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The statistical properties of the subgrid energy transfers of homogeneous small-scale dynamo are
investigated during the kinematic, nonlinear and statistically saturated stages. We carry out an
a priori analysis of data obtained from an ensemble of direct numerical simulations on 5123 grid
points and at unity magnetic Prandtl number. In order to provide guidance for subgrid-scale (SGS)
modelling of different types of energy transfer that occur in magnetohydrodynamic dynamos, we
consider the SGS stress tensors originating from inertial dynamics, Lorentz force and the magnetic
induction separately. We find that all SGS energy transfers display some degree of intermittency
as quantified by the scale-dependence of their respective probability density functions. Concerning
the inertial dynamics, a depletion of intermittency occurs in presence of a saturated dynamo.

I. INTRODUCTION

All turbulent flows are characterized by spatially
and temporally chaotic evolutions on a wide range of
scales and frequencies [1]. As a result, direct numerical
simulations (DNS) approaches are still not practical to
study many turbulent flows occurring in nature and in
engineering applications. The control parameter is given
by the Reynolds number, ReL = UL/ν a dimensionless
measure of the relative importance of advective and
viscous terms in the Navier-Stokes equations (NSE),
where U denotes the rms velocity fluctuations at the
energy injection scale, L. It is possible to estimate
that in homogeneous and isotropic turbulent flows the

number of active degrees of freedom grows as Re
9/4
L ,

leading to extremely demanding numerical resources
already for moderate turbulent intensities.
To overcome the problem, numerical tools based on a
modeling of small-scale turbulent fluctuations are often
introduced, and called large eddy simulations (LES).
This technique is based on filtering out the small-scale
interactions and replacing them with subgrid-scale
(SGS) models [2–4].
The demand for LES is increasing for magnetohydro-
dynamic (MHD) problems, too, as e.g. in heliophysical
and astrophysical applications [5]. In the latter case,
the small-scale nonlinear magnetic interactions and
the velocity/magnetic correlations have to be replaced
with SGS models, too. This introduces additional
complexity to the MHD-LES method [6, 7], leading
to different modeling approaches [8–17]. As in LES
of nonconducting fluids, the success of a given LES
model is usually assessed in terms of reproducing mean
profiles. However, it is more and more clear that SGS
velocity fluctuations are strongly non-Gaussian with
non-trivial anomalous scaling properties that also need
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to be modeled. More precisely, the probability density
function (pdf) of velocity and magnetic field increments
at a given separation scale develops wide tails and it
changes in shape if measured at different scales, a sta-
tistical signature of intermittency [1, 18, 19], which has
attracted the attention of different groups for different
contexts of MHD turbulence [20–27]. It is certainly
present at Reynolds numbers relevant for astrophysical
applications, such as in the solar wind [28–31]. The
development of SGS models which are sophisticated
enough to capture extreme events, and therefore provide
a more faithful representation of turbulent dynamics,
thus requires a detailed analysis of SGS quantities. A-
priori studies of DNS data provide a first test-bed from
where to extract the necessary information. The aim
is to analyse the SGS correlations of the original fields
and understand what the key features are that must be
modeled. To our knowledge, there are very few a-priori
studies for the MHD-LES formulation [6, 16, 32], all of
which concerning statistically stationary nonlinear dy-
namos and without any focus on intermittency. The aim
of this paper is to analyse the SGS properties of a MHD
turbulent flow at different temporal instants during the
evolution of a small-scale dynamo such as to be able to
assess both regimes, when the magnetic field is passively
advected by, or actively reacting on, the velocity field.
In particular, we perform a systematic analysis of the
different components of the SGS total energy transfer.
We first split it in two sub-channels, involving velocity
or magnetic temporal dynamics only and we analyse
the mutual scale-by-scale energy exchanges. Second, we
further decompose the kinetic SGS energy component
into two contributions, one coming from the advection
and one from the Lorentz force.
Furthermore, we also use a novel formulation of the
filtered fields, based on an exact projection on a finite
number of Fourier modes (P-LES) [33] that disentangles
the signal due to the coupling between resolved and
unresolved scales from the one due to interactions
between resolved fields only.
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N ReL Reλ Pm ε U L ν η T kmaxηu

512 889 164 1 0.14 0.61 1.0 0.0007 0.0007 1.7 1.3

TABLE I: Description of the statistically stationary hydrody-
namic simulation used as an initial condition for the veloc-
ity fields in the dynamo runs. N denotes the number of grid
points in each Cartesian coordinate, Pm the magnetic Prandtl
number, ε the total dissipation rate, U the rms velocity, L the
integral length scale of the turbulence, ν the viscosity, η the
resistivity and T = L/U the large-eddy turnover time. All
observables are time averaged.

The main results of this study are:
(i) All SGS energy transfers show some degree of in-
termittency in all evolutionary stages of the dynamo.
Towards the stationary regime, the inertial SGS energy
transfer, which is given by the velocity field only, becomes
less intermittent. In constrast, the Maxwell SGS kinetic
energy transfer that originates from the Lorentz force
becomes successively more intermittent. Concerning the
SGS energy transfer originating from the induction equa-
tion, we find a slight indication of increased intermittency
towards the stationary stage of the dynamo;
(ii) In terms of guidance for LES modelling, we find that
backscatter does not play a significant role in the Maxwell
SGS energy transfer while the inertial SGS energy trans-
fer develops strongly non-Gaussian statistics including
considerable backscatter. As such, dissipative models
should be well suited for the Maxwell SGS stresses while
not being suitable for the inertial SGS stresses and the
SGS stresses in the induction equation, at least in the
nonlinear and stationary stages. This paper is organ-
ised as follows: We begin in section 2 with a description
of the DNS dataset. In section 3, we introduce the P-
LES formulation for MHD. Section 4 presents the results
from the a-priori analysis of the statistical properties of
the SGS energy transfers. We summarise and discuss our
results in section 5.

II. DESCRIPTION OF THE DATASET

The data for the a priori study is generated through
DNSs of the three-dimensional incompressible MHD
equations

∂tu + (u · ∇)u = −∇p+ (∇× b)× b + ν∆u + f , (1)

∂tb = ∇× (u× b) + η∆b, (2)

∇ · u = 0, ∇ · b = 0, (3)

where u is the velocity field, b the magnetic field in
Alfvén units, p the pressure divided by the density, ν
the kinematic viscosity, η the magnetic resistivity, and
f an external mechanical force which is solenoidal at all
times. The density has been set to unity for convenience.

Equations (1)-(3) are solved numerically on the pe-
riodic domain V = [0, 2π]3 using the pseudospectral

method [34] with full dealiasing by the 2/3rds rule [35].
An ensemble of 10 runs is generated, where the initial
velocity field configurations are obtained from a statisti-
cally stationary hydrodynamic DNS on 5123 grid points
by sampling in intervals of one large-eddy turnover time.
The magnetic seed fields are randomly generated with
a Gaussian distribution and concentrated at wavenum-
ber kseed = 40. The mechanical force f is a Gaussian-
distributed and delta-in-time correlated random process
acting at wavenumbers 1 ≤ k ≤ 2.5 without injection of
kinetic helicity. Details of the stationary hydrodynamic
simulation are summarised in table 1, while a summary of
the dynamo runs in the kinematic (I), nonlinear (II) and
saturated (III) stages is given in table II. We note that
the Lorentz force term (∇×b)×b is present in all simula-
tions. In stage (I) it is negligible, however, its magnitude
increases during the time evolution of the simulations un-
til saturation in the fully nonlinear regime (III).

The time evolution of the kinetic and magnetic energies
per unit volume

Eu(t) =
1

2

〈
|u(x, t)|2

〉
V,N
≡
〈

1

2|V |

∫
dx |u(x, t)|2

〉

N

,

(4)

Eb(t) =
1

2

〈
|b(x, t)|2

〉
V,N
≡
〈

1

2|V |

∫
dx |b(x, t)|2

〉

N

,

(5)

where the subscript N denotes an ensemble average over
N = 10 realisations, and the total energy for the ensem-
ble are shown in Fig. 1(a). From the time evolution of
Eb, which is also shown on a linear-logarithmic scale in
the inset, it can be seen that the simulation can be di-
vided in three stages. First, during the kinematic stage
(I), the magnetic field grows exponentially. During that
stage the Lorentz force in Eq. (1) is negligible and the
evolution equations are linear in the magnetic field. The
exponential growth phase ends once the Lorentz force is
large enough such that the back-reaction of the magnetic
field on the flow needs to be taken into account. This
is the nonlinear, unsteady, stage (II) of the evolution,
during which Eb continues to increase sub-exponentially.
Finally, Eb is approaching a statistically stationary state,
i.e. it enters the saturated stage (III). The SGS energy
transfers will be studied during stages (I)-(III), with each
stage analysed separately.

The kinetic and the magnetic energy spectra

Eu(k, t) =
1

2

〈∫

|k|=k
|ûk(t)|2 dk

〉

N

, (6)

Eb(k, t) =
1

2

〈∫

|k|=k
|b̂k(t)|2 dk

〉

N

, (7)

are shown in Fig. 1(b) for different instances in time
corresponding to stages (I)-(III) as specified in table II.
The kinetic energy spectrum is dominated by the forc-
ing in the interval 1 ≤ k ≤ 2.5. During the kinematic
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ReL Reλ εu εb U L B Lb kmaxηu kmaxηb tS/T

(I) 811 161 0.099 2.6 · 10−3 0.59 0.97 0.020 0.092 1.3 3.2 8.8

(II) 851 208 0.057 0.056 0.58 1.0 0.13 0.15 1.5 1.5 17.6

(III) 870 211 0.032 0.076 0.51 1.2 0.25 0.29 1.7 1.4 32.3

TABLE II: Summary of the dynamo simulations during kinematic (I), nonlinear (II) and saturated stages (III). ReL denotes
the integral-scale Reynolds number, Reλ the Reynolds number with respect to the Taylor microscale, εu the kinetic dissipation
rate, εb the magnetic dissipation rate, U the rms velocity, L the integral length scale of the turbulence, B the rms of the
magnetic field, Lb the magnetic integral length scale, kmax the maximally resolved wavenumber, ηu and ηb are the kinetic and
magnetic Kolmogorov microscales, respectively, and tS is the sampling time of each evolutionary stage of the dynamo. All
observables are ensemble-averaged over an ensemble of 10 simulations.
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FIG. 1: Panel (a): Time evolution of the kinetic energy
Eu, the magnetic energy Eb and the total energy Eu + Eb
with time measured in units of large-eddy turnover time T
(see table 1). The inset shows the evolution Eb on a linear-
logarithmic scale to highlight its initial exponential growth
phase. The different stages of dynamo evolution are indicated
by arrows: (I): kinematic stage, (II) nonlinear stage, (III)
saturated stage. Panel (b): Kinetic energy spectra Eu(k)
(dashed) and magnetic energy spectra Eb(k) (solid) measured
at t/T = 8.8 in stage (I), at t/T = 17.6 in stage (II) and at
t/T = 32.3 in stage (III).

stage, an inertial subrange with Kolmogorov scaling can
be identified, as indicated in the figure by the straight
solid line. During stages (II) and (III) we observe a
steepening of Eu(k) at successively smaller wavenum-
bers. The magnetic energy spectrum grows self-similarly

during stage (I) which is typical for a small-scale dy-
namo [36]. In the saturated stage (III), the magnetic en-
ergy exceeds the kinetic energy at the small scales while
the large scales remain essentially hydrodynamic and
forcing-dominated. A crossover-wavenumber k∗ can be
identified where Eu(k∗) = Eb(k

∗), in the present dataset
k∗ = 9.

III. LES AND P-LES FORMULATION FOR
MHD

First, we review the LES formulation for MHD. The
governing equations are derived by applying a filtering
operation to the MHD equations [6–8, 37], with the fil-
tered component a of a vector field a defined as

a(x, t) ≡
∫

V

dyG (x− y)a(y, t) =
∑

k∈Z3

Ĝ(k)â(k, t)eikx,

(8)

where G is the filter function and ·̂ denotes the Fourier
transform. Applying this filtering operation to Eqs. (1)
and (2), we obtain the filtered momentum and induction
equations [6–8], given here in tensor notation

∂tui = −∂j
(
uiuj − bibj + τ Iij − τMij + pδij

)
+ ν∂jjui + f i,

(9)

∂tbi = −∂j
(
biuj − uibj + τAij − τDij

)
+ η∂jjbi, (10)

where a summation over repeated indices is implied, and
with

τ Iij = τ Iij(u,u) =uiuj − uiuj , (11)

τMij = τMij (b, b) =bibj − bibj , (12)

τAij = τAij (b,u) =biuj − biuj , (13)

τDij = τDij (u, b) =uibj − uibj , (14)

where τ Iij is the inertial SGS tensor, τMij the Maxwell SGS

tensor, τAij the advection SGS tensor and τDij the dynamo
SGS tensor. Equations (9)-(10) are obtained by using in-
compressibility of both fields, the linearity of the filtering
operator and including the terms which can be written
as a gradient into the pressure gradient. As can be seen
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from Eqs. (13) and (14), the terms τAij and τDij are re-
lated by transposition. Even though they are associated
with different dynamics, that is with advection, (u ·∇)b,
or dynamo action through magnetic field-line stretching,
(b · ∇)u, respectively, they have a common physical ori-
gin, the electric field E = u×b. There are two problems
with Eqs. (9)-(10). First, as usual, the equations are not
closed in terms of the resolved fields only, due to the
fact that the SGS stress tensors depend on the product
of two unresolved fields. Second, even disregarding the
SGS structure, we must notice that the advection, dy-
namo, Lorentz force, and inertial terms each involve the
product of two resolved fields. The latter structure re-
sults in a field that is not filtered or projected in the same
subspace as original ones, which one can easily realise by
supposing that G in Eq. (8) is a Galerkin projector on a
finite number of modes [33]. This second problem can be
overcome by replacing the SGS tensors of Eqs. (11)-(14)
with the so-called projected SGS (P-SGS) tensors [33],
defined as

τ Iij = uiuj − uiuj , (15)

τMij = bibj − bibj , (16)

τAij = biuj − biuj , (17)

τDij = uibj − uibj . (18)

Using the P-SGS tensors, different evolution equations
for u and b are obtained

∂tui = −∂j
(
uiuj − bibj + τ Iij − τMij + pδij

)
+ ν∂jjui + f i,

(19)

∂tbi = −∂j
(
biuj − uibj + τAij − τDij

)
+ η∂jjbi, (20)

which are the P-LES MHD equations. Let us notice that
if G is a projector and therefore idempotent, Eqs. (19)-
(20) can be obtained directly from Eqs. (9)-(10) by fil-
tering all terms again. An example of a projector is the
sharp Galerkin filter, which is defined through its action
on a generic field a

a(x, t) ≡
∑

|k|<kc

â(k, t)eikx, (21)

where kc is the cut-off wavenumber. As a result, using
the formulation (19)-(20) with the Galerkin projector
defined in Eq. (21), all terms in the equations keep the
evolution of the fields in the same subspace for all times.

The P-LES formulation has the further advantage that,
unlike in the LES formulation, the SGS energy transfers
based on P-SGS tensors do not contain couplings between
the resolved fields [33]. The latter is very important for
the evaluation of backscatter in a priori analyses of SGS
energy transfers, since residual couplings between the re-
solved fields can be wrongly interpreted as backscatter
events. We will come back to this point in Secs. III A
and IV A.

A. The resolved-scale energy transfer

Neglecting viscous, Joule dissipation and forcing terms,
the P-LES kinetic and magnetic energy evolution equa-
tions read

∂t
1

2
uiui + ∂jA

u
j = −Πu + (∂jui)(uiuj)− (∂jui)(bibj),

(22)

∂t
1

2
bibi + ∂jA

b
j = −Πb + (∂jbi)(biuj)− (∂jbi)(uibj),

(23)

where Auj = ui(uiuj − bibj + pδij + τ Iij − τMij ) and

Abj = bi(biuj − uibj + τAij − τDij ) result in flux terms that
redistribute the energies in space and vanish under spa-
tial averaging: 〈∂jAuj 〉V = 〈∂jAbj〉V = 0 . The P-SGS

energy transfers Πu and Πb are defined as

Πu = ΠI −ΠM = (∂jui)τ
I
ij − (∂jui)τ

M
ij , (24)

Πb = ΠA −ΠD = (∂jbi)τ
A
ij − (∂jbi)τ

D
ij , (25)

where ΠI = −(∂jui)τ
I
ij is the inertial SGS energy trans-

fer, ΠM = −(∂jui)τ
M
ij the Maxwell SGS energy trans-

fer, ΠA = −(∂jbi)τ
A
ij the advection SGS energy transfer

and ΠD = −(∂jbi)τ
D
ij the dynamo SGS energy trans-

fer. Equations (22) and (23) contain four extra terms:

(∂jui)(uiuj), (∂jui)(bibj), (∂jbi)(biuj) and (∂jbi)(uibj).
It can be shown that

〈
(∂jui)(uiuj)

〉
V

= 0 , (26)
〈

(∂jbi)(biuj)
〉
V

= 0 , (27)

and 〈
(∂jui)(bibj)

〉
V

= −
〈

(∂jbi)(uibj)
〉
V
, (28)

hence they do not contribute to the global total energy
balance. Furthermore, it is easy to verify that out of

the four terms only (∂jui)(bibj) is Galilean invariant.
Galilean invariance is important to prevent the occur-
rence of unphysical fluctuations in the measured SGS
energy transfer [33, 38, 39]. This problem can be solved
by adding and subtracting energy transfers originating
from the Leonard stress components for each SGS ten-
sor [8, 40] in Eqs. (22) and (23). The Leonard stresses
are defined as

τ I,Lij = τLij(u,u) = uiuj − uiuj , (29)

τM,L
ij = τLij(b, b) = bibj − bibj , (30)

τA,Lij = τLij(b,u) = biuj − biuj , (31)

τD,Lij = τLij(u, b) = uibj − uibj , (32)

which give rise to the following energy transfer terms

Πu,L = ΠI,L −ΠM,L = (∂jui)τ
I,L
ij − (∂jui)τ

M,L
ij , (33)

Πb,L = ΠA,L −ΠD,L = (∂jbi)τ
A,L
ij − (∂jbi)τ

D,L
ij . (34)
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Including the Leonard terms in Eqs. (22) and (23) results
in

∂t
1

2
(ujuj) + ∂j

(
Auj + uiτ

u,L
ij

)

= −Πu −Πu,L − (∂juj)(bibj), (35)

∂t
1

2

(
bjbj

)
+ ∂j

(
Abj + uiτ

b,L
ij

)

= −Πb −Πb,L + (∂juj)(bibj). (36)

Now all terms in the resolved energy evolution equations
are Galilean invariant.

It is important to remark that the Leonard SGS transfers
vanish under spatial averaging, i.e. they do not alter the
global balances. Furthermore, they couple only the re-
solved fields, hence they cannot be associated with trans-
fers between resolved and SGS quantities. Therefore the
LES formulation differs from the P-LES formulation in
a fundamental way: All SGS-tensors in the LES formu-
lation are the sum of the respective P-SGS and Leonard

tensors, e. g. τ I,LES
ij = τ Iij + τ I,Lij , and the correspond-

ing SGS energy transfers of the LES formulation contain
the contribution from the Leonard stresses. That is, the
SGS energy transfers in the LES formulation have con-
tributions from interactions between the resolved fields
[33]. We will come back to this point in the context of
backscatter in Sec. IV A and in Appendix A.
Finally, the term (∂juj)(bibj) occurs in Eqs. (35) and
(36) with opposite sign. Since it is closed in terms of
the resolved fields and exchanges kinetic and magnetic
energy, (∂juj)(bibj) has been named resolved-scale con-
version term [7]. With Πu = ΠI−ΠM and Πb = ΠA−ΠD,
we now have key benchmark quantities to study the prop-
erties of the different SGS energy transfers. Furthermore,
as the total energy is conserved in the absence of forcing
and dissipation, the total SGS energy transfer is also a
quantity of interest. We define the resolved total energy
transfer as

∂t
1

2
(uiui) + ∂t

1

2

(
bibi
)

+ ∂j

(
ATj + uiτ

T,L
ij

)

= −ΠT −ΠT,L (37)

where ATj = Auj +Abj , τ
T,L
ij = τu,Lij + τ b,Lij , ΠT = Πu + Πb

and ΠT,L = Πu,L + Πb,L. Figure 2 gives a schematic
overview of the different SGS energy transfers.

IV. A PRIORI ANALYSIS OF THE SGS
ENERGY TRANSFERS

The a priori analysis of the statistical properties of the
SGS energy transfers is carried out using a sharp spectral
cut-off filter as given in Eq. (21) with cut-off wavenum-
ber kc, which corresponds to the configuration-space fil-
ter width ∆ = π/kc. In what follows, we study the mean
(here, mean refers to the combined spatial and ensemble

Eu Eb

(∂jui)(bibj)

Πu Πb

ΠV ΠM

SGS energy

ET

ΠT

FIG. 2: A schematic representation of the energy transfer
between the resolved-scale energies and the SGS energy. The
exchange between magnetic and kinetic energies at the re-
solved scales is carried by the resolved-scale conversion term
(∂jui)bibj . According to Eqs. (35) and (36), the exchange
of energy between resolved scales and SGS follows different
channels, Πb couples the resolved-scale magnetic energy to
the SGS and combines the physical processes of advection
of magnetic energy and magnetic field line stretching, while
Πu transfers kinetic energy between resolved scales and SGS.
The latter itself has two components, an inertial channel ΠI

which is due to vortex-stretching and advection and a mag-
netic channel ΠM originating from the Lorentz force. During
the kinematic stage of the dynamo, ΠM is negligible compared
to ΠI .

average) P-SGS energy transfers and their spatial fluctu-
ations for different kc. The fluctuations are investigated
through the probability density functions (pdfs) of the
respective P-SGS energy transfers, and we quantify the
scale-dependence of the fluctuations through the flatness
of the pdfs as a function of kc. The latter provides infor-
mation on the degree of intermittency and the deviation
from Gaussian statistics of the P-SGS energy transfers.
Since the Leonard stresses do not provide information
relevant to modelling, we summarise results specific to
the Leonard stresses in Appendix A, which is referenced
in the text where necessary.
We begin with

ΠT = Πu + Πb , (38)

and subsequently increase the level of detail by first split-
ting ΠT into

Πu = ΠI −ΠM , (39)

and

Πb = ΠA −ΠD , (40)

followed by the decomposition of Πu into ΠI and ΠM .
Note that Πb is not decomposed any further, because the
stress tensors in its components ΠA and ΠD originate
both from the electric field and are related to each other
by transposition, as discussed in the previous section.
As such, a single LES model term should be used in the
induction equation.
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FIG. 3: The mean total SGS energy transfer 〈ΠT 〉V,N
normalised with the total dissipation ε versus the cutoff
wavenumber kc at the kinematic (I), nonlinear (II) and sta-
tionary (III) stages.

A. The total SGS energy transfer

Figure 3 presents
〈
ΠT
〉
V,N

as function of kc at three

different instants during the time evolution which are
representative of the three stages (I)-(III). Since ΠT is
obtained using a spectral cut-off filter, its mean value
equals the total energy flux in Fourier space. As can be
seen from the figure,

〈
ΠT
〉
V,N

> 0, which is representa-

tive of a mean total energy transfer from large scales to
small scales. Furthermore, we find that

〈
ΠT
〉
V,N

does

not change significantly during the different evolutionary
stages of the dynamo, which implies that the exchange
of kinetic and magnetic energy proceeds in a way that
leaves the total scale-by-scale transfer unaffected. We
will come back to this point in further detail when as-
sessing the decomposed SGS energy transfers.

Since
〈
ΠT
〉
> 0, it can be expected that the pdf of

ΠT is positively skewed such that events leading to a for-
wards transfer of total energy across the filter scale are
more likely than backscatter events. This is indeed the
case as shown by the standard pdf of ΠT in Fig. 4(a)
at kc = 20 for stages (I)-(III). Apart from more pro-
nounced tails occurring in stage (II), the standard pdfs
are remarkably similar. However, while the pdf of ΠT

is positive skewed at all stages, the pdf of ΠT,L is sym-
metric (see Fig. 12 in Appendix A). Had we measured
ΠT = ΠT + ΠT,L as the total SGS energy transfer, the
residual transfer amongst the resolved scales carried by
the Leonard component could have led to the conclusion
of backscatter events being more frequent than they ac-
tually are. Figure 4(b) shows the flatness of ΠT as func-
tion of kc, which does not change significantly during
stages (I)-(III). This implies that the pdfs corresponding
to stages (I)-(III) are also similar at all sampled filter
scales, as was the case for the pdf of ΠT at kc = 20
shown in Fig. 4(a). The scaling behaviour of the flat-
ness in the low-wavenumber region is presented in the
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FIG. 4: Total SGS energy transfer ΠT during the kinematic
stage (I), non-linear stage (II) and the stationary stage (III).
Panel (a): pdfs of ΠT at kc = 20. Panel (b): The flatness
of ΠT versus the cutoff wavenumber kc. The inset shows the
flatness at small wavenumbers, with error bars estimated from
the different configurations.

inset of Fig. 4(b), where the solid line corresponds to
the scaling exponent ζ = 0.50± 0.02 which has been ob-
tained by a least-squares fit in the range 5 6 kc 6 30.
For non-conducting fluids at much higher Reynolds num-
ber, a scaling exponent of ζ ' 1.25 has been measured
[33]. Since ζ does not change from one dynamo stage to
the next, we do not associate the difference between the
measured values of ζ between the present dataset and
Ref. [33] with MHD effects, but rather with differences
in Reynolds number. As the Reynolds number is much
higher in Ref. [33], a similar value of ζ may be attained
at higher Re.

B. Kinetic and magnetic SGS energy transfers

As discussed in Sec. III, ΠT can be further decom-
posed into Πu and Πb. Furthermore, the resolved-scale
conversion term, (∂jui)bibj , in Eqs. (35) and (36), which
cancels out in Eq. (37) for the total resolved-scale en-
ergy, must also be measured. It contains information on
the scale-dependence of the conversion of kinetic to mag-
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netic energy, an assessment of which is essential in order
to provide guidance for SGS models of MHD dynamos.
The averages 〈Πu〉V,N ,

〈
Πb
〉
V,N

and 〈(∂jui)bibj〉V,N are

shown in figure 5(a-c), respectively. We first notice
that 〈Πu〉V,N gets depleted towards stage (III) while〈
Πb
〉
V,N

increases. From a comparison of the large in-

crease of 〈(∂jui)bibj〉V,N relative to the smaller decrease
of 〈Πu〉V,N during stages (I)-(III), it follows that the
growth of the magnetic field is due to direct interactions
between u and b. The two panels on the left also show
that both the kinetic and magnetic SGS energy transfers
are forward. The right panel shows that the conversion
of kinetic to magnetic energy mostly occurs at some in-
termediate scale which tends to saturate to k∗ = 9 as
said before. The existence of a saturation length scale
implies the breaking of inertial self-similarity and puts a
natural constraint on any LES for MHD. Either we use
an extremely resolved model with kc � k∗, and we fully
resolve the dynamics leading to the non-linear dynamo
saturation, or we use kc ∼ k∗ and a very sophisticated
SGS model must be used. Certainly one cannot further
push and use kc � k∗, or a fully ad-hoc magnetic field
growth must be supplied. A quantitative assessment of
this issue requires a posteriori analyses and would con-
stitute a useful contribution to MHD LES.

Figure 6(a,b) presents the standardised pdfs of Πu and
Πb at kc = 20. We note that the pdfs of Πb are only
shown for stages (II) and (III), as Πb is negligible in stage
(I), because the system is dominated by magnetic field
amplification which occurs through the term (∂jui)bibj .
Although 〈Πu〉V,N and 〈Πb〉V,N are positive, that is, ki-
netic and magnetic energies are transferred downscale on
average, the pdfs of Πu and Πb develop negative tails.
The latter is particularly pronounced for Πb in stage (III),
as shown in Fig. 6(b). That is backscatter events in the
magnetic SGS energy transfer cannot be neglected for a
fully nonlinear dynamo. The latter implies that dissipa-
tive approaches such as the Smagorinsky closure [41] are
hardly optimal to model the SGS stresses in the induction
equation. The flatness of Πu and Πb as a function of kc
is shown Figs. 6(c,d). There appears to be a slight indi-
cation of increased intermittency in stage (III) compared
to stages (I) and (II) for both Πu and Πb since the flat-
ness becomes more scale-dependent in the inertial range.
The insets of Figs. 6(c,d) present the scaling of the flat-
ness in the low-wavenumber region, with the solid line
corresponding to the scaling exponent measured for the
flatness of ΠT . As can be seen from the figures, Πb ap-
pears to be less intermittent than Πu. However, the latter
statements on intermittency require further assessment
using higher-resolved datasets with a more extended in-
ertial range.

Visualisations of Πu and Πb obtained during stage (III)
are presented in the top panels of Fig. 7. A striking fea-
ture is the localised sheet-like nature of intense forward-
transfer events in Πu. Similarly elongated structures are
are also visible in Πb, and the colour-mapping suggests
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FIG. 5: The mean P-SGS energy transfers 〈Πu〉V,N (panel
(a)), and 〈Πb〉V,N (panel (b)), and the mean of resolved-scale
conversion term 〈(∂jui)bibj〉V,N (panel (c)), normalised with
the total energy dissipation rate ε versus the cutoff wavenum-
ber kc during the kinematic (I), non-linear (II) and stationary
(III) stages.

an anticorrelation between Πu and Πb. The correlation
between Πu and Πb is quantified through their joint pdf
shown in the bottom panel of Fig. 7. As can be seen
from the figure, Πu and Πb are indeed weakly anticorre-
lated. As will be seen later, the intense forward-transfer
events in Πu originate from the P-SGS Maxwell stresses
in Eq. (19).
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FIG. 6: Kinetic and magnetic SGS energy transfers Πu

and Πb during the kinematic stage (I), non-linear stage (II)
and the stationary stage (III): pdfs of Πu (a) and Πb (b)
at kc = 20; flatness of Πu (c) and Πb (d) against the cut-
off wavenumber kc. The insets show the flatness at small
wavenumbers, with error bars estimated from the different
configurations and the solid reference line indicates the scal-
ing of the flatness of ΠT .

C. Inertial and Maxwell SGS energy transfers

The term Πu in Eq. (19) is now further decomposed
into ΠI and ΠM , as introduced in Sec. III. Figure 8
presents

〈
ΠI
〉
V,N

and
〈
−ΠM

〉
V,N

as functions of kc

where the sign convention for ΠM reflects the sign with
which it occurs in Eq. (19). During the kinematic stage
(I),

〈
ΠM

〉
V,N

is negligible and the total SGS energy

transfer is carried by
〈
ΠI
〉
V,N

. As expected 〈ΠI〉V,N gets

depleted towards stage (III) while 〈−ΠM 〉V,N increases.
Both

〈
ΠI
〉
V,N

and
〈
−ΠM

〉
V,N

are positive, that is, the

resolved-scale kinetic energy is transferred from large to
small scales through inertial transfer as well as through
the Maxwell component.

Figures 9 (a,b) show the standardised pdfs of ΠI and
ΠM , respectively, where we note that the pdf of ΠM

is only shown in stages (II) and (III) as it is negligible
in stage (I). During stages (II) and (III) the pdf of ΠI

changes significantly compared to its shape during stage
(I), where the inertial dynamics are approximately unaf-
fected by the magnetic field. The most striking feature
here is the development of wide tails and a much more
symmetric shape. That is, the inertial SGS energy trans-
fer fluctuates very differently in presence of a fluctuating
magnetic field as in the nonconducting case: First, the
wide tails indicate that extreme events are more likely
than in the nonconducting case. Second, the symmetric
shape implies that backscatter events in the inertial SGS
energy transfer become significant. In contrast, as can
be seen from Fig. 9 (b), the pdf of ΠM has a clear posi-
tive skewness. That is, backscatter events are much less
important than for all other SGS energy transfer com-
ponents and the contributions from the SGS Maxwell
stresses should be well approximated by a dissipative
model.

Measurements of the pdfs of ΠI + ΠI,L and
ΠM + ΠM,L during the saturated stage of a small-
scale dynamo have been reported recently [6]. By
comparison of Figs. 9 (a,b) with the left panel of Fig. 7
in Ref. [6], one observes that the shape of the pdfs
measured in Ref. [6] is quite different from the results
found here for ΠI and ΠM . More precisely, the pdf
of ΠI + ΠI,L in Ref. [6] lacks the wide tails seen for
ΠI here, and the pdf of ΠM + ΠM,L is much more
symmetric than that presented for ΠM in Fig. 9(b).
There are two reasons for latter difference. First, the
Leonard component is included in the measurement
of the SGS energy transfer in Ref. [6] while it is not
included here. Second, the Reynolds numbers and filter
widths also differ. In Ref. [6] the the pdfs were measured
at Reλ = 75 at a filter scale coresponding to kc = 64.
For comparison, in our dataset Reλ = 211, and the
pdfs in Figs. 9 (a,b) are measured at kc = 20. Even in
our simulations, it can be seen from the energy spectra
(Fig. 1(b)) and the mean SGS energy transfer (Fig. 3)
that the dynamics at kc = 64 is significantly affected
by viscous and Joule dissipation. This will be even
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FIG. 7: (Colour online) Top: Two-dimensional visualisations of Πu (left) and Πb (right) at kc = 20 in stage (III). Positive
values correspond to forward energy transfer while negative values indicate backscatter. Bottom: Corresponding joint pdf of
Πu and Πb.

more so for lower Reλ. In order to provide a like-for-like
comparison, we measured of the pdfs of ΠM , ΠM,L and
ΠM +ΠM,L for kc = 80, which for our data at Reλ = 211
is comparable to kc = 64 for Reλ = 75. As can be

seen in Fig. 13 in Appendix A, the pdf of ΠM,L in the
viscous range is sizeable and symmetric, such that the
inclusion of ΠM,L in the measurement of the Maxwell
SGS transfer masks the distinctive positive skewness of
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(I), non-linear stage (II) and the stationary stage (III).

its PDF.

Figures 9(c,d) present the flatness of ΠI and ΠM as
functions of kc. For ΠI , the development of strongly
non-Gaussian statistics is also reflected in the flatness,
which has higher values in stage (III) compared to stages
(I) and (II). Furthermore, the flatness has a much weaker
scale-dependence during stage (III) as shown in the in-
set of Fig. 9(c). This indicates a depletion of intermit-
tency of the velocity field in presence of a saturated dy-
namo. Indeed, a comparison of the pth-order scaling ex-
ponents ζp of the velocity-field structure functions for
hydrodynamic turbulence [42] and for a saturated MHD
dynamo [43] reveals differences in ζp for p > 5. Ac-
cording to these results, the velocity field is less inter-
mittent in presence of a saturated dynamo, as observed
here. Since (ΠI)p is related to the 3pth-order velocity-
field structure function [44] the scaling properties of high-
order structure functions determine the behaviour of the
flatness of ΠI . Therefore differences concerning inter-
mittency between MHD and hydrodynamic turbulence
are more clearly visible in measurements of the flatness
of ΠI compared to direct measurements of ζp. How-
ever, a quantitative assessment of the scaling properties
of the flatness of ΠI requires a further extended scaling
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FIG. 9: Fluctuations of ΠI and ΠM during kinematic (I),
non-linear (II) and stationary (III) stages: pdfs of ΠI (a) and
ΠM (b) at kc = 20; flatness of ΠI (c) and ΠM (d) against
the cutoff wavenumber kc. The insets show the flatness at
small wavenumbers, with error bars estimated from the dif-
ferent configurations, and the solid reference line indicates the
scaling of the flatness of ΠT .
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range. In contrast to the results for ΠI , the flatness of
ΠM shown in Fig. 9(d) retains its scale-dependence after
dynamo saturation. The inset of the figure shows the
flatness in the low-wavenumber region, where the solid
line corresponds to the measured scaling of the flatness
of ΠT . As can be seen from the figure, the flatness of
ΠM has a much stronger scale dependence compared to
ΠT . Since ΠM can be dimensionally approximated as
ΠM ∼ (δ∆u/∆)(δ∆b)

2, where δ∆a is the longitudinal in-
crement of a vector field a at the filter scale ∆, it is dom-
inated by magnetic contributions. Therefore our results
also imply that the saturated magnetic field is much more
intermittent than velocity field that maintains it. This is
in agreement with results obtained from measurements
of scaling exponents of inertial and magnetic structure
functions obtained from DNSs of stationary small-scale
dynamos [43]. As in the present data, no mean magnetic
field was present in the data analysed in Ref. [43].

As shown in Fig. 8(a), the mean inertial interscale en-
ergy transfer is weakened in presence of a saturated dy-
namo. This partly occurs through cancellations of for-
wards and inverse transfers since backscatter events in
ΠI now occur more frequently as already discussed. Ad-
ditionally, an overall depletion of the fluctuations of ΠI

occurs, as can be seen from the comparison of the pdfs
of ΠI and ΠM and Πu presented in Fig. 10.

The clear forward transfer of energy in stage (III) asso-
ciated with the Maxwell stress is also visible in the 2D vi-
sualisations of ΠI and ΠM presented in the top panels of
Fig. 11. Unlike ΠI , ΠM shows very intense and localised
regions of forward transfer whose elongated structure is
reminiscent of current sheets.As discussed earlier, the pdf
of ΠI becomes quite symmetric in stage (III), indicat-
ing that positive and negative fluctuations of ΠI occur
with similar probabilities. This is also visible in the vi-
sualisations, where we see regions of forward and inverse
transfer which are of comparable intensity. The fluctua-
tions of ΠI also appear to be much weaker than those of
ΠM . Finally, we find that ΠI and ΠM are weakly anti-
correlated as can be seen from their joint pdf presented
in the bottom panel of Fig. 11. The latter suggests that
the transfer of kinetic energy between resolved scales and
SGS is more likely to occur separately through ΠI or ΠM

rather than simultaneously through both.

V. CONCLUSIONS

In this paper, we investigated the different components
of the SGS energy transfer through three stages of dy-
namo evolution considering mean and fluctuating prop-
erties. We decomposed the total SGS energy transfer in
the components corresponding to either the momentum
or the induction equation, thus separating kinetic from
magnetic SGS energy transfer. The kinetic SGS energy
transfer was then further split into an inertial component
and a component originating from the Lorentz force. By
also distinguishing between the actual SGS energy trans-
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FIG. 10: Fluctuations of ΠI and ΠM during kinematic (I),
non-linear (II) and stationary (III) stages at kc = 20.

fers and residual contributions from interactions amongst
the resolved scales, we got clear measurements of the fluc-
tuating individual SGS energy transfers.

Concerning the velocity field, important differences are
present between the statistical properties of the inertial
SGS energy transfer in presence of a saturated dynamo
and in the nonconducting case. First, the kinetic energy
cascade is depleted in the saturated dynamo regime, see
Figs. 8(a) and 10. Second, we find that the pdf of the
inertial SGS energy transfer becomes more symmetric
and less Gaussian than in the non-conducting case with
wider tails suggesting more extreme events also in terms
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−ΠM (right) at kc = 20 in stage (III). Positive values correspond to forward energy transfer while negative values incicate
backscatter. Bottom: Corresponding joint pdf of ΠI and −ΠM .

of backscatter, see Figs. 9(a) and 10. Third, we found
quantitative evidence that the flatness of the inertial SGS
energy transfer has a weaker scale dependence, which im-
plies that the velocity field is less intermittent in presence
of a saturated small-scale dynamo than in the noncon-

ducting case, see Fig. 9(c). This latter case deserves a
more quantitative investigation by increasing the statis-
tics and by extension of the involved scales. Concerning
the magnetic field, we find that the pdf of the magnetic
energy transfer is pretty symmetric in both the nonlin-
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ear and the saturated dynamo regimes, see Fig. 6(b).
In contrast, the SGS energy transfer originating from
the Maxwell stress in the momentum equation is clearly
skewed towards positive values, see Figs. 9(b) and 10.

In terms of guidance for LES modelling, the symme-
try of the pdf of the magnetic SGS energy transfer im-
plies that backscatter events are important, which calls
applications of dissipative models for the stresses in the
induction equation into question. For the momentum
equation, a similar situation occurs for the inertial SGS
energy transfer in the saturated stage of the dynamo. As
a result, while a dissipative model for the inertial stresses
may be suitable during the kinematic stage, a more so-
phisticated approach is required to adequately capture
the increased backscatter in the nonlinear and saturated
stages. On the other hand, dissipative models would be
well suited for the Maxwell stress in both nonlinear and
saturated stages. Finally, we find that the individual
SGS energy transfers appear to be weakly anticorrelated
in the saturated stage. This holds for Πu and Πb and also
for ΠI and ΠM . That is, the energy transfers in the dif-
ferent channels appear to occur separately, which should
be taken into account in the design of more sophisticated
LES models for MHD. However, measurements of the
correlations between the different SGS energy transfers
at higher Reynolds numbers need to be carried out in
order to better quantify the effect.
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Appendix A: Comparison between the SGS and
Leonard energy transfers

The Leonard components of the individual energy
transfer terms were defined in Eqs. (33)-(34). As men-

tioned before, the Leonard transfers do not contribute to
the SGS energy transfer as they are closed in terms of the
resolved fields. Furthermore, it can be shown that they
vanish under spatial averaging. The latter suggests that
forward and backward energy transfer should be more
or less equally likely. Figure 12 presents comparisons be-
tween the actual SGS energy transfer ΠT and its Leonard
component ΠT,L at kc = 20 and during stages (I)-(III).
As can be seen, ΠT,L is indeed more symmetric than ΠT

in all cases. This situation is also present for the Maxwell
energy transfers ΠM and ΠM,L shown in Fig. 13 for the
nonlinear and stationary stages of dynamo evolution. At
least in stage (III), a measurement of ΠM + ΠM,L in-
stead of ΠM would have resulted in a more pronounced
left tail of the pdf, leading to the consclusion of more
backscatter being present in the Maxwell SGS transfer
than there actually is. In Fig. 14 the same measure-
ments of the Maxwell energy transfers are presented at
a different cutoff closer to the dissipation range, namely
kc = 80. At this scale, all pdfs show a higher probabil-
ity to measure extreme events of energy transfer. How-
ever, the pdf of the Maxwell energy transfer ΠM remains
clearly skewed towards the right, which suggests that the
extreme events remain correlated to the direction of the
mean energy flux, even though they become more than
two orders of magnitude larger compared to the mean
value. Moreover, as already observed in Fig.12 from the
pdfs of the total energy transfer, this information is not
accessible through a measurement of the sum between
ΠM and ΠM,L, because the Leonard term is completely
symmetric and large enough to dominate the left tail of
the PDF. The same results are valid in both the nonlinear
and the stationary stage.
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