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Three-dimensional anisotropic turbulence in classical fluids tends towards isotropy and homo-
geneity with decreasing scales, allowing –eventually– the abstract model of “isotropic homogeneous
turbulence” to be relevant. We show here that the opposite is true for superfluid 4He turbulence
in 3-dimensional counterflow channel geometry. This flow becomes less isotropic upon decreasing
scales, becoming eventually quasi 2-dimensional. The physical reason for this unusual phenomenon
is elucidated and supported by theory and simulations.

All turbulent flows in nature and in laboratory exper-
iments are anisotropic on the energy injection scales [1].
Nevertheless the model of “isotropic homogeneous turbu-
lence” had been shown to be highly relevant and success-
ful in predicting the statistical properties of turbulent
flows on scales much smaller than the energy injection
scales (but still larger than the dissipative scales). The
reason for this lies in the nature of the nonlinear terms
of the equations of fluid mechanics; these terms tend
to isotropize the flow upon cascading energy to smaller
scales, redistributing the anisotropic velocity fluctuations
among smaller scales with a higher degree of isotropy.
Eventually, at small enough scales, the flow becomes suf-
ficiently isotropic to allow the application of the ideal
model of isotropic homogeneous turbulence [2]. In the
present Letter, we show that in turbulent superfluid 4He
in a channel geometry with a temperature gradient along
the channel, the opposite phenomenon takes place: the
flow becomes less and less isotropic upon decreasing the
scales. Eventually, the flow becomes quasi 2-dimensional
with interesting and unusual properties as detailed be-
low.

An easy way to account for this difference in tendency
towards isotropy is furnished by the two-fluid model of
turbulence in superfluid 4He [3–5]. Denote by us and un

the superfluid and normal-fluid turbulent velocities, re-
spectively. In counterflow geometry, with a temperature
gradient directed along the channel, the mean superfluid
velocity Us is directed towards the heater, and the mean
normal velocity Un away from the heater. Importantly,
one finds that there exists a mutual friction force fns be-
tween these two components [4–9], proportional to the
difference in velocities, i.e fns ∝ (un − us). As long as
the fluctuations between these two velocities are corre-
lated, this force remains small. Upon loss of correlation
this force becomes large and will lead to a suppression of
the corresponding fluctuations. Consider then two types
of velocity fluctuations, one elongated along the channel
and the counterflow and the other orthogonal to them,
see Fig. 1. Due to the mean flow in opposite directions,
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FIG. 1: Schematics of the superfluid 4He channel counterflow.
The normal-fluid eddies (solid red lines) and the superfluid ed-
dies (the blue dashed lines) are swept by the corresponding
mean velocities Un and Us away and towards the heater, re-
spectively. The resulting counterflow velocity Uns is oriented
along the positive x-direction. The streamwise-elongated ed-
dies have longer overlap time than the cross-stream-elongated
eddies.

the velocity fluctuations oriented orthogonally will have a
short overlap time and will decorrelate quickly, whereas
the velocity fluctuations along the counterflow will re-
main correlated for a longer time. The result will be a
strong suppression of the former type of velocity fluctu-
ations with respect to the latter. This will eventually
lead to a turbulent flow in which the fluctuations consist
mostly of the stream-wise component, while the energy
is concentrated in the plane orthogonal to the counter-
flow direction. The rest of this Letter will elaborate this
picture by using an analytical approach and will support
it using direct numerical simulations (DNS).

The basic equations. The two-fluid model describes su-
perfluid 4He of density ρ as a mixture of two interpen-
etrating fluid components: an inviscid superfluid and a
viscous normal-fluid. The densities of the components
ρs, ρn : ρs + ρn = ρ define their contributions to the
mixture. The fluid components are coupled by a mu-
tual friction force, mediated by the tangle of quantum
vortices [4–8] of a core radius a0 ≈ 10−8 cm and a fixed
circulation κ = h/M ≈ 10−3 cm2/s, where h is Planck’s
constant and M is the mass of the 4He atom [10]. A
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complex tangle of these vortex lines with a typical inter-
vortex distance [5] ` ∼ 10−4−10−2 cm is a manifestation
of superfluid turbulence.

To proceed it is sufficient to employ coarse-grained dy-
namics, following the gradually-damped version[11] of
the Hall-Vinen-Bekarevich-Khalatnikov (HVBK) equa-
tions for counterflow turbulence [11–15]. It has a form
of two Navier-Stokes equations for the turbulent velocity
fluctuations uj(r, t) of the normal-fluid (j = n) and the
superfluid (j = s):[ ∂
∂t

+ (uj + Uj) ·∇
]
uj −

∇pj
ρj

= νj ∆uj + fj + ϕj ,(1)

coupled by the mutual friction forces fj in the mini-
mal form [16]: fs ' Ωs (un − us), fn ' Ωn (us − un),
Ωs = ακL, and Ωn = ρsΩs/ρn. The mutual fric-
tion frequency Ωs depends on the temperature-dependent
dimensionless mutual friction parameter α(T ) and on
the vortex line density L. In Eqs. (1) pj are the pres-
sures of the normal-fluid and the superfluid components.
The kinematic viscosity of the normal-fluid component
is νn = η/ρn with η being the dynamical viscosity of
4He [17]. The energy sink in the equation for the super-
fluid component, proportional to the effective superfluid
viscosity, νs, accounts for the energy dissipation at the
intervortex scale `, due to vortex reconnections and en-
ergy transfer to Kelvin waves [5, 11]. The contributions,
involving the reactive (dimensionless) mutual friction pa-
rameter α′, that renormalizes the nonlinear terms, were
omitted due to its numerical smallness [17].

The large-scale motion in the thermal counterflow is
sustained by the temperature gradient, created along the
channel. Here we use the fact that the center of the chan-
nel flow at large enough Reynolds numbers can be con-
sidered as almost space-homogeneous [18]. To simplify
the analysis we consider homogeneous turbulence under
periodic boundary conditions and mimic the steering of
turbulence at large scales by random forces ϕj . Equa-
tions (1) describe the motion of two fluid components
in the range of scales between the forcing scale and the
intervortex distance.

Statistics of anisotropic turbulence. The most general
description of homogeneous superfluid 4He turbulence at
the level of second-order statistics can be done in terms
of the three-dimensional (3D) Fourier-spectrum of each
component and the cross-correlation functions:

(2π)3δ(k − k′)Fαβij (k) =
〈
vαi (k)v∗βj (k′)

〉
, (2)

where vj(k) is the Fourier transform of uj(r); the indices
i and j refer to the fluid components; the vector indices
α, β = {x, y, z} denote the Cartesian coordinates and
∗ stands for complex conjugation. In the following, we
choose the counterflow velocity, Uns = Un −Us along the
x̂-direction as depicted in Fig.(1). Next denote the trace
of any tensor according to Fjj(k) ≡

∑
α Fααjj (k). With

this notation, the kinetic energy density per unit mass Ej
reads

Ej ≡
1

2

〈
|uj(r)|2

〉
=

1

2

∫
Fjj(k)d3k

/
(2π)3 . (3)

Due to the presence of the preferred direction, defined
by the counterflow velocity, the counterflow turbulence
has an axial symmetry around the x̂ axis. Then Fij(k)
depends only on the two projections k‖ = kx and k⊥ =√
k2y + k2z of the wave-vector k, being independent of the

angle φ in the ⊥-plane, orthogonal to Uns. This allows us
to define a set of two-dimensional (2D) objects that still
contain all the information about 2nd-order statistics of
the counterflow turbulence

Fij(k‖, k⊥) ≡ k⊥
4π2
Fij(k‖, k⊥) . (4a)

Another way to represent the same information is to in-
troduce a polar angle cos(θ) = (k,Uns)/|k||Uns|, and to
use spherical coordinates:

F̃ij(k, θ) ≡
k

4π2
Fij(k cos θ, k sin θ) . (4b)

Physical origin of the strong anisotropy. The physical ori-
gin of the strong anisotropy in the counterflow turbu-
lence is best exposed by considering the balance equation
for the 2D energy spectra F̃nn(k, θ), F̃ss(k, θ). For that
we start with Eqs. (1), follow the procedure described in
Ref. [15] and average the resulting equations for the 3D
spectra over the azimuthal angle ϕ. Finally, for the nor-
mal component we get:

∂F̃nn(k, θ, t)

∂t
+divk[εn(k)] = −Dmf

n (k, θ)−Dkv
n (k, θ),

Dmf
n (k, θ) = Ωn[ F̃nn(k, θ)− F̃ns(k, θ)

]
, (5)

Dkv
n (k, θ) = 2 νnk

2 F̃nn(k, θ) ,

where divk[εj(k)] is the transfer term due to inertial non-
linear effects, Dmf

n (k, θ) describes the rate of energy dissi-
pation by the mutual friction, while Dkv

n (k, θ) stands for
the rate of dissipation by the kinematic viscosity. A sim-
ilar equation is obtained for the superfluid component by
replacing n with s everywhere. For a qualitative analysis
of the origin of the anisotropy in our system it is impor-
tant to develop a closure of the cross-correlation function
F̃ns(k, θ) in Dmf

j (k, θ) in terms of the spectral properties
of each fluid component and of the counterflow velocity.

According to Ref. [12]:

F̃ns(k, θ) = AB/[B2 + (k ·Uns)
2] . (6)

Here A = ΩsF̃nn(k, θ)+ΩnF̃ss(k, θ) and B can be approx-
imated as B = Ωn+Ωs, as shown in [15]. We further sim-
plify F̃ns(k, θ) in Eqs. (6) by noting [15] that when two
components are highly correlated, the cross-correlation
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FIG. 2: (a) The spherical energy spectra Ejj(k) of the normal-fluid (circles) and the superfluid (squares), (b) the cross-

correlation function R(k) and (c) the angular dependence of the cross correlation function R̃(k, θ) for the coflow and the
counterflow. In panel (c), the data for the coflow all coincide with the isotropic result. For the counterflow, red lines correspond

to the R̃(k, θ) averaged over the wavenumber range 10 ≤ k < 20, green lines – to averaging over 20 ≤ k < 60 and blue lines –
to the averaging over 60 ≤ k ≤ 80 (labeled as k10, k20, and k60, respectively). Note the log-linear scale.

may be accurately represented by the corresponding en-
ergy spectra. For wavenumbers where the components
are not correlated, as is quantified by the decorrelation
function D(k, θ) [12], F̃ns(k, θ) is small and the accuracy
of its representation is less important. We therefore get
a decoupled form of the cross-correlation:

F̃ns(k, θ) = F̃jj(k, θ)D(k, θ) , (7a)

D(k, θ) =
[
1 +

(kUns cos θ

Ωn + Ωs

)2]−1
, (7b)

and finally determine the rate of energy dissipation due
to mutual friction:

Dmf
j (k, θ) = ΩjF̃jj(k, θ)

[
1−D(k, θ)

]
. (7c)

Equations (7) are the central analytical result of this pa-
per.

The impact of Uns on the anisotropy follows from the
closure (7c). Indeed, for small k or even for large k
with k almost perpendicular to Uns (i.e cos θ � 1),
D(k, θ) ' 1, the normal-fluid and superfluid velocities
are almost fully coupled and the dissipation rate is small:
Dmf
j (k, θ) � Ωj . In this case, the mutual friction does

not significantly affect the energy balance and we ex-
pect the energy spectrum F̃jj(k, θ) to be close to the
Kolmogorov-1941 (K41) prediction EK41(k) ∝ k−5/3 for
both components. For large k and with cos θ ∼ 1, the
velocity components are almost decoupled D(k, θ) � 1,
and the mutual-friction energy dissipation is maximal:
Dmf
j (k, θ) ≈ ΩjF̃jj(k, θ). This situation is similar to that

in 3He with the normal-fluid component at rest [13]. In
such a case, we can expect that the energy dissipation by
mutual friction strongly suppresses the energy spectra,
much below the K41 expectation EK41(k). Combining
all these considerations, we expect the energy spectra
F̃jj(k, cos θ) to become more anisotropic with increasing
k, with most of the energy concentrated in the range of
small cos θ, i.e. in the orthogonal plane.

Numerical results. Direct numerical simulations of the
coupled HVBK Eqs. (1) were carried out using a fully de-
aliased pseudospectral code with a resolution of 2563 col-
location points in a triply periodic domain of size L = 2π.
To reach a steady state flow, velocity fields of the normal
and superfluid components are stirred by two indepen-
dent random Gaussian forces ϕs and ϕn with the force
amplitudes |ϕ| = 0.5 for both components, localized in
the band kϕ ∈ [0.5, 1.5]. The time integration is per-
formed using 2-nd order Adams-Bashforth scheme with
viscous term exactly integrated.

We have decided to focus on the temperature
T = 1.85 K, at which the densities and viscosities of
the normal-fluid and superfluid components are close:
ρs/ρn = 1.75 and νs/νn = 1.07. The mutual friction
parameter for this temperature is α = 0.18. The simu-
lations were carried out with both the normal-fluid and
superfluid viscosity νn = νs = 0.003. Other parame-
ters of the simulations were chosen based on the relevant
dimensionless relations: the Reynolds numbers and the
normal-fluid turbulent intensity w

Rej = (ujT)(/νjk0) , w = Uns/u
n
T . (8)

Here ujT =
√
〈uj2〉 is the root mean square (rms) of the

turbulent velocity fluctuations, k0 = 1 is the outer scale
of turbulence. To emphasize the importance of the coun-
terflow, we compare the results with the simulations for
the so-called coflow with the rest of the parameters be-
ing the same. In the coflow, the two components of the
mechanically driven 4He, being coupled by the mutual
friction force, move in the same direction with the same
mean velocities, Uns = 0. The statistics in the coflow
configuration is known to be similar to that of classi-
cal isotropic turbulence [14, 19–21]. In our simulations,
the values of the Reynolds numbers in the counterflow
are Ren = 1051 and Res = 1056, while in the coflow,
Ren = 1179 and Res = 1181. The rms velocities of both
components in both flows are usT = unT = 3.5. The dimen-
sionless values of the mutual friction frequency Ωs = 20
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FIG. 3: (a)The superfluid component energy spectrum Fss(k‖, k⊥) in the counterflow. (b) The tensor decomposition of the
normalized spherical energy spectra Kα

j (k) for the normal-fluid (circles) and the superfluid (squares). (c) The superfluid velocity
components uxs (r)(top) and uys (r)(bottom). The uzs (r) (not shown) is similar to uys (r). The velocity magnitude is color-coded
with red denoting positive and blue denoting negative values.

and the counterflow velocity Uns = 15.4 correspond to
the case with both components strongly turbulent and
strongly coupled. The results on the temperature and
Ωs dependence of the energy spectra will be reported
elsewhere. The flow conditions were controlled by the
simulations of the uncoupled equations without counter-
flow (Uj = Ωj = 0), which represent here the classical
hydrodynamic isotropic turbulence (CHT).

The energy spectra are influenced by the viscous dis-
sipation, by the dissipation due to mutual friction and
by the counterflow-induced decoupling. To clarify the
role of each of these factors, we first ignore the expected
anisotropy and compare in Fig. 2(a) the normal-fluid and
superfluid energy spectra Enn(k) and Ess(k) and the
cross-correlation Ens(k), integrated over a spherical sur-
face of radius k, i.e. over all directions of vector k:

Eij(k) =

∫
Fij(k)

dφ d cos θ

(2π)3
. (9)

The corresponding normalized cross-correlation functions

R(k) = 2Ens(k)/[Enn(k) + Ess(k)] (10)

are shown in Fig. 2(b). The effect of viscous dissipation
is clearly seen in the spectra of the uncoupled compo-
nents, corresponding to classical hydrodynamic turbu-
lence (marked “CHT”, black lines). The spectra almost
coincide, since at T = 1.85 K the viscosities are close. In
the coflow, the strongly coupled components are well cor-
related at all scales and move almost as one fluid. Note
the additional dissipation due to mutual friction, leading
to further suppression of the spectra compared to the
uncoupled case. The presence of the counterflow velocity
leads to a sweeping [12] of the two component’s eddies in
opposite directions by the corresponding mean velocities.
The result is the decorrelation of the components turbu-
lence velocities, especially at small scales, for which the
overlapping time is very short, see Fig. 2(b). The dissi-
pation by mutual friction is very strong in this case, with
both Ω and the velocity difference being large, leading to

very strongly suppressed spectra, with Enn(k) ≈ Ess(k).
This behavior was predicted by the theory [15], based on
the assumption of spectral isotropy. However the spheri-
cally integrated spectra and cross-correlations cannot re-
veal any properties connected to the anisotropic action
of the mutual friction force. To account for the spectral
anisotropy we plot in Fig. 2(c) the normalized 2D cross-
correlations

R̃(k, θ) = 2F̃ns(k, θ)/[F̃nn(k, θ) + F̃ss(k, θ)]. (11)

Given the discrete nature of the k-space in DNS, we av-
erage them over 3 bands of wavenumbers. Leaving aside
k ≈ k0, influenced by the forcing, we average R̃(k, θ) over
the k-ranges 10 ≤ k < 20, 20 ≤ k < 60 and 60 ≤ k ≤ 80.

The first observation here is that the cross-correlation
for the coflow are isotropic at all scales, see thin hor-
izontal lines, marked “coflow”. On the other hand, in
the counterflow, the cross-correlations are largest for
cos θ ≈ 0 and fall off very fast with decreasing angle,
slower for small k (red lines, labelled k10) and faster as
k become larger (green, k20, and blue lines, k60, respec-
tively). Such a strong decorrelation of the components
velocities leads to an enhanced dissipation by mutual fric-
tion in the counterflow direction, such that most of the
energy is contained in the narrow range cos θ . 0.1, near
the plane orthogonal to Uns.

Indeed, the superfluid energy spectrum Fss(k‖, k⊥),
shown in Fig. 3(a), is strongly suppressed in the k|| di-
rection, while it decays slowly in the orthogonal plane.
A similar phenomenon of the creation of quasi-2D tur-
bulence is observed in a strongly stratified atmosphere
[22–24] and in rotating turbulence [25–27], in which there
exists a preferred direction defined by gravity or by a ro-
tation axis. The difference between these examples and
the present counterflow lies in the nature of the velocity
field. The leading velocity components in the classical
flows are in a plane orthogonal to the preferred direc-
tion. Moreover, at small scales the isotropy is restored
[23, 24]. On the contrary, in 4He counterflow, the domi-
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nant velocity component is oriented along the counterflow
direction, with the anisotropy becoming stronger with de-
creasing scales, as we show in Fig. 3(b). Here we plot the
tensor components of the spherical spectra as the ratios

Kα
j (k) ≡ 3Eααjj (k)/Ejj(k). (12)

The factor 3 was introduced to ensure that for isotropic
turbulence Kα

j (k) = 1. Expectedly, the coflow (the
almost horizontal lines) is isotropic at all scales, ex-
cept for the smallest wavenumbers. On the other hand,
for the counterflow turbulence, the contribution of the
Kx
j (k) component (shown by red lines) is dominant and

monotonically increases with k from the isotropic level
Kx
j (k0) ≈ 1 to the maximal possible level Kx

j (k) ≈ 3.
Therefore the small-scale counterflow turbulence consists
mainly of vxj (k) velocity fluctuations. The contribution of
vyj and vzj fluctuations for k & 10 is negligible. Summa-
rizing Fig. 3, the leading contribution to the spectra of
small scale counterflow turbulence comes from the tur-
bulent velocity fluctuations with only one stream-wise
projection that depends on the two cross-stream coordi-
nates {y, z}: ux(y, z). Such type of turbulence can be
visualized as narrow jets or thin sheets with velocity, ori-
ented along the counterflow and randomly distributed in
the ⊥-plane. Indeed the velocity components uys , shown
in Fig. 3c, and uzs have only large scale structures, while
uxs has elongated structures at various scales. The energy
spectra, corresponding to uxn(y, t) were recently measured
experimentally [28, 29] and were found to agree with pre-
dictions [15] in the range of scales where the fluid com-
ponents are well correlated, while decaying faster than
predicted at smaller scales.

Summary. The energy spectra of the superfluid 4He
counterflow turbulence become more anisotropic upon
going from large scales toward scales about the intervor-
tex distance. This strong anisotropy distinguish it from
the classical turbulent flows that become more isotropic
as the scale decreases. Most of the turbulent energy
become concentrated in the plane, orthogonal to the
counterflow direction. Furthermore, contrary to classi-
cal quasi-2D turbulent flows in rotation or in stratified
configurations, where dominant velocity components lie
in the same plane, the only surviving velocity component
at small scales is preferentially oriented along the coun-
terflow direction. The selective suppression of the or-
thogonal velocity fluctuations has its origin in the strong
anisotropy of the energy dissipation by mutual friction,
resulting from the angular dependence of the compo-
nents’ cross-correlation.
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