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In this paper a class of shell models is studied, defined in terms of the interactions of two complex dynamical
variables per shell, transporting positive and negative helicity, respectively. Following a decomposition into
helical modes of the velocity Fourier components of Navier-Stokes equfoWéaleffe, Phys. Fluids 4, 350
(1992)], classification of the helical interactions of the three modes in each triad leads to four different types of
shell models. Free parameters are fixed by imposing the conservation of energy and of a “generalized helicity”
H, in the inviscid and unforced limit. For=1 this nonpositive invariant looks exactly like helicity in the
Fourier-helical decomposition of the Navier-Stokes equations. Long numerical integrations are performed,
allowing the computation of the scaling exponents of the velocity increments and energy flux moments. The
dependence of the models on the generalized helicity parameted on the scale parameteis also studied.

Partial differential equations are finally derived in the limit when the ratio between shells goes to one.

PACS numbds): 47.27.Eq

[. INTRODUCTION prediction for the{(p) exponents. There are many experi-
mental and numericdR-7] results telling us that energy is
One of the most intriguing problems in three-dimensionaltransferred intermittently.
(3D) turbulence is related to the understanding of the dy- In order to understand energy transfer dynamics and re-
namical mechanism triggering and supporting the energyated intermittent effects, besides analytical and direct nu-
cascade from large to small scales. Following the Richardsomerical approaches, two other possible choices are building
scenario that energy should be transferred downward igjmple random processes for the chaotic energy transfer
scales, KolmogorO\[l]. ppstulated that the energy cascadeamOng different scaleE8—11] or studying a dynamical de-
should follow a self-similar and homogeneous process engministic model. This paper will be devoted to the study of
tirely dependent on the energy transfer rate. This idea, plug gitferent class of shell models: deterministic dynamical

the assumption of local isotropy and universality of the Sma"rpodels, which in the past 20 years have been particularly

scales, eventually led to a precise prediction on the St"J‘tis'[ic%uccessful. Shell models concentrate all the dynamical inter-

properties of the increments of turbulent velocity fields, thatactions into a few degrees of freedom at different scales
is, Sv(l)~|v(x+1)—v(x)|, where at distanceb depends '

solely on the dissipation or energy transégt) over scales retaining the nonlinear structure of Navier-StokRS) equa-
| in the manner predicted by Kolmogorov1] tions but neglecting completely their spatial location and los-
su(1)~[1e(1)]¥3. From this the scaling of moments of ing most of their three-dimensional vector properties. A one-

sv(1), the structure functions, can be determined in terms ofimensional - chain of interacting Fourier modes is

the statistics ok(l) constructed with simplifications so strong that oalyposte-
' riori can one say whether or not the model is interesting and
So(D=([Sv(1)IP)=C([e(1)IP3)IP3, (1) reliable.

The most popular shell model, the Gledzer-Ohkitani-
whereC, are constants and the scélés supposed to be in  Yamada(GOY) model[12-18, has been shown to predict
the inertial range, i.e., much smaller than the integral scal&caling properties fot(p) (for a suitable choice of the free
and much larger than the viscous dissipation cutoff. Ifparameters similar to what is found experimentally. Re-

Sp(1)~ 14 and(eP(1))~17"™, then cently, it was pointed out that the GOY model conserves in
the inviscid, unforced limit two quadratic quantities. The first
{(p)=p/3+ 7(p/3). (2)  quantity isenergy while the second is, roughly speaking, the

equivalent ofhelicity in 3D turbulencd17]. It has been sug-
In [1] the e(1) statistic is assumed to Heindependent, or gested that both the GOY helicif{8] and the helicity in the
7(p) =0, implying {(p) =p/3 Vp, in particular(2)=5 or NS equation$19,20 play roles in triggering the intermittent
the energy spectrum going &5°2. While from a qualitative  nature of the energy cascade.
point of view Kolmogorov’'s intuition was a true break-  Until recently, shell models have been derived strictly
through in the understanding of turbulence, his theory lack$rom basic phenomenological considerations about turbu-
guantitative agreement with experimental measurements dénce and required very strong assumptions about why the
intermittency in physical space. In particular there are noneascade would follow the particular path proposed. From the
trivial scaling corrections to the ¢ over 3" Kolmogorov  recent emphasis on the role played by the helicity and other
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conserved quantities in shell modg®d,18, a different class c\2Z24+brz+a=0. (5)

of shell models, based upon a helical decomposition of in-

teractions between modes in the Navier-Stokes equatiori§ order to stay as close as possible to the NS equations, we
[22] and less on pure phenomenology, has been suggestégiquire that one of the two conserved quantities is the energy,
[18]. In this way it is possible to obtain a second nonpositivei.e., z;=1,

defined invariant closer to the definition of helicity in the

Navier-Stokes equations. The models, which have two com- W, = EZE uy|2. (6)

plex variables per shell, are generalizations of the GOY ! ro

model with helical structures that include all the possible )
helical interactions in the Navier-Stokes equations. In fact!f we rewrite
two of the models can be reduced to variations of the GOY Nb= — N2o—e—1 7
model. The derivation of the general class of these shell -6 AMCTmemd @)

models and a study of their statistical properties will be the,q 5re left with only two K ande) of the original four free

focus of this paper. L parameters. The second quadratic invariant is
Our immediate aim consists in trying to understand the

importance of the transfer of both energy and helicity in B 5
Navier-Stokes equations by examining the nontrivial dynam- Wo=H=2 (e=1) "u|2. ®
ics shown by this different class of helical-shell models. "
Eventually, we want to take what is uncovered by the differ-The characteristics of this second invariant change by chang-
ent shell models and use these properties to suggest alterngig) e: when e<1 it is not positive definiteas helicity in
direct simulations aimed at understanding the turbulence caghree dimensions while if e>1 it is positive definite(as
cade. When the stage of relating shell models to direct simugnstrophy in two dimensiofsExpression8) can be rewrit-
lations is reached, questions about the compatibility of thgep a5
properties of shell models with our understanding of the
properties of the turbulent cascade coming from statistical B nLa(en)].. |2
studies of turbulence will arise. In anticipation of this step, Ha—; x(€)"Kn M lup|?, 9
some of these points will be addressed in the Conclusion.

The outline of the paper is as follows. In Sec. Il the GOY where y(€) =sgn(e—1) and the parameter is related to
model is reviewed. In Sec. Ill the different class of helical- € and\ by
shell models is introduced. In Sec. IV the basic triad interac-

tions within three contiguous shells are studied. Section V le—1[=n"" (10
contains the results of our numerical simulations. In Sec. VI i , ) )
partial differential equationéPDES9 for the continuum limit Our interest here is to consider how well the dynamics of
(ratio between shells that goes to prage derived. Conclu- & 3D turbulent flow is reproduced by the model: Owrlyn
sions follow in Sec. VII. the range 8<e<1 will be taken, in order to have a nonposi-
tive definite second invariant. Indeed, fer=1 our “gener-
Il. THE GOY MODEL alized helicity” H,==,(—1)"k%|u,|? has physical dimen-

sions coinciding with the 3D Navier-Stokes helicity. The two
The GOY model can be seen as a severe truncation of thieee parameters of the model can be taken ta kighe ratio
Navier-Stokes equations. It retains only one complex modéetween adjacent shelland «. The two coefficientd and
u, as a representative of all Fourier modes in the shell ot can be rewritten as
wave numberk betweenk,=ko\" andk,,;, N being an
arbitrary scale parameteh 1), usually taken to be equal b=A"""1=\"h c=-NT0TR (11)
to 2. The dynamics is governed by the following set of com- . . .
plex coupled ordinary differential equations, where only cou—Such a class Of. models has a highly nontrivial dynamlcal
behavior. Intermittency of the energy transfer and multifrac-

lings with the nearest and next nearest shells are kept: N .
Ping P tal nature of energy dissipation have been studiefil2+

16].
grln= iKn(AUX, qUX ,+buf, Uk +cu_ ur ) —vkiu, It turns out that the values of th&p)’s are not universal,
depending on the choice ef and A [15,17. Nevertheless,
+ 8nn,f (3) Kadanoffet al. [17] verified that the scaling exponents are

invariant along the curve in thes(\) plane where both en-
wherev is the viscosityf is the external forcing acting ona ergy and helicity are conserved, i.e., the curve at
large scaleng, anda,b,c are three free parameters. By ad- a(€,\)=1. This suggested that the second invariant plays a
justing the time scale we can always fix1; the possible crucial role in the model dynamics. More recently, Biferale
choices forb,c are restricted by imposing the conservationand Kerr[18] attributed to the helicity the role of triggering
of two quadratic quantities in the inviscid and unforced limit the intermittent cascade of the energy from large to small
scales. These considerations, together with the observation
W :Z 20 Ju,? 4) that thi; f‘GQY hf—:-licity” is only partially consistent with the
1,27 & “12%nl o NS helicity (i.e., it presents an asymmetry between odd and
even shells that does not have any counterpart in physical
wherez, , are the solutions of the quadratic equation flows), persuaded us to study a modified shell mgdd],
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with two complex variables in each shell, carrying helicity of The geometric factogy , = — %(hskx hsp~ hsq)* can be de-
opposite sign, in order to obtain a second invariant closer tge|oped and factorized
the NS helicity. In the following section we introduce this
class of shell models, whose nonlinear interactions are con- sk +spp+s4q
structed on the basis of a helical decomposition of the NS gzrf’ (16)
equations in the Fourier space.
wherer is a function of the triad shape onf22].
Ill. HELICAL-SHELL MODELS Eight different types of interaction between three modes
usk(k), use(p), andusa(q) with |k|<|p|<|q| are allowed
In order to introduce two helical variables per shell Weaccording to the value of the triplet s(,s,,Sq)
refer to the velocity field in NS equations, expanded in a=(+1,+1,+1): Among them, only four are independent,
Fourier serie$22]. The velocity vector can be represented inthe coefficients of the interaction with reversed helicities
terms of its projection on an orthogonal basis formedkby (—Sc,—Sp,—S,) being identical to those withs(,s,,S,)
h,, andh_. The two basis vectors, andh_ can be cho- [22]:
sen to be the eigenmodes of the curl operator
(Sk,Sp,Sq):(+,—,+) or (_1+1_);

ik X hg=skhg, (12
(Sk,Sp:Sq)=(+,—,—) or (—,+,+),
wheres=*1. This corresponds to an expansion of the ve-
locity vector into helical modes (Sk:Sp,Sg)=(+,+,—) or (—,—,+),
(Sk,Sp,Sg)=(+,+,+) or (—,—,—).

u(x)= >, u(k)exp(ik-x)
k (corresponding to models 1-4, respectiyeljjhe equations
_ corresponding to the single interactiog (s, ,sq) have the

22 [u(kh,+u~(kh_Jexpik-x).  (13)  form (omitting viscosity and forcing

sk +spp+s4q

The real flow velocity corresponding to the plasinus uSk=r(s,p—sqq) (uSpusa)*

mode rotates clockwis@ounterclockwisgas one moves in P

the direction ofk, thereby forming a left-handeright- S KA S DES

handedl helix; the vorticity vector of such a flow is parallel usp:r(sqq_skk)kp—w(usqusk)*' (17)

(antiparalle] to the velocity and the helicity is maximum
(minimum). The kinetic energy and helicity are given by:
sk +spp+s49

uskuse)*
D ( )

usa=r(sKk—s,p)
E=2 E(k)
“ Each interaction independently conserves both energy and
L . helicity on a single triad. The dynamical systédf¥) com-

:; 2 u(k)-u* (k) posed by a single triad can be considered as the basic brick

of the semi-infinite chain leading to the transfer of energy in

B turbulent flow. By studying its stability properties it is pos-
:; [lu™ (K [2+[u™ (k) 21, (14 sible to understand how energy and helicity are transferred

among different wave vectors belonging to the same triad.

Following [22], we distinguish two different kinds of dy-

H=> H(k) namics: For the cases corresponding to the choices 1 and 3 of
k the triad helicities, the unstable wave vector is the smallest
one, while for cases 2 and 4 the unstable wave vector is the
= 2 Lu(k)- o* (k) _medium one. This very simple analysis suggests that by link-
k ing together a series of triads we should have a forward
energy transfer for cases 1 and 3 and both forward and back-
= K[Ju™ (k)|2=|u™(k)|2]. ward (competing energy transfers for cases 2 and 4.
k In a turbulent flow the direction of energy transfer is

dynamically controlled by the triple correlation
Plugging Eq(13) into the NS equations yields the dynamical {us(k)u®r(p)usa(q)). It is reasonable to argue that the sta-
evolution for the complex amplitudea®«(k,t) (sqc=*1) tistical properties of uk(k)u®r(p)u®i(q)) are such that the
[22]: overall direction in energy transfer coincides with the sim-
plified behavior inferred from the stability study of the single
. ) s triad (instability assumptionn [22]). For instance, it is easy
P T “(k)+vku k(k):kﬂ;q:o SES 9k.p.q(SpP~SqQ) to estimate, by using the instability assumption, what would
P be the net energy transfer in the above four cases if the
X[ uSe(p)usa(q)]*. (150  energy spectrum had the Kolmogorov scaligk) =k >3
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TABLE |. Helicity indices of Eqs.(18) for the four models. TABLE IlI. Coefficients of Eqs(18) for the four models.
Model S1 S, S3 Sy Sg Se Model b c
1 + - - - - +
2 - - + - + - 1 ATA—N B S S
3 - o+ -+ - - T AT
4 + + + + + + B 1 e
2 NTEENE R
=N S SERESY
[22]: 1 and 3, direct energy cascade from large to small o el
scales; 4, reverse energy cascade from small to large scales; 3 “ATA —A A
and 2, direct(reversg energy cascade for locdéhonloca) AN AN
triads. g . 4 Ao\ FA"lop et
The helical decomposition of the NS equations suggested INGE=Y —a T

to us the opportunity of defining a different GOY-like shell
model for each one of the above four classes. In each shell
we will have two complex dynamical variablag, and

u, , transporting positive and negative helicity, respectivelycientsb; andc, in terms of the usual parametexsand e,
one can easily recover the standard GOY model coefficients.

Uy =ikn(ajut ,u +bu® u™ +cu® u® )* Second, model 4 is also formed by two independent sets of
- . variables (1; ,u; ,u3,...) and (i ,u, ,us, ...), each of
—vkqun + 5n,n0f ; them conserving separately a positive-definite quantity simi-
lar to enstrophy in two dimensions. Thus model 4 is equiva-
U, =ika(au, Jsu 2 +bju Su 4 +cu Su %)* lent to two uncorrelated GOY models for 2D turbulence
[23,24.
— vkt + S ngf s (18) The fact that the model 1 is formed by two uncorrelated
GOY models is clearly due to our choice of taking only first
wherej=1, ... 4labels the four different models and the and second neighbor interactions. Model 4, on the other
helicity indices in the nonlinear interactions are easily foundnand, will always be the sum of two separated models for
for each of the four casdsee Table)l any choice of the interacting modes composing the triads.
The coefficients; ,b; ,c; are determined by imposing, as  |n the following, we will refer to the properties of model
usual, the energy conservation 1, intending the corresponding properties of the GOY model.
Model 4 will be studied only for completeness.
d d +12 -2
GE= gl 2 (ual+lug ) | =0, (19
n IV. ONE-TRIAD SYSTEMS
which leads to the same relation for all models: Following the instability assumptior{22] that connects
a+ bj)\+cj)\2=0. 20 the single-triad dynamics with the global statistical behavior

of a multitriads flow, we repeat the analog stability study for

By imposing also the conservation of the generalized helicitf€ three-shell, single-triad system. By isolating three shells
of wave numbers, ,k,,ks, we can inspect their dynamical

d w12 s properties as determined by their mutual interactions. For the
&HCF&; kn(lun[*=[uy[*)=0 (21)  positive-helicity modes we have
we obtain different relations for the four models, respec- Uf=ik1(u§1u§2)*,
tively,
=i (11531134 *
2y A1y 4 A2 g =, U, =ikobj(utu)*, (22
a,— N1, — \2@+ D, =0, U;:ikgcj(uzsuie)*’
az+ N lhy—\2@t e =0 wherej=1, ... ,4 for thefour models. An analogous set of
’ equations holds for the negative-helicity modes, changing
ag+ A o, + N2t e, =0, the sign of the helicity index of all variables. This system

conserves both energy and helicity. The corresponding equa-
Fixing aj=1, one then finds the expressions for the coeffi-tions for the energies are
cientsb; andc; in terms of the parameters and « (see

Table ). Ei=A,

Let us remark two important facts. First, model 1 is noth- )
ing but two masked and uncorrelated versions of the original E,=Dbj\A, (23
GOY model, with dynamical variablesu{ ,u, ,uz, ...)

and (U ,u, ,uz,...) respectively; rewriting the coeffi- E3=Cj)\2A,
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In model 1 there is a clear dependence ®nAs this
R\ parameter increases, more and more energy is captured by
o ) mode 2. Fora>1, the energy gained by mode 2 become
2 greater than the energy gained by mode 3, leading to a more
local energy transfer.
Model 3 is remarkably independent af as we shall see
in the following. This fact has very important consequences
for the intermittent dynamics of the complete shell model.
Model 2 has a trend analogous to that of model 1, but
with more drastic consequences: At-1.27 the mode that
receives most of the energy from the unstable mode is 1

FIG. 1. Energy exchange in the one-triad system for the foudnstead of 3. This would suggest a change in the direction of

models. Dashesolid) arrows point towards the mode that receives the flux from downward to UpWﬁrd-.
less(more energy. In model 4 the mode that receives most of the energy

remains mode 1, for all values of, with a consequent re-

verse energy flux in all caséas it must be, since model 4 is

a couple of 2D GOY mode)s

What emerges from this analysis is that the behavior of

e models seems to depend on the choice of the free param-

ter «, sometimes with strong consequendsach as the
ange in direction of the flux in mode}.2r'he only remark-

able exception is the very low dependence of model 3.

Concerning helicity, we can consider the equations

whereA= 2kjIm[ (u3tus2u;) + (ug *tu,, 2ug)].

As found in[22], we know that the unstable mode is the
smallest mode for interactions 1 and 3 and the medium modﬁ]
for interactions 2 and 4. In order to have a deeper under-
standing of the energy transfer dynamics, we have performe
several integrations of Eq§22), using the parameter values
A=2, a=1, andk;=2"* and different initial conditions.
This analysis, performed on all four models, gives the fol-
lowing results: For model 1, mode 1 gives energy equally to
modes 2 and 3; for model 2, mode 2 gives more energy to
mode 3 than to mode 1; for model 3, mode 1 gives more
energy to mode 2 than to mode 3; and for model 4; mode 2
gives more energy to mode 1 than to mode 3. These energy
exchanges are summarized in Fig. 1.

Behaviors 1 and 4 have already been noticed by Ditlevsen
and Mogenseri25] for the 3D and the 2D GOY model, Where B=2k{" Im[(uj'us2ui’)— (u; *'u, 2u;)] and 7,
respectively. It is also interesting to investigate how theseand z; depend on the particular model considetseke Table
properties are modified when varying theparameter in the IIl). By performing the same analysis done for the energy
models. Considering that in E¢§23) the sum of the three evolution, one can conclude that helicity is transferred in
right-hand sides must be zero and normalizing to one theéifferent ways, as depicted in Fig. 3.
energy rate on the unstable shell, one can evaluate how the Since helicity is a nonpositive definite quantity, forward
energy sharing between the other shells is affected by changbackward transfer of positivegnegative helicity is equiva-
ing « (see Fig. 2 lent to backwardforward) transfer of negativépositive) he-

Hi(a)=B,
Ha(a@)=7,b;\* 1B, (24)

H3(C¥)= 773Cj)\2(a+1)B,

1724 (2]

L 2

S S FIG. 2. Variations witha of the energy rates

oy o in the one-triad system for the four models. For

% % each modeE is shown for the two modes that
receive energy from the unstable mode, whose
energy rate is always kept equal to (B E,
(solid ling) andE; (dashed lingvs « for model 1
(E1=1); (b) E, (solid ling) andE; (dashed ling

C) d) vs a for model 2 €,=1); (c) E; (solid line) and

* 00 < T I S ® 0.0 [ T [ E; (dashed lingvs « for model 3 €,=1); (d)

g 02p TToooT T ] g 02 ) -7 1 E; (solid line) and E; (dashed ling vs a for

S 04r 8 S, 04T 1 model 4 E,=1).

S .06 y S 06 1

2 o8f . 2 .08 -\

[ b T ) L ]

1.0 . 1 L 1 ! -1.0 L L N . | s
00 10 20 30 40 00 10 20 30 40



3546 R. BENZI, L. BIFERALE, R. M. KERR, AND E. TROVATORE 53

TABLE 1. Factors in Eqs.(24) for the four models. 10.0 ,
MOdel 2 73
1 -1 +1 -15.0 1
2 -1 -1
3 +1 -1 =
4 +1 +1 @ -400 | 1
4
licity. In view of this trivial remark, arrows in Fig. 3 have 65.0
only a visual value, indicating how helicitgwith its own
sign) is redistributed among shells.
Let us note that models 1 and 3 show a very different

pattern in the helicity exchange among shells. This can be o0 10.0 20.0

the explanation of the very different scaling properties shown loga(kn)

by the two models when varying (see Sec. Y. For ex-

ample, we could argue that the dramatic dependence of the FIG. 4. Logarithm log[ Sy(n)] of the structures functions of
energy exchange on the parameter in models 1 and 2, model 3 vs log(k,). The parameters values ase=1 and\ =2.
together with the well defined direction of the helicity trans-

fer, can somehow enhance the role played by the second Sy(M)=(|,|") 25)
invariant with respect to the other two models. In the next P no

section we will check these arguments by performing a nu-

merical study of Eq(18). .
whereli,= \|u, [?+]u, |2 In Fig. 4 we show log[S,(n)]

as a function of log(k,) for p=1,...,8. There is a well
V. NUMERICAL ANALYSIS (MODEL 3) defined inertial range where the structure functions follow a
power law

In this section we will concentrate on the study of the
statistical properties of model 3 compared with the already
known results for the GOY modémodel 1. Model 3, dif-
ferent from model 2, shows for any value af a forward Sp(n)~kn‘§(p). (26
energy transfer. We integrated Eq48) for model 3 using
the standard parametersr=1, N=2, k,=2"% f*
=5(1+i)x1073, ng=1, andv=10 ' and a total number of
shells equal tdN=22 and 26. In the numerical integration
we used a fourth-order Rugge-Kutta method, with a tim
step varying betweedt=10"" (for the simulations with 22 - :
shell§ and 108 (for the cases with 26 shellsMost of the 32232;:@ ts%gﬁgptlﬁ]t;nt?: tﬁgagrgYerﬁ%%r;?mp) with an
results presented here are for the ciise22, with a number Nevertheless, in order to have a better estimate of the
of iterations of the order of hundred of millions, which cor- g(p),s one can study the moments of a particular third-order

responds roughly to several thousands of eddy turnove uantity: the mean energy flux through theh shell
times at the integral scale. Stationarity is checked by moni-

toring the total energy evolution.
The quantities we have looked at are the structure func-

Let us note that in this model, at variance with the GOY
model, there are no period-three oscillations superposed on
€the power-law scaling. In this case a linear least-square fit

tions I1(n)=2k,Im| (U u uF)y+ba(u™ uru |
_ ut -s; —S:
m A T <un+1 n,1>+<un+2un+21un>

v
o000 o000
| 2 +ba(u; Uy U, %)+ (U S0, %y ),
(27)
r~-\ o™\
oo oo wheres;, S,, S3, ands, for model 3 are taken from Table I.
3 4 As pointed out by Pisarenket al.[16], one can write for this
quantity the equivalent of Kolmogorov's four-fifths law, ex-
FIG. 3. Helicity exchange in the one-triad system for the four Pressing the balance between energy input and energy dissi-
models. Dashe(solid) arrows point towards the mode that receives pation in the system.
less(more helicity. Considering the energy variation over the finsshells
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3.0 T T T 3.0 T T T
—— GOY model —— GOY model (0.5,2)
-==--model3 b e GOY model (1,2)
25 1 -- -~ GOY model (2,2)
——- model 3 (0.5,2)
1 —-— model 3 (1,2) =
20 r ol 1 20 r  —-— model 3(2,2) »v)’%}’/
) =
215 . =z o=
N
10 | B 1.0 i
05 - 4
0.0 . s ) : 0.0 . ‘ . s
0.0 2.0 4.0 6.0 8.0 0.0 2.0 4.0 6.0 8.0
p P

FIG. 5. {(p)’s of the GOY modefrom [17]) and model 3. The FIG. 6. {(p)’s of the GOY model and model 3 for different
parameters values are=1 andA=2. Error bars for data concern- parameters setsa(\). \ is always kept equal to 2. Th&(p)'s
ing model 3 take into account both statistical and power-law fit(pzll ...,7) for the GOY casél,2) are taken fron{17]. Notice
errors. that for model 3 all data sets collapse on the same curve for differ-
ent « values. Error bars for data concerning model 3 take into
dl n i 1 account both statistical and power-law fit errors.
& mE:l (<|um| >+<|um| >)
A. The a dependence
n For the « dependence of the models we have explored
=2 K2((|u |2+ (|uz|2)) +II(n) two other_ different values:«=0.5 and 2 (keeping fix
m=1 A=2). It is well known[15,17,18 that the GOY model
shows a strong dependence of its statistical properties on the
a value. For example, ilx<3, the dynamics is attracted
] o ] o _ toward a fixed point with Kolmogorov scalind(p) = p/3.
and assuming a statistical steady state, in the limit of vanishegr 4> 1 intermittency become more important than what is
ing viscosity we are left with an inertial range in which ysyally measured in turbulent flo7] On the other hand,
II(n) is constant: the statistical properties of model 3 turn out to be robust
under changes of the parameter.
I1(n)~const. (29) In Fig. 6 we show the/,(p) exponents for the GOY

In analyzing the scaling properties of all our results we havemOdeI and model 3 at=0.5,1,2. Clearly, there is an evident

sheys s exended sell simlrig. £S5 consis of (*Te0CETEE O IEYS o o e SO cone vl o
plotting one structure function versus anotfi&(n), for b

exampid, ESS ends up mproving the precision wih which %10 T DST11 1 periect sareemert wih e phc
scaling exponents can be measured in true turbulent flowgf the single-triagl system Thegrobustnesé of model 3 witr){
[3,4] and in shell model§15]. 9 y ' ’

We have applied ESS analysis to two kinds of fit: respect to variation i, gives this model an important role

10g2[S,(N)]  vs  l0g[Sy(n)] and  log[S(m)] Vs among the possible shell models of turbulence.
log,[25(n)], where

+2 Re(fTup ") +(f Uy *)] (28)

B. The N dependence
Ep(n)=(|H(n)/kn|p’3>. (30) Concerning the dependence on the scale parametee
have performed an exploratory study by fiximg=1 and
In all our simulations we have found the two sets of expo-taking\ =1.5 and 2.5 in model 3. For the case witk-2.5
nents coinciding within the numerical and statistical errors. the {(p) exponents are still stuck to the previous values at
Figure 5 shows the€(p)'s of model 3, compared with A=2. On the other hand, for the cade=1.5 we found a
those of the GOY model with the same parametetsl and  weak discrepancy, comparable with the one founLifj for
A =2 (corresponding to the classical choice, which conservethe GOY model. The issue of what happens in the limit
the analog of the 3D helicily The scaling is nearly the same. A—1 (the so-called continuum limitis one of the most in-
Indeed, we argued in Sec. IV that both models have a fortriguing problems that must be analyzed in both cases: the
ward energy flux; what turned out to be different was theGOY model and model 8see Sec. Vl
exchange of helicity among shells, together with a different In Fig. 7 we show three sets of exponents obtained for
sensitivity on the parameter connected to this second in- different choices oi for both model 3 and the GOY model.
variant. What occurs is a strong similarity far=1; never- The origin and significance of the weak spreading in the
theless, we expect a different behavior when this parameteralues of(p) is far from being understood. By changing
is allowed to vary. N\, one changes the ratio between adjacent shells and there-
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3.0 , ‘ This PDE warrants a deeper study for many reasons. First,
— GOY model (1,1.4) let us note that the continuum limit is highly nonreversible,
------------ GOY model (1,2) i.e., trying to return to a logarithmically equispaced shell
e = structure, one does not recover the original equatid8s
—-— model 3(1,2) =" = Second, the continuum model shows an unexpected univer-
207 —-— model 3(1,25) =" sality: It is the limit of three models that have very different
. behaviors al>1. Third, even in the continuum there are
1 two conserved quantitiggn the unforced and inviscid limit
corresponding to the continuum analogous of energy and
10 8 generalized helicity:
e= [ u P, H,= [ e i),
00 . ‘ . . (34
0.0 2.0 4.0 6.0 8.0
: p where the, apparently unusudlk/k integration step comes

from the original logarithmically equispaced shell structure.

FIG. 7. {(p)’s of the GOY model and model 3 for difierent L€t us remark that the most interesting difference between
parameters setsa(\). « is always kept equal to 1. Thg(p)’'s  the continuum expressiaB83) and the analog for the original
(p=1, ...7) for thethree GOY cases are taken frdii7]. Notice =~ GOY model is that now ir(33) helicity conservation is also
that for one value ok (A=1.5) our numerically evaluatef{p)'s  well defined. This was not the case for the continuum GOY
are slightly different from those found in the GOY model and in model. The apparent paraddrmodel 1 is formed by two
model 3 for othein values. We are not able to conclude whether oruncorrelated GOY models when>1) is easily solved by
not this discrepancy is important. Error bars take into account botmoticing that in the continuum limit shells collapse in such a
statistical and power-law fit errors. way that the original ordering is destroyed. This limiting

procedure introduces a coupling between the two submodels.

fore how viscous and inertial ranges match together. This This drastic difference with the GOY continuum case sug-
nontrivial matching might interfere also with the determina-gests the possibility that this alternative set of PDEs has a
tion of the scaling exponen{26]. much richer dynamics than the corresponding GOY PDEs. In

The\ dependence in all these shell models is, however, ghat case it is indeed quite easy to realize that PDEs are
very important open question due to the obvious interest ifintegrable along the characterist{@8] (at least for the case
having a PDE describing the continuum limk--1) of the  of real variables The solutions have a burstlike shape with
energy transfer. In the following section we derive the equakolmogorov scaling, reaching infinitk at finite time (for
tion for the continuum limit of all four models and we zero viscosity. Whether or not Eqg33) are more interesting
present some proposal for further investigations. is still an open question.

As for the continuum limit of model 4 we need to go the

VI. THE CONTINUUM LIMIT second order in thé expansion to obtain

As anticipated in the preceding section, one of the most
interesting and still unexplored aspects of GOY-like shell
models is their dynamics in the continuum lif@&7]. For the
continuum limit we intend the limit when the separation be-
tween shells goes to one, i.a.—1,

au™ (k) =ik[ 16k?(au™)%+2k2u ™ ggu™
+12a+2)kutgut +(a+2)%(ut)?]*
—vk?u™ +f(k). (35)

In this case the continuum limit is much more similar to what
should be the continuum limit of a shell model describing 2D
turbulence. The only two conserved quantities are both posi-
tive definite and coincide with energy and with a generalized
enstrophyQ,. A much more detailed investigation of both
models is postponed to a future study.

Ko+ 1= MKy~ (14 O)k,, (3D

where we have defined=exp(6)~1+ 5+0(5). In the limit
(31) we can expand tha, set as

u(kn+m):u(kn)+5mkn‘9ku(kn)+o(52)- (32)
VIl. CONCLUSION
Taking into account the equivalent expansions for the
a,b,c coefficients(see Table )l and after some simple alge-
bra one realizes that all three modémsodels 1, 2, and )3
lead to the same expression in the continuum, namely,

In this paper a detailed investigation of a different class of
helical shell models derived from the helical decomposition
of interactions between Fourier modes in Navier-Stokes
equations has been investigated. Four distinct types of shell
models are identified, each conserving two inviscid quadratic
quantities analogous to energy and helicity in the three-
dimensional Navier-Stokes equations. Two of these four
models(models 1 and ¥coincide with the 3D and 2D ver-
sions of one of the most studied shell models, the GOY
model, that is, these versions of the GOY model have statis-

dut(k)=ik[4ku gu™+2kut g u”+(2+ a)utu"

—au u” *—vk?ut +1(Kk). (33

The corresponding equation for tle s is obtainable from
(33) by changing all helicity indices.
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tical properties that match three- and two-dimensional turbuNavier-Stokes equations. For example, could one recognize
lence, respectively. when significant back transfer of energy, such as in models 2
The other two model¢models 2 and Bshow different and 4, might occur? Could one recognize instances where
and peculiar properties. Most of the numerical results predifferent signs of the sensibility of helicity can be identified,
sented in this paper concern model 3, which has been fourglich as in models 1 and 37
to be more stable under changes of its free parameters than In addition, there are some serious questions coming from
the original GOY model. The different feature of model 2 statistical studies of turbulence that must also be addressed in
identified in preliminary simulations is the presence of a sig-this process. Note that extrapolating strongly dissipative ef-
nificant backward energy transfer, which leads to possiblyfects such as intermittency using the usual arguments of ab-
strong deviations from the Kolmogorov scaling. A detailedsolute equilibrium behaviof31,25 seems to fail for this
study of model 2 is planned for the futuf29]. Why such class of shell model. Indeed, starting from the analysis of
different and severe truncations of Navier-Stokes equationabsolute equilibrium, one should conclude that by changing
yield such a variety of dynamical behavior is certainly thea, and therefore the dimension of the second invariant, the
most stimulating result to develop from this study. Also, theinertial properties in the dissipative case should change. This
crucial role played by inviscid invariants, especially in theis definitely true in the GOY model, but definitely false in
presence of two simultaneous transferred quantities, is comrmodel 3.
firmed. Some concern has been expressed that shell models with
The main result presented here is the strong universalitpnly one or two paths for the cascade to follow are too
shown by model 3 at varying the physical dimension of thestrongly constrained to properly represent the turbulent cas-
second invariant. This can be partially understood by invok-cade. For example, by increasing the number of modes and
ing the tendency of each single shell to transfer helicityinteractions per shell, nonintermittent behavior is obtained
backward and forward simultaneously, leading to a net vanf32,33. This is generally understood as due to the existence
ishing of helicity flux. There is nothing from these studies of of multiple paths for the cascade to follow. Since the full
uncoupled chains, that is, models 1-4 are not coupled, tblavier-Stokes equations could be viewed as a shell model
suggest any preference between models 1 and 3. Without theith a very large number of modes per shell, why do the
effects of intermittency inherent in shell models, a two-pointstatistics of turbulence resemble the single-path GOY model
closure based on the helicity decomposition discussed hefer model 3 instead? What this might suggest is that there is
[30] suggests a preference for model 1, which is the GOYsome type of prescribed path that the cascade in turbulence
model. A better understanding of why model 3, from all thefollows that would be analogous to the two models. What
possible types of intermittent statistics, has exactly the samguides this path in Fourier space might be physical space
statistics as found in Navier-Stokes equations could help restructures such as vortex tudés34] or singularitied 35,36].
solve some of these issues. Further, by comparison with the other models in the class
The longer term objective of the program established herstudied here one might understand that the GOY model and
is to provide a basis for direct numerical simulations of tur-model 3 represent simply the preferred path.
bulence and analyses of those simulations. The premise is
that if shell models_ with just a few p_aths are reproducing ACKNOWLEDGMENTS
some aspect of the intermittent dynamics of turbulence, some
signature of these paths should exist in full simulations. Our It is a great pleasure for us to thank D. Holm, D. Lohse, L.
hope is that the rich behavior of the four models studied her&adanoff, G. Paladin, and A. Vulpiani for interesting discus-
could help identify what this signature might be in the sions.
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