it imme-
diately converges to the expectation value, while for the
DNS we would have to remarkably increase the compu-
tational cost to achieve comparable statistics. Note that
the data for both the HMC and the DNS in Figs. 13, 14
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required the same computational cost to be produced,
using the same processors.

Overall, Fig. 14 summarizes the ability of the HMC to
consistently sample intense negative gradients that be-
long in the large deviations regime and furthermore gives
a qualitative measure of the computational performance
gained over a standard DNS method.

VII. THE RELEVANCE OF INSTANTONS IN
EXTREME EVENTS

The application of instantons in turbulent flows was
first proposed in [18] where the instanton contribution to
the right tail of the velocity increment PDF was calcu-
lated for Burgers turbulence, while in a succeeding work
[19], the left tail of the increment PDF was studied using
the instanton approach. These works opened the door
to other hydrodynamical models, such as the advection
of a passive scalar by a turbulent velocity field [64, 65],
shell models [66, 67], geophysical flows [22, 23, 68], and
atmospheric and oceanic flows [69, 70] (see also [71] and
citations therein).

A. Derivation of the instanton configuration

In order to calculate ensemble averages of observables
〈Ov〉 as, e.g., the probability distribution of the gradient
P (∂xv = w) = 〈δ(∂xv(x = 0, t = tf )−w)〉, we utilize the
path integral formulation introduced in Sec. III:

P (w) ∝
∫
Dv δ(∂xv(x = 0, t = tf )− w)e−S

=

∫
Dv

∫ i∞

−i∞
dλ e−S

′(λ). (36)

Here, S ′ = S ′(λ) contains both the Onsager-Machlup
action S (cf. Eq. (14)) and the contribution of the ob-
servable δ(∂xv(x = 0, t = tf )− w):

S ′ = S + λ (∂xv(0, tf )− w)

=

∫ tf

t0

dt

{
1

2

(
F, Γ−1 ∗ F

)
+λ (∂xv(x, t)− w, δ(x)) δ(t− tf )

}
− lnJ (37)

Instanton configurations are “classical” solutions that
extremize the action and therefore dominate the path
integral of the stochastic Burgers equation (17). They
can be computed by Laplace’s method or alternitavely,
as in many applications, instantons are found by nu-
merically minimizing the action directly (see, e.g., [23]).
Here, where the observable is evaluated only at final time
t = tf , it is advantageous to switch to another equivalent
formulation by applying a Hubbard-Stratonovich trans-
formation [72, 73] which leads to the following alternative

representation of the partition sum

Z ∝
∫
DvDµ e

∫
dt{i(µ,F )− 1

2 (µ,Γ∗µ)}+lnJ , (38)

which prompts us to define

SMSRJD = −
∫
dt

{
i(µ, F )− 1

2
(µ, Γ ∗ µ)

}
− lnJ , (39)

also known as Martin-Siggia-Rose/Janssen/de Dominicis
(MSRJD) action [11, 12]. At the expense of an addi-
tional auxiliary field µ, we have “linearized” the action
with respect to the noise η (=F ). Furthermore, the force
correlator Γ now appears directly and not through its in-
verse Γ−1. This allows for the implementation of more
general types of forcing as the power-law forcing consid-
ered in this paper. Now, the corresponding expression
for the PDF of velocity gradients reads

P (w) ∝
∫
DvDµ

∫ i∞

−i∞
dλ e−S

′
MSRJD , (40)

with

S ′MSRJD = SMSRJD + λ (∂xv(0, tf )− w) . (41)

Before we proceed, we note that attempting to compute
path integrals of the form of Eq. (38) is not straight-
forward and might be impossible for most cases. For
instance, perturbative approaches might be helpful, de-
pending on the problem. In the context of fluid dynamics
a diagrammatic approach (influenced by quantum field
theory) was proposed by Wyld [6]. Using perturbation
theory to expand the exponential in Eq. (38) in powers of
the nonlinear term (see also Eq. (1)) proves insufficient
in the turbulent limit ν → 0, since the path integral is
dominated by the nonlinear term forming strong shocks.
Therefore perturbative approaches must be abandoned,
as a large parameter is required [18].

Nevertheless, the introduced Lagrange multiplier λ, in
Eq. (37) can be used as a large parameter. This allows
the use of the saddle-point approximation, by which the
variation of the integrand in Eq. (40) is equal to zero. In
the case of Burgers turbulence, we obtain the instanton
equations (minimizer of the action S ′MSRJD)

∂tv + v∂xv − ν∂2
xv = −iΓ ∗ µ, (42a)

∂tµ+ v∂xµ+ ν∂2
xµ = −iλδ′(x)δ(t− tf ), (42b)

where the term on the r.h.s. in Eq. (42b) implements
the boundary condition for µ at tf according which
µ(x, tf ) = iλδ′(x). Recall that in the case of Burgers’
equation J = const. and therefore the Jacobian does
not contribute to the saddle-point equations. In [74] an
algorithm was proposed to numerically solve the above
equations. In short, the sign in front of the viscous terms
defines the temporal direction of the numerical integra-
tion, with v being integrated forward in time, and µ back-
wards. Using µ(x, tf ) = iλδ′(x) as an initial condition for
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FIG. 15. (a) Ensemble average of velocity configurations
generated by the HMC using ∆S1 with c1 = 1.9 compared
to the classical instanton velocity-field profile generated for
λ = −1.148 and w = −24.23. (b) PDF of velocity gradients
for the classical instanton (for a range of values of λ and w),
HMC simulation, and DNS.

some large value of tf , and starting by setting v(x, t) = 0,
Eq. (42b) is first integrated backwards until t0. Then the
obtained µ(x, t) is used to integrate Eq. (42a) forward in
time, with the whole procedure being iterated until con-
vergence to the prescribed constraint ∂xv(0, tf ) = w is
achieved. For more details see also [71, 75, 76] where the
aforementioned methodology is revisited.

B. Numerical results

Instantons – strong field-force fluctuations and ex-
tremal points of the action S ′MSRJD – may be consid-
ered as particular examples of extreme and rare events.
Constraining the HMC to sample at large negative gradi-
ents we observe that the generated configurations clearly
resemble the “classical” instanton configurations deter-
mined via the saddle-point approximation. This will be
checked directly via the averaged velocity field profile and
through the probability distribution function of velocity
gradients.

Fig. 15(a) compares the HMC ensemble average of the
velocity field at the last time-slice (t = tf ) with the veloc-
ity field obtained by performing the numerical integration
of the instanton equations (42). The profile of the classi-
cal instanton at time t = tf s reproduced to a remarkable

FIG. 16. (a) Ensemble average of velocity configurations gen-
erated by the HMC using ∆S1 with c1 = 1.9. (b) Instanton
velocity field for λ = −1.148 and w = −24.23. By averag-
ing over the HMC velocity field ensemble the spatio-temporal
shape of the classical instanton is restored.

degree, implying that the ensemble average is equivalent
to removing the fluctuations around the instanton. This
confirms that instantons can be found in Burgers turbu-
lence, as already shown in [75] using a post-production
filtering protocol to consider only events with strong gra-
dients generated using DNS. Furthermore, the inlet plot
depicts the difference of the two velocity fields, which are
on the order of statistical error. Similarly, in Fig. 16 we
compare the whole averaged spatio-temporal domain of
the HMC with the instanton velocity field in space and
time. For Figs. 15 and 16 a resolution of Nt = 576 points
in time was used for the HMC, the DNS, and the instan-
ton, while the rest of the parameters are the same as in
Tab. III.

Fig. 15(b) compares the PDF of the velocity gradients
of the DNS, the HMC with constrained sampling, and the
instanton. In the case of the instanton we plot e−Sinst ,

with Sinst = 1
2

∫ tf
t0
dt (µ, Γ ∗ µ). We notice that the PDF

predicted by the instanton follows the same trend as the
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HMC and the DNS, and the agreement is extraordinary.
However, in order to correctly interpret this result one
should note the following: First, the PDF prediction for
positive gradients is valid independently of the Reynolds
number Re, and is actually valid for all positive values
besides small corrections near ∂xv = 0. This is a re-
sult already obtained by Feigel’man [77] in the context
of charge density waves and also confirmed by the in-
stanton formalism [18]. On the other hand, the PDF of
negative gradients depends on the Reynolds number and
for a given Reynolds number Re` the instanton prediction
is only valid for |∂xv| > |∂xv∗(Re`)|. A precise estimate
for ∂xv

∗ is given in [76] [see Eq. (17) in the same refer-
ence]. For the Reynolds number Re` = 1, used in our
simulation and depicted in Fig. 15, this means that the
instanton prediction is valid only for ∂xv < −10.

VIII. CONCLUSIONS

In this work, we established how to apply Monte Carlo
importance sampling for stochastic dynamics based on
the Janssen-de Dominicis path integral, in order to ad-
dress the statistics of large fluctuations in driven nonequi-
librium systems. This approach allows us to access the
phase-space of all possible field realizations of a stochas-
tic system. Using reweighting techniques, we were able
to systematically enhance the occurrence of extreme and
rare events, by sampling in specific phase-space regions
related to such events.

We have chosen to illustrate the HMC algorithm at
the example of the random-noise driven one-dimensional
Burgers equation, which often used model for bench-
marking new numerical methods in computational fluid
dynamics. However, the HMC approach is generally ap-
plicable to any stochastic PDE and generally free from
any modeling assumptions. Also, while the random forc-
ing was chosen to be Gaussian, self-similar, and white-
in-time, this is by no means a necessary and other
types of noises can be addressed within this approach.
We thoroughly benchmarked our HMC implementation
with a standard forward-time-integration pseudospectral
method (see Figs. 4, 5). By constraining the sampling
of the HMC to generate a strong negative velocity gra-
dient at a specific site we increased the statistics of the
left tail of the PDF of velocity gradients significanly, pro-
ducing gradients as intense as 30 (and more) times the
r.m.s. value (see Fig. 13). Although we restricted our-
selves to the case of localized (in space and time) con-
straints, the technique can be easily extended to more
general cases. Also, our constrained HMC sampling al-

lowed us to decrease of order-of-magnitudes the time-to-
the-solution needed to collect sufficient statistics for high
order moments (up to order 30) if compared with DNS
(see Fig. 14). We expect that the types of local con-
straints considered in this work might have an impact on
similar studies in lattice gauge theories, where they may
lead to new observables.

We demonstrated that instanton configurations can be
found in Burgers turbulence. We have recovered the full
shape of the classical instanton by averaging the gen-
erated ensemble of the constrained configurations, with
the agreement of the HMC and the instanton being re-
markable (see Figs. 15(a) and 16). We further compared
the PDF of the velocity gradients for a very large range
of strong negative gradients and showed that, beyond a
specific Reynolds number-dependent threshold of appli-
cability of the instanton method, both the HMC and the
instanton produce the same left tail, which further en-
sures the relevance of instantons in Burgers turbulence
(see Fig. 15(b)). Thus, we established a one-to-one corre-
spondence among the biased realizations of the HMC and
the fluctuations around instantons. The present study fo-
cuses on low Reynolds number turbulence. However, the
present method is not restricted to this case and actually
opens the possibility to explore the role of fluctuations
around instantons with unmatched precision. We are
confident that the suggested novel approach can find suit-
able applications in the diverse field of stochastic PDEs
and related studies on extreme and rare events.
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