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By means of high-resolution numerical simulations, we compare the statistical properties of ho-
mogeneous and isotropic turbulence to those of the Navier-Stokes equation where small-scale vortex
filaments are strongly depleted, thanks to a non-linear extra viscosity acting preferentially on high
vorticity regions. We show that the presence of such smart small-scale drag can strongly reduce
intermittency and non-Gaussian fluctuations. Our results pave the way towards a deeper under-
standing on the fundamental role of degrees of freedom in turbulence as well as on the impact of
(pseudo)coherent structures on the statistical small-scale properties. Our work can be seen as a first
attempt to develop smart-Lagrangian forcing/drag mechanisms to control turbulence.

PACS numbers:

INTRODUCTION

Fluid dynamics turbulence is characterized by inter-
mittent and non-Gaussian fluctuations distributed over a
wide range of space- and time-scales [1–6]. In the limit of
infinite Reynolds numbers, Re, the number of dynamical
degrees of freedom tends towards infinity, #dof ∼ Re9/4,
where Re = U0L0/ν with ν the viscosity, U0 and L0

the typical velocity and large-scale in the flow, respec-
tively. Are all these degrees of freedom equally relevant
for the dynamics? Do extreme events depend only on
some large-scale flow realizations? Can we selectively
control some degrees-of-freedom by applying an active
forcing and/or drag? These are key questions that we
start to answer by using high resolution numerical stud-
ies of the three dimensional Navier-Stokes equations. The
long term goal is twofold. First, we are interested to have
a new numerical tool to ask novel questions concern-
ing the statistical and topological properties of specific
flow structures. Second, we aim to develop useful (opti-
mal) control strategies to suggest forcing protocols that
may be implemented in laboratory experiments, where
the flow can be seeded with millions of passive or active
particles, preferentially tracking special flow regions [7–
14]. For example, we nowadays know how to actively
control spinning properties of small magnetic particles
[15, 16], how to blow-up small bubbles by sound emis-
sions [17–19] and/or how to assemble micro-metric ob-
jects with a self-adaptive shape depending on the flow
rheological properties [20]. Recent developments in 3d-
printing and micro-engineering technologies promise that
new tools will be available in the next few years for fluid
control or fluid measurements in the laboratory. We be-
lieve that these new tools could be capable to do, in a
“smart” way, what dummy and passive polymers already
do in controlling drag and flow correlations [21–23]. In
this paper, we perform a first attempt to modify/control
fluid turbulence by adding a small-scale forcing only on
intense vorticity regions. We start from the case where

the forcing is always detrimental, i.e. removes energy.
The idea is to have a numerical experiment mimicking
the effects of small-particles that preferentially track high
vorticity regions (i.e. light bubbles) and that can be ac-
tivated such as to spin or blow-up and increase the drag
locally. This is only one potential protocol over a wide
and broad range of other applications to many others
flow conditions at high and low Reynolds.
Method. We consider the Navier Stokes equations

(NSE) for an incompressible flow, subjected to two dif-
ferent types of forcing mechanisms:

∂t u + u ·∇u = −∇P + ν∆u + F− f c (1)

where F is a standard large-scale stirring mecha-
nism while f c is a second forcing which acts –in our
implementation– as a control term on the small-scales
dynamics. In particular, in this paper, we will only con-
sider an external smart-drag, proportional to the velocity
f c(x, t) = c(x, t)u(x, t) and acting such as to preferen-
tially depleting only those regions where vorticity is im-
portant

c(x, t) = β

(
tanh [(ω(x, t)− ωp)] + 1

2

)
, (2)

where ω(x, t) = |∇×u|, is the vorticity intensity, ωp is
one threshold above which the control term is strongly ac-
tive and β is an overall rescaling factor of the control am-
plitude, hence β = 0 would correspond to the usual NSE
without control. From its definition it is possible to see
that f c(x, t) is always close to zero except inside struc-
tures dominated by the intense vortex filaments, where
the tanh become positive and equal to 1. The region
where f c(x, t) is acting can be tuned by changing the
threshold ωp, whose value has been fixed as a percentage
of the maximum vorticity, ωmax, measured in the sta-
tionary state of a simulation without the control term,
hence:

ωp = pωmax
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FIG. 1: (Top row) Left: visualization of vorticity amplitude
in a 2d plane, from a simulation of NSE without control term
(β = 0). Right: isocontour regions where the vorticity am-
plitude is above 20% of its maximum value measured over
the flow volume. (Bottom row) Same visualizations obtained
from a simulation where the control term is acting on the
dynamics of the NSE. Left: visualization of enstrophy plane.
Right: contour regions where the vorticity amplitude is above
the control forcing threshold fixed at ωp = 0.2ωmax. The con-
trol forcing amplitude used in the simulation presented here
is β = 5. Both simulations are performed with a number of
collocation points N = 10243.

with 0 < p ≤ 1. In the transition region around the
isoline where ω(x, t) = ωp the control function (2) will
introduce compressibile effects in (1). Therefore, before
adding the control term to (1) one needs to project it on
its solenoidal component.

The projection operation breaks the local positive def-
initeness of the control term, which remains purely dissi-
pative only globally as an average on the whole volume.

Results. In Fig. 1 we present two visualizations of a
plane of the vorticity intensity in the stationary state for
two simulations, one for the standard NSE (top panel)
and one with the control term acting on the flow (bot-
tom panel). The two planes in Fig. 1 are warped upwards
depending on the vorticity values, in this way it is possi-
ble to see that the intense peaks developed by the NSE
are pruned by the small-scales forcing in the controlled
dynamics. From the figure it is qualitatively evident that
vorticity is strongly depleted when the small-scale drag
is acting, as expected. In the same figure, next to the
vorticity planes, we show a 3D rendering of the contour
regions where the vorticity value is above 20% of its max-
imum value, for the case of the uncontrolled NSE (top
panel) and the contour regions where the vorticity value
is above the forcing threshold, p = 0.2, for the case of the
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FIG. 2: Main panel: energy spectra averaged on time
for different simulations at changing the control threshold,
ωc/ωmax = p, with a fixed amplitude, β = 5. Notice that
β = 0 corresponds to the uncontrooled full NSE. (Inset) En-
ergy fluxes from the non-linear term, Πnl, from the control
term, Πfc , and from the viscous dissipation, Πν , normalized
to the mean energy input, εf . Here p = 0.2 and β = 5.

controlled flow (bottom panel). From the volume render-
ing we can appreciate that the control forcing tends to
homogenise the spatial distribution of the intense vor-
ticity events while they result more intermittent and lo-
calized when the dynamics is not controlled. It is also
interesting to observe that the volume fraction where the
forcing is acting is very small even though in those visu-
alizations we are using a broad threshold in terms of the
vorticity values, p = ωp/ωmax = 0.2.
Energy balance. As already mentioned, the control

term has a dissipative global effect on the turbulent dy-
namics which goes in addition to the normal dissipation
produced by the kinematic viscosity. In this way, a sec-
ond possible channel is opened where the energy, injected
by the large scales forcing, can be dissipated. The total
energy balance equations becomes:

1

2
∂t〈u2〉 = ν〈∆u2〉 − 〈f c · u〉+ 〈u · F〉. (3)

wehere we have the total kinetic energy, E = 1
2 〈u2〉, the

viscous dissipation εν = ν〈∆u2〉, the dissipation induced
by the control mechanism, εc = 〈f c · u〉, and the energy
injection rate ε

f
= 〈F · u〉, and with 〈•〉 we intend an

average on the whole volume.
Numerical Simulations. To assess the statistical
properties of Eq. (1) a set of direct numerical simula-
tion have been performed at changing resolution and the
control parameters, namely β and ωp. We used a pseudo-
spectral code with resolutions up to 10243 collocation
points in a triply periodic domain Ω of size L = 2π.
Full 2/3-rule de-aliasing is implemented (see Table I for
details). The homogeneous and isotropic external force,
F, is defined via a second-order Ornstein-Uhlenbeck pro-
cess [24]. All simulations where control is on, have been
produced starting from a stationary configuration of the
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Control N β p εf ν

Off 256 - - 2.2 5.2× 10−3

Off 1024 - - 5.5 8× 10−4

On 256 [0.1÷ 50] [0.1÷ 0.7] 2.2 5.2× 10−3

On 1024 50 [0.05÷ 0.6] 5.5 8× 10−4

TABLE I: Parameters used in the simulations. Control: indi-
cates if the control term (−c(x, t)u(x, t)) is applied (On) or
not (Off) in Eqs. (1); N is the number of collocation points
in each spatial direction; β is the amplitude of the control
term; p is the percentage of the maximum vorticity above
which the control term is active ωp = pωmax; εf is the mean
energy input injected by the large scales forcing; ν is the kine-
matic viscosity. The amplitude of Ornstein-Uhlenbeck forcing
is f0 = 0.16 and f0 = 0.14 for N = 256 and N = 1024 re-
spectively; the correlation time is τf = 0.6 for N = 256 and
τf = 0.23 for N = 1024. The forcing is active on the window
kf = [0.5 : 1.5] for resolution N = 256 and on kf = [0.5 : 2.5]

for N = 1024. The Kolmogorovo scale is η = (ν3/ε)1/4, where
ε is the dissipation rate. Resolution is kept at η/dx ≥ 0.7.

uncontrolled case β = 0 and all statistical quantities are
calculated after that a new stationary state is achieved.

In Fig. 2 we present the time average of the instanta-
neous energy spectra:

E(k, t) = 0.5
∑

k<|k|<k+1

|û(k, t)|2 (4)

which are almost independent of the control parameter,
p. Only for the smallest value of ωp, with p ∼ 0.2, we
can notice a small energy depletion at large wavenum-
bers. However, in all cases, the inertial range scaling
properties are unchanged with the slope very close to the
Kolmogorov’s prediction k−5/3. In the inset of the same
figure we show for the controlled simulation with p = 0.2
and β = 5, the balance of the energy flux produced by the
non-linear term, Πnl(k), by the viscous drag, Πν(k) and
by the control forcing, Πfc(k). In the stationary state we
can write the Fourier space energy balance equation as;

Πnl(k) + Πfc(k) + Πν(k) = εf , (5)

where εf is the large scales energy input of the stochas-
tic forcing. From the inset of Fig. 2 we can see that
the control forcing is mainly active in the high wavenum-
bers where its contribution equals the one from the vis-
cous dissipation, while at small/intermediate wavenum-
bers the non-linear interactions remain the leading one.

Configuration space statistics. In the following
we analyse the statistics of the longitudinal velocity in-
crements defined as δru = (u(x + r) − u(x)) · r/r. In
particular we are interested in the assessment of the ef-
fects produced by the control term on the intermittent
properties of the NSE. To do that we study the scaling
properties of the longitudinal structure functions (SF)
defined as:

Sp(r) ≡ 〈[δru]p〉 ∼ rζp . (6)

Intermittency is measured by the departure of the scal-
ing exponents from the Kolmogorov 1941 prediction,
ζp = p/3 in the inertial range, η < r < L0. In par-
ticular, any systematic non-linear dependency on the or-
der of the moment will induce a scale-dependency in the
flatness, defined by the dimensionless ratio among fourth
and second order SF:

F (r) =
S4(r)

[S2(r)]
2 . (7)

The flatness for the controlled turbulent flow at resolu-
tion N = 10243 is presented in Fig. 3, for the case with
p = 0.2, compared with the uncontrolled case β = 0 and
with the uncontrolled case but with an a-posteriori prun-
ing of all events where ω > ωc. The latter measurement
is introduced in order to understand how much the dy-
namical pruning imposed by the evolution of eqn. (1)
is different from a simple conditioning on small-vorticity
events taken on the full uncontrolled NSE. As one can
see comparing the empty circles (full β = 0 NSE) with
the empty squares (active control with p = 0.2) the ef-
fects on the flatness are dramatic, with both a 100% re-
duction on the smallest scale and a decrease of the scal-
ing slope in the inertial range. Similarly, by compar-
ing the results with the a-posteriori conditioning (empty
triangles) we see that indeed it is crucial to have a dy-
namical control to deplete intermittency. To our knowl-
edge this is the first evidence that intermittency can be
strongly depleted in a dynamical way with a dynamical
criterion based on configuration-space filtering, at dif-
ference from what obtained by fractal pruning in [25–
28]. In Fig. 4 we show the effects of the vorticity con-
trol point-by-point in the flow volume, by plotting the
standardised probability density function (PDF) for the
instantaneous and local enstrophy, |∇ × u|2, and shear
intensity, S =

∑
ij(∂iuj + ∂jui)

2, for one case of active
control, p = 0.2, and compared with the no-control,β = 0
case. There are two interesting things to remark. First,
when the control is active, the far tails of the vorticity
are markedly depleted, with almost a sharp cut-off at
ω ∼ ωc, which is the clear signature that the control
is able to deplete intense vorticity events and to not al-
low them to grow again during the evolution. This fact
is also good news from a sort of min-max approach, it
means that the amount of control needed is not too high,
being very efficient in stopping the formation of strong
vorticity. The second interesting point to remark is that
the preferential depletion on vorticity is indeed changing
the topological distribution of extreme events in the flow:
from the standard case where they are mainly given by
high vorticity where no control exist to the case where
the extreme fluctuations (far right tails) are more domi-
nated by strong shear events.
Drag reduction. Going back to the observation of

the mean quantities, it is interesting to estimate the ef-
fect of the smart forcing on the drag coefficient of the
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FIG. 3: Log-log plot of the flatness, F (r), versus r measured
from 30 different snapshots in time during the evolution of a
system with size N = 10243. The black lines with open cir-
cles (NSE) are data from a simulation without control term
(β = 0), while the red line with open squares (active-control)
are data from the controlled NSE, using a forcing threshold
ωc/ωmax = 0.2 and an amplitude β = 50. The black line with
full circles (NSE High-Visc) is, again, the NSE without con-
trol term but with a higher viscosity value in a way to have
the same total drag coefficient, dtot, of the controlled simu-
lation. The last curve shown, red line with empty triangles
(a-posteriori), is the flatness measured from the same simula-
tion without dynamical control but skipping from the average
all regions in the volume where the vorticity module is above
the forcing threshold ωp/ωmax = 0.2. In all curves, errors are
evaluated as the standard deviation from 30 configurations.
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(open symbols) and shear intensity, S (full symbols) measured
from simulations of standard NSE (black line) and from the
system controlled with forcing threshold, ωp/ωmax = 0.2 and
amplitude β = 5.

system. Indeed the new smart-control allows the system
to preferentially dissipate energy inside the vortical re-
gions where it is active. To quantify its effect we go back
to the balance (3) and split the total drag, dtot, in two
contributions, dν and dc as follows:

dtot = dν + dc, dν =
εν L0

u3rms
; dc =

εc L0

u3rms
(8)

In Fig. 5 we show the mean drag coefficients as a function
of the vorticity threshold ωp = p ωmax for the simulations
with N = 2563 collocation points and with a moderate
control amplitude, β = 5. Fig. 5 shows that the drag
contribution coming from the control term is negligible
up to a threshold p ∼ 0.6, instead moving towards lower
thresholds the dissipation produced by the small-scales
term increases and, around p = 0.2, the kinematic vis-
cosity and the control dissipations become of the same
order. Moving further the threshold towards lower vor-
ticity values the control term becomes the leading contri-
bution responsible for the energy dissipation. In this way,
a drag enhancement is observed for the smaller threshold
value and the overall drag coefficient is increased almost
by a factor 2 compared to the free NSE at p = 1.
Conclusions. We have presented a first implementa-
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FIG. 5: Drag coefficient for the viscous dissipation dν (green
line), the control forcing dc (black line), and their sum dtot
(cyan line). Results are shown as a function of the thresh-
old, ωp/ωmax = p, and the volume fraction, V , (upper scale)
where the control forcing is acting. Data are measured from
simulations with N = 2563 and a control forcing amplitude
β = 5. Errors are evaluated as the standard deviation of the
temporal fluctuations observed for the different quantities.

tion of a smart small-scale control scheme for turbulent
flows, based on preferentially damping high vorticity re-
gions. In this study, we have shown that the extra drag
exerted on the vortex filaments produce a strong reduc-
tion on configuration-based intermittency, with depletion
of fat tails and rare events in the vorticity field. The
topological relative weight of rotational and extensional
regions is also affected abruptly. The overall damping of
vortex filaments leads to a sort of drag increase. This
study open the way to explore other control Lagrangian
mechanism, e.g. based on the heavy-light particles pref-
erential concentration and/or other smart-particles that
can be self activated or activated by external control
fields, as for the case of magnetic objects. Optimisation
of the particles’ properties to track specific flow region
can also be attempted in order to enhance/deplete only
specific fluctuations [29–33].
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