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We study droplet dynamics and breakup in generic time-dependent flows via a multicomponent
lattice Boltzmann algorithm, with emphasis on flow start up conditions. We first study droplet
breakup in a confined oscillatory shear flow via two different protocols. In one setup, we start from
an initially spherical droplet and turn on the flow abruptly (“shock method”); in the other protocol,
we start from an initially spherical droplet as well, but we progressively increase the amplitude of
the flow, by allowing the droplet to relax to the steady state for each increase in amplitude, before
increasing the flow amplitude again (“relaxation method”). The two protocols are shown to produce
substantially different breakup scenarios. The mismatch between these two protocols is also studied
for variations in the flow topology, the degree of confinement and the inertia of the fluid. All results
point to the fact that under extreme conditions of confinement the relaxation protocols can drive
the droplets into metastable states, which break only for very intense flow amplitudes, but their
stability is prone to external perturbations, such as an oscillatory driving force.

I. INTRODUCTION

Fluid dynamics phenomena, involving droplet dynamics, deformation, and breakup, are prominent in the field of
microfluidics and even in general complex flows at larger scales. Beyond the practical importance in a variety of
concrete applications [1–4], they are also relevant from the theoretical point of view, due to the complexity of the
physics involved [5–9]. Droplet deformation is characterized via the capillary number,

Ca =
ηsRG

σ
, (1)

where ηs is the dynamic viscosity of the solvent, R the radius of the initially undeformed spherical droplet, σ the
surface tension and G the shear rate intensity [6, 10]. The value of Ca at break up is denoted by Cacr, the critical
capillary number. A lot of attention has been dedicated to droplet deformation and breakup in stationary flows [5, 11,
12], and, in particular, the effect of the degree of confinement on the flow dynamics [13–15]. The degree of confinement is
parametrized by the ratio α = 2R/L, where L denotes the shear wall separation. Confinement is frequently encountered
in experimental setups of droplet dynamics in simple shear flows [13–24] and can be enhanced by changing α. There
are some theoretical models which were developed to capture the experimental phenomenology of confined droplet
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dynamics, analytical models [25, 26], which extended the theory by Taylor [6, 27], and phenomenological models [28–
30]. The validity of the analytcial models were verfied in Ref. [31] and the phenomenological models in Ref. [32].
Of particular interest are the results in Ref. [14], which show that, for non vanishing α breakup differs substantially
from the unconfined shear case both qualitatively and quantitatively for all viscosity ratios χ = ηd/ηs, where ηd,s is
the dynamic viscosity of the droplet (d) or solvent (s) phase. Additionally, the dependency of the critical capillary
number Cacr on the droplet’s inertia is a central area of interest [8, 33–53], with the degree of inertia being given by
the Reynolds number,

Re =
GR2

νs

, (2)

where νs is the kinematic viscosity of the solvent. Furthermore, breakup is influenced by the start up conditions,
as demonstrated in experimental and theoretical studies [54–58]. This phenomenon is rather subtle and can have
different effects depending on the protocol in use. The dependency on the rate of increase of the shear rate G was
confirmed by [54] via supporting calculations based on the model by Taylor [6]. A theoretical model developed by
Hinch et al. [55] shows that stable droplet equilibria below the critical capillary number Cacr breakup are only possible
for a sufficiently low increase in G. Furthermore, Renardy [58] has shown that although these stable equilibria require
a slow increase in the shear rate G they are unique and do not depend on the rate of change of G. We stress that even
though the effect of start up conditions on break up has been investigated [54–58], the role of confinement with varying
start up conditions on droplet dynamics and break up is not clear. Moreover, it is unclear how break up is affected, if
the flows are time-dependent [59–63]. The aim of the present paper is to take a step further in this direction. With the
use of numerical simulations we show that at capillary numbers close to breakup, confinement allows for the existence
of a metastable flow configuration next to the solution of the Stokes equation found in Ref. [58]. This metastable state
is prone to perturbations and collapses to the Stokes solution, if we have a time-dependent flow with a sufficiently
large shear frequency. It should be stressed that this result is unique to the case of a confined droplet in an oscillatory
shear, as this metastable configuration is not present neither for an unconfined droplet in an oscillatory shear flow nor
in the case of an oscillatory elongational flow. Our studies can be seen as an extension to Refs. [34, 58], where the
influence of inertia on droplet breakup was studied, whereas we deal with time-dependent cases, where the temporal
rate of change of the shear intensity is comparable to the droplet relaxation time,

td =
ηdR

σ
. (3)

This work is a follow up study of [63], where stable time-dependent droplet dynamics was investigated via a multi-
component lattice Boltzmann scheme and a phenomenological model [28, 29]. It was found that droplet deformation
depended strongly on an external timescale, the oscillation frequency of an oscillatory shear flow, for a confined
droplet. For relatively large oscillation periods close to the value of td the droplet is hardly deformed by the solvent
shear flow, which was described as the “transparency effect” in Ref. [63]. The findings in Ref. [63] have been validated
by comparing the lattice Boltzmann results to the results obtained via a phenomenological droplet deformation model,
the Maffettone-Minale model [28, 29].

This paper is organized as follows: Sec. II gives a brief overview on the lattice Boltzmann algorithms and models in
use. In Sec. III, we outline the general details of droplet break up with an emphasis on confined systems and simple
shear flows. In Sec. IV, we investigate break up in a time-dependent (oscillatory) shear flow under strong confinement.
A mismatch between two protocols, involving different start up conditions of the flow, leads us to investigate break up
conditions under the influence of inertia (Sec. V) and the effect of confinement (Sec. VI) Moreover, we check whether
the protocol mismatch depends on the flow topology (Sec. VII).
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II. LATTICE BOLTZMANN ALGORITHMS AND METHODS

We use lattice Boltzmann simulations [64, 65] to study droplet break up in confined and time-dependent shear
and elongational flows. The lattice Boltzmann method (LBM) has been extensively used in the field of microfluidics,
including extensions to accommodate nonideal effects [66], coupling with polymer micro-mechanics [67] and thermal
fluctuations [68, 69]. LBM has also been used widely for the modeling of droplet break up behavior [41, 44, 70–
77]. To model multicomponent systems with the lattice Boltzmann Model (LBM) we need to account for interfacial
forces between different fluid components. This can be achieved with the Shan-Chen multicomponent model (SCMC)
[78, 79], a diffuse interface model in the framework of the LBM. The hydrodynamical quantities, mass and momentum
densities, can then be described as:

ρ(x, t) =
∑
σ

∑
i

gσi (x, t),

ρ(x, t)u(x, t) =
∑
σ

∑
i

gσi (x, t)ci, (4)

where gσi (x, t) denotes the populations in the LBM model for the fluid component σ and ci are the lattice velocities.
For example, for a two component system with species A and B the index σ can take the values σ = A and σ = B.
The interaction at the fluid-fluid interface [80, 81] is given by:

Fσ(x, t) = −ρσ(x, t)
∑
σ′ 6=σ

N∑
i=1

Gσ,σ′wiρσ′(x, t + ci)ci, (5)

where ρσ(x, t) is the density field of the fluid component denoted by σ. Gσ,σ′ is a coupling constant for the two
phases σ and σ′ at position x and wi are the lattice isotropy weights. We use the same open flow boundary conditions
as outlined in Ref. [63]. To use arbitrary boundary values of the density ρ(x, t) and velocity u(x, t) fields of the solvent
fluid we use ghost populations (or halos), which store the equilibrium distribution functions geqi of the boundary
density and velocity fields. The equilibrium distribution functions geqi are given by:

geqi (x, t) = ρb(x, t)wi

(
1 + 3 ci · u +

9

2
(ci · u)2 − 3

2
u2

)
, (6)

with wi being the lattice weights for the set of lattice vectors ci, and ρb(x, t) the density field at the simulations
domain boundary. Thus the ghost distributions update the boundary nodes during the LBM streaming step and
effectively simulate an open flow boundary given by the chosen density ρb(x, t) and velocity u(x, t) fields of the outer
fluid [63]. The streaming and collision steps are given by the lattice Boltzmann equation:

gi(x + ci∆t, t+ ∆t)− gi(x, t) = Ω({gi(x, t)}), (7)

where Ω({gi(x, t)}) is the collision operator depending on the whole (local) set of lattice populations and ∆t is
the simulation time step. For MRT (multi-relaxation timescale) the collision operator is linear and contains several
relaxation times linked to its relaxation modes (depending on the lattice stencil) [82]. One relaxation time τ is directly
linked to the kinematic viscosity ν in the system

ν =
1

3

(
τ − 1

2

)
, (8)
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which is one of the primary links between the LBM scheme and hydrodynamics [64, 65]. The boundary scheme
described here is not strictly mass conserving, so we correct the local population mass densities To cure mass conser-
vation [83–85]. This is not the case in unconfined system, where we can accept small mass fluctuations of both droplet
and solvent, but have to reinject mass into the droplet [86].

III. SIMULATION SETUP AND DEFINITIONS

In this section we define what we mean when we speak of droplet break up and characterize the simulation setups.
We deal with both a confined droplet in a simple shear flow and an unconfined droplet in a uniaxial extensional
(elongational) flow. The velocity gradient matrix for both shear and elongational flows is given by

∇v =
G

2

β 0 2(1− β)
0 β 0
0 0 −2β

 , (9)

where ‖∇v‖ = G and β is a parameter characterising the flow type. The shear flow setup is equivalent to the one
used in Ref. [63] with β = 0 in Eq. (9) except that the flow is unconfined and elongational with an oscillatory velocity
gradient amplitude G(t) given by Eq. (9) with β = 1. Droplet deformation can be characterized by the capillary
number Ca. In the case of a shear flow including confinement the shear rate is given by

G =
2u0
Lz

, (10)

with Lz being the channel width responsible for the droplet confinement and u0 being the maximum wall velocity
amplitude. This definition may also be extended to time-dependent shear flows [63]

G(t) =
2u(t)

Lz
. (11)

In accordance with [14] we define the critical capillary number Cacr as the value of Ca for which an initially spherical
droplet breaks up, which is achieved by a sudden increase in the shear rate amplitude G. We refer to this break up
protocol as the Shock Method. In addition we can gradually increase the shear rate G starting from a value for which
the droplet is only marginally deformed [54, 55, 58]. A fixed increase ∆G (or ∆u0 in the case of Eq. (11)) is equivalent
to a fixed increment rate ∆Ca for the capillary number. This way the droplet and the solvent flow are given more
time to relax to their respective equilibrium distributions at specific Ca. We call this protocol the Relaxation method.
It should be stressed that breakup in the relaxation method has a small dependency on ∆Ca. If ∆Ca is very large,
e.g. ∆Ca ∼ Cacr, the value for Cacr will be the same as the one obtained through the shock method. Thus, the
∆Ca has to be chosen sufficiently small enough for the relaxation method to work. Essentially, the relaxation method
captures the deformation history of the droplet before breakup with an accuracy given by ∆Ca contrary to the shock
method. The relaxation method is especially important for droplet dynamics in palatially evolving shear flows in
the case of a smoothly varying local shear both spatially and temporarily. A variation of the relaxation method for
time-dependent oscillatory flows, i.e. where the shear amplitude G(t) = G0 cos(ωt), is to consider the flow and droplet
configuration at a capillary number Ca close to Cacr and then to increase the oscillatory shear frequency ωf = ω/(2π)
until break up, starting from the stationary case of ωf = 0. As in Ref. [63] we use a dimensionless frequency ωf td
in our discussion, where td is the droplet relaxation time defined in Eq. (3). In the presence of a flow with nonzero
frequency ωf td, we focus on Camax, which denotes the maximum value of the time-dependent capillary number Ca(t)
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over one oscillatory cycle [63]. An instance of droplet break up in an oscillatory simple shear flow is depicted in Fig. 1.
The droplet is oscillating between two maximally elongated states for Ca < Cacr and breaks up during the flow build
up for Ca > Cacr in the case of the shock method. The droplet elongation is characterized by the droplet length L(t),
which is defined as the longest axis of the elongated droplet, and Lcr denotes the droplet length in the critical case
Ca ≥ Cacr. The time evolution of L(t) is also shown for the two cases Ca < Cacr and Ca > Cacr in Fig. 1, which
shows that break up occurs at around t = 17000 lbu with lbu denoting lattice Boltzmann Units. In all simulations
in this article the viscous ratio χ ≡ 1 and the density ratio ρd/ρs ≡ 1. If not explicitly stated otherwise, then the
confinement ratio for simple shear flows α ≡ 2R/Lz, where R is the radius of the spherical undeformed droplet and
Lz the channel width, is set to α = 0.75.
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FIG. 1. Snapshots of a droplet in a confined oscillatory shear flow with a nondimensionalized oscillation frequency ωf td.
Snapshots of the droplet in the velocity field are shown for Ca < Cacr and Ca > Cacr. The plots on the right panel show the
time evolution of the normalized droplet length L(t)/R. The degree of confinement of the system is given by α = 2R/Lz, where
R is the droplet radius of the undeformed droplet and Lz is the wall separation.
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IV. DROPLET BREAK UP IN AN OSCILLATORY SHEAR FLOW

Similarly to Ref. [63] we consider a droplet in a confined oscillatory simple shear flow; see Fig. 2. The setup is
shown in Fig. 1 with a confinement ratio α = 0.75 and a time-dependent shear rate G(t) = 2u0/Lz cos(2πωf t), where
ωf is the frequency of the outer oscillatory flow [59–63]. Our main focus is the dependency of Cacr on the normalized
shear frequency ωf td of the oscillatory outer flow. Droplet dynamics in oscillating flows may feature a so called
transparency effect [63], which states that the droplet is hardly deformed if ωf td ∼ 0.1, i.e. the timescale of the
oscillating shear flow 1/ωf is of the similar order as the droplet relaxation timescale td. The droplet dynamics are
hardly influenced by the shear frequency for ωf td ∼ 10−4 and the transparency effect is noticeable for ωf td ∼ 10−2 and
higher frequencies, which leads to a sudden increase in the critical capillary number. To stay in tune with experimental
results [13, 14, 21, 22], we limit the range of the critical capillary number close to Cacr ∼ 1.0. In Fig. 3 we can see that
the droplet break up behavior is significantly different for our two LBM simulation protocols, the shock and relaxation
method. The shock method implies that droplet break up is independent of the oscillatory shear frequency ωf td,
significant changes in Cacr only occur close to the transparency effect region at high frequencies (ωf td ∼ 10−2). The
relaxation method is of a different nature: first of all Cacr in the low-frequency region (ωf td ∼ 10−4) is larger than
the values obtained with shock method (see also Sec. VI). Moreover, for intermediate frequencies ωf td ∼ 5× 10−3 we
observe that break up occurs at a significantly smaller Cacr than in the low-frequency range and is now of a comparable
value to Cacr obtained via the shock method. The mismatch between the two protocols in the low-frequency regime
in Fig. 3 is in disagreement with previous studies of start up conditions of droplet break up in confined simple shear
flows [14, 58]. However, the shock method produces results in accordance with the literature [14], as the dashed line
in Fig. 3 indicates. It should also be noted, that the destabilization of the “relaxation branch” is rather sudden and
takes place at very small ωf td. This suggests that the protocol mismatch is due to metastable solution (relaxation
method) existing next to a stable solution (shock method) in the low-frequency range ωf td ≤ 0.02. The protocol
mismatch seems rather puzzling: according to Renardy [58] the solution should be unique. However, our setup differs
in a few points from the one in Renardy [58]. First of all, the droplet is strongly confined (α = 0.75) in our setup
(see Fig. 1), which could have a strong effect on the values Cacr for varying start up conditions. Moreover, inertia
might stabilize the droplet in the case of the relaxation method. Therefore, the protocol mismatch might disappear
in the Stokes limit. In addition, one may also wonder what is the effect of flow topology, as an inherently different
flow field might lead to a similar protocol mismatch. Given these considerations, in the following sections, we will
investigate the cause of the mismatch by considering both inertial effects, as is the case in Ref. [58], (see Sec. V) and
the importance of confinement in stationary shear flows (see Sec. VI). Regarding the importance of flow topology, we
investigate time-dependent break up in an elongational flow in Sec. VII.

V. INERTIAL EFFECTS

In Ref. [58] it is shown that the solution of the Stokes equation in confined simple shear flows is unique and does not
depend on neither the initial conditions of the droplet nor the solvent flow configuration. Thus, one might think that
the protocol mismatch might be due to inertial effects and would disappear, if we were close to the time-dependent
Stokes limit of Re ≡ 0. Interestingly, the LBM formalism allows us to directly set Re = 0, as we can eliminate the
nonlinear terms in the equilibrium distribution functions in the LBM algorithm, Eq. (6), which leads us to a modified
equation( 12), accounting only for the linear terms in the velocity field u(x, t). It should be remarked that only the
nonlinearites of the Navier-Stokes equation are removed in this way, since the inertia embedded in the time derivative
of the velocity field u(x, t) does not disappear and may still play a role during the non steady break-up process.
Inertial effects tend to stabilize the droplet [56, 57] for low Re < 1, whereas Cacr ∼ 1/Re for large Re > 10 [34]. This
suggests, that the stabilization effect of low Re are responsible for the protocol mismatch, which consequently should
disappear in the Stokes limit Re = 0. We investigate the dependency of Cacr on Re, as shown in Fig. 4. For the case
Re = 0 we use only the linear terms of the equilibrium distribution functions given by
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FIG. 2. Planar cut of a droplet in a shear flow, featuring an ellipsoidally deformed droplet and large droplet deformation before
breakup. The droplet contours are shown in black and the velocity field is visualized by streamlines coloured according to the
velocity magnitude.
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FIG. 3. Critical capillary number Cacr at varying frequencies ωf td. There is a mismatch between the predictions of the two
break up protocols. Whereas droplet break up is largely independent in the case of the shock method, except for the asymptotic
behavior in the high-frequency region, the relaxation method in the low-frequency limit predicts a higher Cacr than the ones of
the shock method. This mismatch is investigated in the article. The error bars are estimated via steps in the critical capillary
number ∆Ca. Both curves are interpolated via bezier curves.
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geq,lini (x, t) = ρb(x, t)wi (1 + 3 ci · u) . (12)

The simulations are carried out for a stationary shear flow, with the setup described in Fig. 1. We can see that
the mismatch between the break up protocols, does not depend on inertia and is even present in the Stokes limit of
Re = 0. We conclude that the mismatch between the two break up protocols is not influenced by any stabilization
effects of inertia [56, 57] for the given range of Reynolds numbers Re ∼ 0.0, . . . , 1.5.
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FIG. 4. Cacr vs Reynolds number Re. The mismatch between the shock and relaxation break up protocols does not depend on
inertia. This is especially clear in the case of the Stokes solution, for which Re = 0. The error bars are estimated via steps in
the critical capillary ∆Ca and Reynolds number ∆Re.

VI. CONFINEMENT EFFECTS

We now focus on both confinement and start up conditions in the shear rate amplitude G for droplet break up in a
stationary shear flow. The setup is once again the one in Fig. 1, a confined droplet in a stationary (ωf td = 0) shear
flow, but now we vary the confinement ratio α and, in the case of the relaxation method, the rate of change of the shear
amplitude G, resulting in increments of the capillary number ∆Ca. Our results are summarized in Fig. 5. We can
see, as was shown in Ref. [58], that the critical capillary number Cacr is independent of the start up conditions for low
confinement ratios (α ≤ 0.5), as both the shock method and the relaxation method yield the same results with respect
to the simulation errors. However, if the droplet is strongly confined (α ≥ 0.6), then the two methods yield very
different results, with the Cacr predicted by the relaxation method being substantially larger than the one predicted
by the shock method. It should be noted, that Cacr is independent of ∆Ca, given that ∆Ca is small enough, which
can be seen from Fig. 5, where the values of Cacr overlap in respect to their error ranges for different ∆Ca and the
same α. Fig. 6 shows the length of the elongated droplet as a function of the LB simulation time for the different shear
start up methods: we can see that for the shock method droplet break up occurs soon after the maximal elongation,
whereas for the relaxation the droplet experiences a sequence of maximal extensions and subsequent retractions after
breaking up for a given Cacr at its critical length Lcr(t). We conclude that both a slow start up of the outer flow
(relaxation method) and a strong confinement of the droplet (α ≥ 0.6) are necessary for the mismatch reported in
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Fig. 3 in the low-frequency limit. The eventual collapse of the relaxation method solution on to the one found by the
shock method suggests, that the relaxation method branch in the low-frequency limit in Fig. 3 is a metastable state,
explaining the high susceptibility to small perturbations and the collapses to the configuration obtained by the shock
method for intermediate oscillatory frequencies ωf td.
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FIG. 5. Critical capillary number Cacr for different confinement ratios α = 2R/Lz. We compare the values obtained by the LB
simulations with the shock method and the ones obtained by the relaxation method. Since the relaxation method is dependent
on the start up conditions of the outer flow and the droplet, we provide a range of different increments ∆Ca, where smaller
∆Ca denote a slower and flow build up and vice versa. The error bars are estimated via steps in the critical capillary number
∆Ca. For each simulation run of the relaxation method with a given Ca we gave the droplet a sufficiently long time to relax to
its stationary state.

VII. FLOW TOPOLOGY

We now investigate the protocol mismatch in terms of the flow topology. Instead of an oscillatory shear flow,
we consider break up in an elongational (or uniaxial extensional) flow; see Fig. 7. This flow is by its very nature
unconfined, so we would expect to not see a mismatch, as is the case for α = 0 in the case of the confined shear flow;
see Sec. VI. The results are shown in Fig. 8. Interestingly, a mismatch between the two droplet protocols is absent
and the predictions agree well with each other in terms of their respective errors. This shows that strong confinement
(α ≥ 0.75) is necessary for the existence of the protcol mismatch shown in Fig. 3. Moreover, Fig. 8, shows that
droplet break up in an oscillatory elongational flow is frequency dependent, with an exponential dependence between
the oscillation frequency ωf td and the critical capillary number Cacr. The low-frequency limit matches the stationary
flow predictions of [39].

VIII. CONCLUSIONS AND OUTLOOK

We have shown that the interplay of varying start up conditions and strong confinement ratios can lead to quali-
tatively and quantitatively different droplet break up conditions in stationary shear flows, unlike the stable equilibria
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FIG. 6. Normalized droplet major axis L(t)/R against simulation time t given in units of the droplet relaxation time td. The
droplet breaks up shortly after its maximum elongation for the shock method. Break up in the relaxation method is dependent
on the shear rate and thus capillary number increase: (a) for a rate with increment ∆Ca = 0.30 the droplet relaxes after reaching
its maximum elongation for the first time to break up at a longer length at a higher Cacr later on; (b) for a smaller capillary
number increase ∆Ca = 0.24 the droplet length at Cacr increases even further and the L(t) contains more full extensions and
subsequent retractions.

FIG. 7. The flow layout of a droplet in an elongational (uniaxial extensional) flow. The image is a planar cut, with the flow
being rotational symmetric around the elongated droplet axis in the image. The streamlines are coloured according to the
velocity magnitude.

found for varying start up conditions [58] or the ones found for varying degrees of confinement [14]. Having investigated
the effects of inertia, confinement and flow topology, we conclude that the protocol mismatch between the shock and
the relaxation method are due to a high degree of confinement for a droplet in a shear flow (α = 0.75). However,
the break up solution found via the relaxation method is only metastable, since it becomes unstable in the case of
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FIG. 8. Critical capillary number Cacr against different frequencies ωf td for a droplet in an unconfined elongational flow.
We consider the two break up protocols, the shock method and the relaxation method. Even though the droplet break up is
dependent on the shear rate frequency ωf td, a protocol mismatch does not occur, contrary to the case of the confined shear
flow topology. The error bars are estimated via steps in the critical capillary number ∆Ca.

a time-dependent, oscillatory shear flow. The protocol mismatch is thus solely due to an extra metastable solution
in a strongly confined shear flow and disappears in the presence of small perturbations (e.g., amplitude variations in
an oscillatory shear flow) in accordance with the uniqueness of the Stokes solution [14, 58]. We have also shown the
dependency of the critical capillary number Cacr on the normalized oscillation frequency ωf td in both oscillatory shear
and elongational flows. In the case of the elongational flow, Cacr increases with increasing ωf td, whereas no simple
functional dependence can be found for the oscillatory shear flow, since Cacr also depends on the flow start up and
degree of confinement. We should stress again that the results presented in this work are only valid for χ = 1, since
the viscosity ratio influences the breakup of a confined droplet [9, 14, 21, 24]. On the one hand, for small viscosity
ratios χ ≈ 0.3 the confined shear flow stabilizes the droplet and breakup is more difficult to occur than for χ = 1.
On the other hand for large viscosity ratios χ ≈ 5.0 the confined droplet is destabilized and breakup is more likely to
happen than for χ = 1. [14, 24]. It would be interesting to see whether the metastable solution can be found in an
experimental setup or whether it is too prone to perturbations to manifests itself.
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