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In this paper a class of shell models is studied, defined in terms of the interactions of two complex dynamical
variables per shell, transporting positive and negative helicity, respectively. Following a decomposition into
helical modes of the velocity Fourier components of Navier-Stokes equations@F. Waleffe, Phys. Fluids A4, 350
~1992!#, classification of the helical interactions of the three modes in each triad leads to four different types of
shell models. Free parameters are fixed by imposing the conservation of energy and of a ‘‘generalized helicity’’
Ha in the inviscid and unforced limit. Fora51 this nonpositive invariant looks exactly like helicity in the
Fourier-helical decomposition of the Navier-Stokes equations. Long numerical integrations are performed,
allowing the computation of the scaling exponents of the velocity increments and energy flux moments. The
dependence of the models on the generalized helicity parametera and on the scale parameterl is also studied.
Partial differential equations are finally derived in the limit when the ratio between shells goes to one.

PACS number~s!: 47.27.Eq

I. INTRODUCTION

One of the most intriguing problems in three-dimensional
~3D! turbulence is related to the understanding of the dy-
namical mechanism triggering and supporting the energy
cascade from large to small scales. Following the Richardson
scenario that energy should be transferred downward in
scales, Kolmogorov@1# postulated that the energy cascade
should follow a self-similar and homogeneous process en-
tirely dependent on the energy transfer rate. This idea, plus
the assumption of local isotropy and universality of the small
scales, eventually led to a precise prediction on the statistical
properties of the increments of turbulent velocity fields, that
is, dv( l );uv(x1 l )2v(x)u, where at distancesl depends
solely on the dissipation or energy transfere( l ) over scales
l in the manner predicted by Kolmogorov@1#
dv( l );@ l e( l )#1/3. From this the scaling of moments of
dv( l ), the structure functions, can be determined in terms of
the statistics ofe( l ),

Sp~ l ![^@dv~ l !#p&5Cp^@e~ l !#p/3& l p/3, ~1!

whereCp are constants and the scalel is supposed to be in
the inertial range, i.e., much smaller than the integral scale
and much larger than the viscous dissipation cutoff. If
Sp( l ); l z(p) and ^ep( l )&; l t(p), then

z~p!5p/31t~p/3!. ~2!

In @1# the e( l ) statistic is assumed to bel independent, or
t(p)50, implying z(p)5p/3 ;p, in particularz(2)5 2

3 or
the energy spectrum going ask25/3. While from a qualitative
point of view Kolmogorov’s intuition was a true break-
through in the understanding of turbulence, his theory lacks
quantitative agreement with experimental measurements of
intermittency in physical space. In particular there are non-
trivial scaling corrections to the ‘‘p over 3’’ Kolmogorov

prediction for thez(p) exponents. There are many experi-
mental and numerical@2–7# results telling us that energy is
transferred intermittently.

In order to understand energy transfer dynamics and re-
lated intermittent effects, besides analytical and direct nu-
merical approaches, two other possible choices are building
simple random processes for the chaotic energy transfer
among different scales@8–11# or studying a dynamical de-
terministic model. This paper will be devoted to the study of
a different class of shell models: deterministic dynamical
models, which in the past 20 years have been particularly
successful. Shell models concentrate all the dynamical inter-
actions into a few degrees of freedom at different scales,
retaining the nonlinear structure of Navier-Stokes~NS! equa-
tions but neglecting completely their spatial location and los-
ing most of their three-dimensional vector properties. A one-
dimensional chain of interacting Fourier modes is
constructed with simplifications so strong that onlya poste-
riori can one say whether or not the model is interesting and
reliable.

The most popular shell model, the Gledzer-Ohkitani-
Yamada~GOY! model @12–18#, has been shown to predict
scaling properties forz(p) ~for a suitable choice of the free
parameters! similar to what is found experimentally. Re-
cently, it was pointed out that the GOY model conserves in
the inviscid, unforced limit two quadratic quantities. The first
quantity isenergy, while the second is, roughly speaking, the
equivalent ofhelicity in 3D turbulence@17#. It has been sug-
gested that both the GOY helicity@18# and the helicity in the
NS equations@19,20# play roles in triggering the intermittent
nature of the energy cascade.

Until recently, shell models have been derived strictly
from basic phenomenological considerations about turbu-
lence and required very strong assumptions about why the
cascade would follow the particular path proposed. From the
recent emphasis on the role played by the helicity and other
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conserved quantities in shell models@21,18#, a different class
of shell models, based upon a helical decomposition of in-
teractions between modes in the Navier-Stokes equations
@22# and less on pure phenomenology, has been suggested
@18#. In this way it is possible to obtain a second nonpositive
defined invariant closer to the definition of helicity in the
Navier-Stokes equations. The models, which have two com-
plex variables per shell, are generalizations of the GOY
model with helical structures that include all the possible
helical interactions in the Navier-Stokes equations. In fact,
two of the models can be reduced to variations of the GOY
model. The derivation of the general class of these shell
models and a study of their statistical properties will be the
focus of this paper.

Our immediate aim consists in trying to understand the
importance of the transfer of both energy and helicity in
Navier-Stokes equations by examining the nontrivial dynam-
ics shown by this different class of helical-shell models.
Eventually, we want to take what is uncovered by the differ-
ent shell models and use these properties to suggest alternate
direct simulations aimed at understanding the turbulence cas-
cade. When the stage of relating shell models to direct simu-
lations is reached, questions about the compatibility of the
properties of shell models with our understanding of the
properties of the turbulent cascade coming from statistical
studies of turbulence will arise. In anticipation of this step,
some of these points will be addressed in the Conclusion.

The outline of the paper is as follows. In Sec. II the GOY
model is reviewed. In Sec. III the different class of helical-
shell models is introduced. In Sec. IV the basic triad interac-
tions within three contiguous shells are studied. Section V
contains the results of our numerical simulations. In Sec. VI
partial differential equations~PDEs! for the continuum limit
~ratio between shells that goes to one! are derived. Conclu-
sions follow in Sec. VII.

II. THE GOY MODEL

The GOY model can be seen as a severe truncation of the
Navier-Stokes equations. It retains only one complex mode
un as a representative of all Fourier modes in the shell of
wave numbersk betweenkn5k0l

n and kn11 , l being an
arbitrary scale parameter (l.1), usually taken to be equal
to 2. The dynamics is governed by the following set of com-
plex coupled ordinary differential equations, where only cou-
plings with the nearest and next nearest shells are kept:

d

dt
un5 ikn~aun11* un12* 1bun11* un21* 1cun21* un22* !2nkn

2un

1dn,n0f , ~3!

wheren is the viscosity,f is the external forcing acting on a
large scalen0 , anda,b,c are three free parameters. By ad-
justing the time scale we can always fixa51; the possible
choices forb,c are restricted by imposing the conservation
of two quadratic quantities in the inviscid and unforced limit

W1,25(
n

z1,2
n uunu2, ~4!

wherez1,2 are the solutions of the quadratic equation

cl2z21blz1a50. ~5!

In order to stay as close as possible to the NS equations, we
require that one of the two conserved quantities is the energy,
i.e., z151,

W15E5(
n

uunu2. ~6!

If we rewrite

lb52e, l2c5e21, ~7!

we are left with only two (l ande) of the original four free
parameters. The second quadratic invariant is

W25H5(
n

~e21!2nuunu2. ~8!

The characteristics of this second invariant change by chang-
ing e: when e,1 it is not positive definite~as helicity in
three dimensions!, while if e.1 it is positive definite~as
enstrophy in two dimensions!. Expression~8! can be rewrit-
ten as

Ha5(
n

x~e!nkn
a~e,l!uunu2, ~9!

wherex(e)5sgn(e21) and the parametera is related to
e andl by

ue21u5l2a. ~10!

Our interest here is to consider how well the dynamics of
a 3D turbulent flow is reproduced by the model: Onlye in
the range 0,e,1 will be taken, in order to have a nonposi-
tive definite second invariant. Indeed, fora51 our ‘‘gener-
alized helicity’’ Ha5(n(21)nkn

auunu2 has physical dimen-
sions coinciding with the 3D Navier-Stokes helicity. The two
free parameters of the model can be taken to bel ~the ratio
between adjacent shells! anda. The two coefficientsb and
c can be rewritten as

b5l2a212l21, c52l2a22. ~11!

Such a class of models has a highly nontrivial dynamical
behavior. Intermittency of the energy transfer and multifrac-
tal nature of energy dissipation have been studied in@12–
16#.

It turns out that the values of thez(p)’s are not universal,
depending on the choice ofe and l @15,17#. Nevertheless,
Kadanoff et al. @17# verified that the scaling exponents are
invariant along the curve in the (e,l) plane where both en-
ergy and helicity are conserved, i.e., the curve at
a(e,l)51. This suggested that the second invariant plays a
crucial role in the model dynamics. More recently, Biferale
and Kerr@18# attributed to the helicity the role of triggering
the intermittent cascade of the energy from large to small
scales. These considerations, together with the observation
that this ‘‘GOY helicity’’ is only partially consistent with the
NS helicity ~i.e., it presents an asymmetry between odd and
even shells that does not have any counterpart in physical
flows!, persuaded us to study a modified shell model@18#,
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with two complex variables in each shell, carrying helicity of
opposite sign, in order to obtain a second invariant closer to
the NS helicity. In the following section we introduce this
class of shell models, whose nonlinear interactions are con-
structed on the basis of a helical decomposition of the NS
equations in the Fourier space.

III. HELICAL-SHELL MODELS

In order to introduce two helical variables per shell we
refer to the velocity field in NS equations, expanded in a
Fourier series@22#. The velocity vector can be represented in
terms of its projection on an orthogonal basis formed byk,
h1 , andh2 . The two basis vectorsh1 andh2 can be cho-
sen to be the eigenmodes of the curl operator

ik3hs5skhs , ~12!

wheres561. This corresponds to an expansion of the ve-
locity vector into helical modes

u~x!5(
k
u~k!exp~ ik•x!

5(
k

@u1~k!h11u2~k!h2#exp~ ik•x!. ~13!

The real flow velocity corresponding to the plus~minus!
mode rotates clockwise~counterclockwise! as one moves in
the direction ofk, thereby forming a left-handed~right-
handed! helix; the vorticity vector of such a flow is parallel
~antiparallel! to the velocity and the helicity is maximum
~minimum!. The kinetic energy and helicity are given by:

E5(
k
E~k!

5(
k

1
2 u~k!•u* ~k!

5(
k

@ uu1~k!u21uu2~k!u2#, ~14!

H5(
k
H~k!

5(
k

1
2 u~k!•v* ~k!

5(
k
k@ uu1~k!u22uu2~k!u2#.

Plugging Eq.~13! into the NS equations yields the dynamical
evolution for the complex amplitudesusk(k,t) (sk561)
@22#:

d

dt
usk~k!1nk2usk~k!5 (

k1p1q50
(
sp ,sq

gk,p,q~spp2sqq!

3@usp~p!usq~q!#* . ~15!

The geometric factorgk,p,q52 1
4(hsk3hsp•hsq)* can be de-

veloped and factorized

g5r
skk1spp1sqq

p
, ~16!

wherer is a function of the triad shape only@22#.
Eight different types of interaction between three modes

usk(k), usp(p), and usq(q) with uku,upu,uqu are allowed
according to the value of the triplet (sk ,sp ,sq)
5(61,61,61): Among them, only four are independent,
the coefficients of the interaction with reversed helicities
(2sk ,2sp ,2sq) being identical to those with (sk ,sp ,sq)
@22#:

~sk ,sp ,sq!5~1,2,1 ! or ~2,1,2 !,

~sk ,sp ,sq!5~1,2,2 ! or ~2,1,1 !,

~sk ,sp ,sq!5~1,1,2 ! or ~2,2,1 !,

~sk ,sp ,sq!5~1,1,1 ! or ~2,2,2 !.

~corresponding to models 1–4, respectively!. The equations
corresponding to the single interaction (sk ,sp ,sq) have the
form ~omitting viscosity and forcing!

u̇sk5r ~spp2sqq!
skk1spp1sqq

p
~uspusq!* ,

u̇sp5r ~sqq2skk!
skk1spp1sqq

p
~usqusk!* , ~17!

u̇sq5r ~skk2spp!
skk1spp1sqq

p
~uskusp!* .

Each interaction independently conserves both energy and
helicity on a single triad. The dynamical system~17! com-
posed by a single triad can be considered as the basic brick
of the semi-infinite chain leading to the transfer of energy in
turbulent flow. By studying its stability properties it is pos-
sible to understand how energy and helicity are transferred
among different wave vectors belonging to the same triad.

Following @22#, we distinguish two different kinds of dy-
namics: For the cases corresponding to the choices 1 and 3 of
the triad helicities, the unstable wave vector is the smallest
one, while for cases 2 and 4 the unstable wave vector is the
medium one. This very simple analysis suggests that by link-
ing together a series of triads we should have a forward
energy transfer for cases 1 and 3 and both forward and back-
ward ~competing! energy transfers for cases 2 and 4.

In a turbulent flow the direction of energy transfer is
dynamically controlled by the triple correlation
^usk(k)usp(p)usq(q)&. It is reasonable to argue that the sta-
tistical properties of̂ usk(k)usp(p)usq(q)& are such that the
overall direction in energy transfer coincides with the sim-
plified behavior inferred from the stability study of the single
triad ~instability assumptionin @22#!. For instance, it is easy
to estimate, by using the instability assumption, what would
be the net energy transfer in the above four cases if the
energy spectrum had the Kolmogorov scalingE(k)5k25/3
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@22#: 1 and 3, direct energy cascade from large to small
scales; 4, reverse energy cascade from small to large scales;
and 2, direct~reverse! energy cascade for local~nonlocal!
triads.

The helical decomposition of the NS equations suggested
to us the opportunity of defining a different GOY-like shell
model for each one of the above four classes. In each shell
we will have two complex dynamical variablesun

1 and
un

2 , transporting positive and negative helicity, respectively,

u̇n
15 ikn~ajun12

s1 un11
s2 1bjun11

s3 un21
s4 1cjun21

s5 un22
s6 !*

2nkn
2un

11dn,n0f
1,

u̇n
25 ikn~ajun12

2s1un11
2s21bjun11

2s3un21
2s4 1cjun21

2s5un22
2s5 !*

2nkn
2un

21dn,n0f
2, ~18!

where j51, . . . ,4 labels the four different models and the
helicity indices in the nonlinear interactions are easily found
for each of the four cases~see Table I!.

The coefficientsaj ,bj ,cj are determined by imposing, as
usual, the energy conservation

d

dt
E5

d

dt S (n ~ uun
1u21uun

2u2! D 50, ~19!

which leads to the same relation for all models:

aj1bjl1cjl
250. ~20!

By imposing also the conservation of the generalized helicity

d

dt
Ha5

d

dt(n kn
a~ uun

1u22uun
2u2!50 ~21!

we obtain different relations for the four models, respec-
tively,

a12la11b11l2~a11!c150,

a22la11b22l2~a11!c250,

a31la11b32l2~a11!c350,

a41la11b41l2~a11!c450.

Fixing aj51, one then finds the expressions for the coeffi-
cientsbj and cj in terms of the parametersl and a ~see
Table II!.

Let us remark two important facts. First, model 1 is noth-
ing but two masked and uncorrelated versions of the original
GOY model, with dynamical variables (u1

1 ,u2
2 ,u3

1 , . . . )
and (u1

2 ,u2
1 ,u3

2 , . . . ) respectively; rewriting the coeffi-

cientsb1 andc1 in terms of the usual parametersl and e,
one can easily recover the standard GOY model coefficients.
Second, model 4 is also formed by two independent sets of
variables (u1

1 ,u2
1 ,u3

1 , . . . ) and (u1
2 ,u2

2 ,u3
2 , . . . ), each of

them conserving separately a positive-definite quantity simi-
lar to enstrophy in two dimensions. Thus model 4 is equiva-
lent to two uncorrelated GOY models for 2D turbulence
@23,24#.

The fact that the model 1 is formed by two uncorrelated
GOY models is clearly due to our choice of taking only first
and second neighbor interactions. Model 4, on the other
hand, will always be the sum of two separated models for
any choice of the interacting modes composing the triads.

In the following, we will refer to the properties of model
1, intending the corresponding properties of the GOY model.
Model 4 will be studied only for completeness.

IV. ONE-TRIAD SYSTEMS

Following the instability assumption@22# that connects
the single-triad dynamics with the global statistical behavior
of a multitriads flow, we repeat the analog stability study for
the three-shell, single-triad system. By isolating three shells
of wave numbersk1 ,k2 ,k3 , we can inspect their dynamical
properties as determined by their mutual interactions. For the
positive-helicity modes we have

u̇1
15 ik1~u3

s1u2
s2!* ,

u̇2
15 ik2bj~u3

s3u1
s4!* , ~22!

u̇3
15 ik3cj~u2

s5u1
s6!* ,

where j51, . . . ,4 for thefour models. An analogous set of
equations holds for the negative-helicity modes, changing
the sign of the helicity index of all variables. This system
conserves both energy and helicity. The corresponding equa-
tions for the energies are

Ė15A,

Ė25bjlA, ~23!

Ė35cjl
2A,

TABLE I. Helicity indices of Eqs.~18! for the four models.

Model s1 s2 s3 s4 s5 s6

1 1 2 2 2 2 1

2 2 2 1 2 1 2

3 2 1 2 1 2 2

4 1 1 1 1 1 1

TABLE II. Coefficients of Eqs.~18! for the four models.

Model b c

1 l2a2la

la111l

2l212l2a21

la111l

2 l2a1la

2la111l

2l212l2a21

2la111l

3 2l2a2la

la111l

2l211l2a21

la111l

4 l2a2la

la112l

1l212l2a21

la112l
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whereA52k1Im@(u3
s1u2

s2u1
1)1(u3

2s1u2
2s2u1

2)#.
As found in @22#, we know that the unstable mode is the

smallest mode for interactions 1 and 3 and the medium mode
for interactions 2 and 4. In order to have a deeper under-
standing of the energy transfer dynamics, we have performed
several integrations of Eqs.~22!, using the parameter values
l52, a51, and k15224 and different initial conditions.
This analysis, performed on all four models, gives the fol-
lowing results: For model 1, mode 1 gives energy equally to
modes 2 and 3; for model 2, mode 2 gives more energy to
mode 3 than to mode 1; for model 3, mode 1 gives more
energy to mode 2 than to mode 3; and for model 4; mode 2
gives more energy to mode 1 than to mode 3. These energy
exchanges are summarized in Fig. 1.

Behaviors 1 and 4 have already been noticed by Ditlevsen
and Mogensen@25# for the 3D and the 2D GOY model,
respectively. It is also interesting to investigate how these
properties are modified when varying thea parameter in the
models. Considering that in Eq.~23! the sum of the three
right-hand sides must be zero and normalizing to one the
energy rate on the unstable shell, one can evaluate how the
energy sharing between the other shells is affected by chang-
ing a ~see Fig. 2!.

In model 1 there is a clear dependence ona. As this
parameter increases, more and more energy is captured by
mode 2. Fora.1, the energy gained by mode 2 become
greater than the energy gained by mode 3, leading to a more
local energy transfer.

Model 3 is remarkably independent ofa, as we shall see
in the following. This fact has very important consequences
for the intermittent dynamics of the complete shell model.

Model 2 has a trend analogous to that of model 1, but
with more drastic consequences: Ata;1.27 the mode that
receives most of the energy from the unstable mode is 1
instead of 3. This would suggest a change in the direction of
the flux from downward to upward.

In model 4 the mode that receives most of the energy
remains mode 1, for all values ofa, with a consequent re-
verse energy flux in all cases~as it must be, since model 4 is
a couple of 2D GOY models!.

What emerges from this analysis is that the behavior of
the models seems to depend on the choice of the free param-
eter a, sometimes with strong consequences~such as the
change in direction of the flux in model 2!. The only remark-
able exception is the very low dependence of model 3.

Concerning helicity, we can consider the equations

Ḣ1~a!5B,

Ḣ2~a!5h2bjl
a11B, ~24!

Ḣ3~a!5h3cjl
2~a11!B,

where B52k1
a11Im@(u3

s1u2
s2u1

1)2(u3
2s1u2

2s2u1
2)# and h2

andh3 depend on the particular model considered~see Table
III !. By performing the same analysis done for the energy
evolution, one can conclude that helicity is transferred in
different ways, as depicted in Fig. 3.

Since helicity is a nonpositive definite quantity, forward
~backward! transfer of positive~negative! helicity is equiva-
lent to backward~forward! transfer of negative~positive! he-

FIG. 2. Variations witha of the energy rates
in the one-triad system for the four models. For
each modelĖ is shown for the two modes that
receive energy from the unstable mode, whose
energy rate is always kept equal to 1.~a! Ė2

~solid line! andĖ3 ~dashed line! vsa for model 1
(Ė151); ~b! Ė1 ~solid line! andĖ3 ~dashed line!
vsa for model 2 (Ė251); ~c! Ė2 ~solid line! and
Ė3 ~dashed line! vs a for model 3 (Ė151); ~d!
Ė1 ~solid line! and Ė3 ~dashed line! vs a for
model 4 (Ė251).

FIG. 1. Energy exchange in the one-triad system for the four
models. Dashed~solid! arrows point towards the mode that receives
less~more! energy.
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licity. In view of this trivial remark, arrows in Fig. 3 have
only a visual value, indicating how helicity~with its own
sign! is redistributed among shells.

Let us note that models 1 and 3 show a very different
pattern in the helicity exchange among shells. This can be
the explanation of the very different scaling properties shown
by the two models when varyinga ~see Sec. V!. For ex-
ample, we could argue that the dramatic dependence of the
energy exchange on thea parameter in models 1 and 2,
together with the well defined direction of the helicity trans-
fer, can somehow enhance the role played by the second
invariant with respect to the other two models. In the next
section we will check these arguments by performing a nu-
merical study of Eq.~18!.

V. NUMERICAL ANALYSIS „MODEL 3 …

In this section we will concentrate on the study of the
statistical properties of model 3 compared with the already
known results for the GOY model~model 1!. Model 3, dif-
ferent from model 2, shows for any value ofa a forward
energy transfer. We integrated Eqs.~18! for model 3 using
the standard parametersa51, l52, k05224, f6

55(11 i )31023, n051, andn51027 and a total number of
shells equal toN522 and 26. In the numerical integration
we used a fourth-order Runge-Kutta method, with a time
step varying betweendt51025 ~for the simulations with 22
shells! and 1026 ~for the cases with 26 shells!. Most of the
results presented here are for the caseN522, with a number
of iterations of the order of hundred of millions, which cor-
responds roughly to several thousands of eddy turnover
times at the integral scale. Stationarity is checked by moni-
toring the total energy evolution.

The quantities we have looked at are the structure func-
tions

Sp~n!5^uũnup&, ~25!

where ũn5Auun
1u21uun

2u2. In Fig. 4 we show log2@Sp(n)#
as a function of log2(kn) for p51, . . . ,8. There is a well
defined inertial range where the structure functions follow a
power law

Sp~n!;kn
2z~p! . ~26!

Let us note that in this model, at variance with the GOY
model, there are no period-three oscillations superposed on
the power-law scaling. In this case a linear least-square fit
allows one to compute the scaling exponentsz(p) with an
uncertainty smaller than in the GOY model.

Nevertheless, in order to have a better estimate of the
z(p)’s one can study the moments of a particular third-order
quantity: the mean energy flux through thenth shell

P~n!52knImF ^un12
s1 un11

s2 un
1&1b3^un11

s3 un
1un21

s4 &

1
1

l
^un11

s1 un
s2un21

1 &1^un12
2s1un11

2s2un
2&

1b3^un11
2s3un

2un21
2s4 &1

1

l
^un11

2s1un
2s2un21

2 &G ,
~27!

wheres1, s2, s3, ands4 for model 3 are taken from Table I.
As pointed out by Pisarenkoet al. @16#, one can write for this
quantity the equivalent of Kolmogorov’s four-fifths law, ex-
pressing the balance between energy input and energy dissi-
pation in the system.

Considering the energy variation over the firstn shells

FIG. 3. Helicity exchange in the one-triad system for the four
models. Dashed~solid! arrows point towards the mode that receives
less~more! helicity.

FIG. 4. Logarithm log2@Sp(n)# of the structures functions of
model 3 vs log2(kn). The parameters values area51 andl52.

TABLE III. Factors in Eqs.~24! for the four models.

Model h2 h3

1 21 11
2 21 21
3 11 21
4 11 11
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d

dt F (
m51

n

~^uum
1u2&1^uum

2u2&!G
522n (

m51

n

km
2 ~^uum

1u2&1^uum
2u2&!1P~n!

12 Re@^ f1un0
1* &1^ f2un0

2* &# ~28!

and assuming a statistical steady state, in the limit of vanish-
ing viscosity we are left with an inertial range in which
P(n) is constant:

P~n!;const. ~29!

In analyzing the scaling properties of all our results we have
always used extended self-similarity~ESS!. ESS consists of
plotting one structure function versus another@S3(n), for
example#. ESS ends up improving the precision with which
scaling exponents can be measured in true turbulent flows
@3,4# and in shell models@15#.

We have applied ESS analysis to two kinds of fit:
log2@Sp(n)# vs log2@S3(n)# and log2@Sp(n)# vs
log2@S3(n)#, where

Sp~n!5^uP~n!/knup/3&. ~30!

In all our simulations we have found the two sets of expo-
nents coinciding within the numerical and statistical errors.

Figure 5 shows thez(p)’s of model 3, compared with
those of the GOY model with the same parametersa51 and
l52 ~corresponding to the classical choice, which conserves
the analog of the 3D helicity!. The scaling is nearly the same.
Indeed, we argued in Sec. IV that both models have a for-
ward energy flux; what turned out to be different was the
exchange of helicity among shells, together with a different
sensitivity on the parametera connected to this second in-
variant. What occurs is a strong similarity fora51; never-
theless, we expect a different behavior when this parameter
is allowed to vary.

A. The a dependence
For thea dependence of the models we have explored

two other different values:a50.5 and 2 ~keeping fix
l52). It is well known @15,17,18# that the GOY model
shows a strong dependence of its statistical properties on the
a value. For example, ifa, 2

3, the dynamics is attracted
toward a fixed point with Kolmogorov scaling,z(p)5p/3.
Fora.1 intermittency become more important than what is
usually measured in turbulent flows@17# On the other hand,
the statistical properties of model 3 turn out to be robust
under changes of thea parameter.

In Fig. 6 we show theza(p) exponents for the GOY
model and model 3 ata50.5,1,2. Clearly, there is an evident
dependence of thez(p)’s on a for the GOY case, while for
model 3 the different exponents coincide within numerical
errors. This behavior is in perfect agreement with the phe-
nomenological speculations argued in Sec. IV from the study
of the single-triad system. The robustness of model 3, with
respect to variation ina, gives this model an important role
among the possible shell models of turbulence.

B. The l dependence
Concerning the dependence on the scale parameterl, we

have performed an exploratory study by fixinga51 and
takingl51.5 and 2.5 in model 3. For the case withl52.5
the z(p) exponents are still stuck to the previous values at
l52. On the other hand, for the casel51.5 we found a
weak discrepancy, comparable with the one found in@17# for
the GOY model. The issue of what happens in the limit
l→1 ~the so-called continuum limit! is one of the most in-
triguing problems that must be analyzed in both cases: the
GOY model and model 3~see Sec. VI!.

In Fig. 7 we show three sets of exponents obtained for
different choices ofl for both model 3 and the GOY model.
The origin and significance of the weak spreading in the
values ofz(p) is far from being understood. By changing
l, one changes the ratio between adjacent shells and there-

FIG. 5. z(p)’s of the GOY model~from @17#! and model 3. The
parameters values area51 andl52. Error bars for data concern-
ing model 3 take into account both statistical and power-law fit
errors.

FIG. 6. z(p)’s of the GOY model and model 3 for different
parameters sets (a,l). l is always kept equal to 2. Thez(p)’s
(p51, . . . ,7) for the GOY case~1,2! are taken from@17#. Notice
that for model 3 all data sets collapse on the same curve for differ-
ent a values. Error bars for data concerning model 3 take into
account both statistical and power-law fit errors.
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fore how viscous and inertial ranges match together. This
nontrivial matching might interfere also with the determina-
tion of the scaling exponents@26#.

Thel dependence in all these shell models is, however, a
very important open question due to the obvious interest in
having a PDE describing the continuum limit (l→1) of the
energy transfer. In the following section we derive the equa-
tion for the continuum limit of all four models and we
present some proposal for further investigations.

VI. THE CONTINUUM LIMIT

As anticipated in the preceding section, one of the most
interesting and still unexplored aspects of GOY-like shell
models is their dynamics in the continuum limit@27#. For the
continuum limit we intend the limit when the separation be-
tween shells goes to one, i.e.,l→1,

kn115lkn;~11d!kn , ~31!

where we have definedl5exp(d);11d1O(d2). In the limit
~31! we can expand theun set as

u~kn1m!5u~kn!1dmkn]ku~kn!1O~d2!. ~32!

Taking into account the equivalent expansions for the
a,b,c coefficients~see Table II! and after some simple alge-
bra one realizes that all three models~models 1, 2, and 3!
lead to the same expression in the continuum, namely,

] tu
1~k!5 ik@4ku2]ku

112ku1]ku
21~21a!u1u2

2au2u2#*2nk2u11 f ~k!. ~33!

The corresponding equation for theu2s is obtainable from
~33! by changing all helicity indices.

This PDE warrants a deeper study for many reasons. First,
let us note that the continuum limit is highly nonreversible,
i.e., trying to return to a logarithmically equispaced shell
structure, one does not recover the original equations~18!.
Second, the continuum model shows an unexpected univer-
sality: It is the limit of three models that have very different
behaviors atl.1. Third, even in the continuum there are
two conserved quantities~in the unforced and inviscid limit!
corresponding to the continuum analogous of energy and
generalized helicity:

E5E dk

k
~ uu1u21uu2u2!, Ha5E dk

k
ka~ uu1u22uu2u2!,

~34!

where the, apparently unusual,dk/k integration step comes
from the original logarithmically equispaced shell structure.
Let us remark that the most interesting difference between
the continuum expression~33! and the analog for the original
GOY model is that now in~33! helicity conservation is also
well defined. This was not the case for the continuum GOY
model. The apparent paradox~model 1 is formed by two
uncorrelated GOY models whenl.1) is easily solved by
noticing that in the continuum limit shells collapse in such a
way that the original ordering is destroyed. This limiting
procedure introduces a coupling between the two submodels.

This drastic difference with the GOY continuum case sug-
gests the possibility that this alternative set of PDEs has a
much richer dynamics than the corresponding GOY PDEs. In
that case it is indeed quite easy to realize that PDEs are
integrable along the characteristics@28# ~at least for the case
of real variables!. The solutions have a burstlike shape with
Kolmogorov scaling, reaching infinitek at finite time ~for
zero viscosity!. Whether or not Eqs.~33! are more interesting
is still an open question.

As for the continuum limit of model 4 we need to go the
second order in thed expansion to obtain

] tu
1~k!5 ik@16k2~]ku

1!212k2u1]k
2u1

112~a12!ku1]ku
11~a12!2~u1!2#*

2nk2u11 f ~k!. ~35!

In this case the continuum limit is much more similar to what
should be the continuum limit of a shell model describing 2D
turbulence. The only two conserved quantities are both posi-
tive definite and coincide with energy and with a generalized
enstrophyVa . A much more detailed investigation of both
models is postponed to a future study.

VII. CONCLUSION

In this paper a detailed investigation of a different class of
helical shell models derived from the helical decomposition
of interactions between Fourier modes in Navier-Stokes
equations has been investigated. Four distinct types of shell
models are identified, each conserving two inviscid quadratic
quantities analogous to energy and helicity in the three-
dimensional Navier-Stokes equations. Two of these four
models~models 1 and 4! coincide with the 3D and 2D ver-
sions of one of the most studied shell models, the GOY
model, that is, these versions of the GOY model have statis-

FIG. 7. z(p)’s of the GOY model and model 3 for different
parameters sets (a,l). a is always kept equal to 1. Thez(p)’s
(p51, . . . 7) for thethree GOY cases are taken from@17#. Notice
that for one value ofl (l51.5) our numerically evaluatedz(p)’s
are slightly different from those found in the GOY model and in
model 3 for otherl values. We are not able to conclude whether or
not this discrepancy is important. Error bars take into account both
statistical and power-law fit errors.
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tical properties that match three- and two-dimensional turbu-
lence, respectively.

The other two models~models 2 and 3! show different
and peculiar properties. Most of the numerical results pre-
sented in this paper concern model 3, which has been found
to be more stable under changes of its free parameters than
the original GOY model. The different feature of model 2
identified in preliminary simulations is the presence of a sig-
nificant backward energy transfer, which leads to possibly
strong deviations from the Kolmogorov scaling. A detailed
study of model 2 is planned for the future@29#. Why such
different and severe truncations of Navier-Stokes equations
yield such a variety of dynamical behavior is certainly the
most stimulating result to develop from this study. Also, the
crucial role played by inviscid invariants, especially in the
presence of two simultaneous transferred quantities, is con-
firmed.

The main result presented here is the strong universality
shown by model 3 at varying the physical dimension of the
second invariant. This can be partially understood by invok-
ing the tendency of each single shell to transfer helicity
backward and forward simultaneously, leading to a net van-
ishing of helicity flux. There is nothing from these studies of
uncoupled chains, that is, models 1–4 are not coupled, to
suggest any preference between models 1 and 3. Without the
effects of intermittency inherent in shell models, a two-point
closure based on the helicity decomposition discussed here
@30# suggests a preference for model 1, which is the GOY
model. A better understanding of why model 3, from all the
possible types of intermittent statistics, has exactly the same
statistics as found in Navier-Stokes equations could help re-
solve some of these issues.

The longer term objective of the program established here
is to provide a basis for direct numerical simulations of tur-
bulence and analyses of those simulations. The premise is
that if shell models with just a few paths are reproducing
some aspect of the intermittent dynamics of turbulence, some
signature of these paths should exist in full simulations. Our
hope is that the rich behavior of the four models studied here
could help identify what this signature might be in the

Navier-Stokes equations. For example, could one recognize
when significant back transfer of energy, such as in models 2
and 4, might occur? Could one recognize instances where
different signs of the sensibility of helicity can be identified,
such as in models 1 and 3?

In addition, there are some serious questions coming from
statistical studies of turbulence that must also be addressed in
this process. Note that extrapolating strongly dissipative ef-
fects such as intermittency using the usual arguments of ab-
solute equilibrium behavior@31,25# seems to fail for this
class of shell model. Indeed, starting from the analysis of
absolute equilibrium, one should conclude that by changing
a, and therefore the dimension of the second invariant, the
inertial properties in the dissipative case should change. This
is definitely true in the GOY model, but definitely false in
model 3.

Some concern has been expressed that shell models with
only one or two paths for the cascade to follow are too
strongly constrained to properly represent the turbulent cas-
cade. For example, by increasing the number of modes and
interactions per shell, nonintermittent behavior is obtained
@32,33#. This is generally understood as due to the existence
of multiple paths for the cascade to follow. Since the full
Navier-Stokes equations could be viewed as a shell model
with a very large number of modes per shell, why do the
statistics of turbulence resemble the single-path GOY model
~or model 3! instead? What this might suggest is that there is
some type of prescribed path that the cascade in turbulence
follows that would be analogous to the two models. What
guides this path in Fourier space might be physical space
structures such as vortex tubes@5,34# or singularities@35,36#.
Further, by comparison with the other models in the class
studied here one might understand that the GOY model and
model 3 represent simply the preferred path.
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