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Abstract 

In this paper we report numerical and experimental results on the scaling properties of the velocity turbulent fields in 
several flows. The limits of a new form of scaling, named Extended Self-Similarity (ESS), are discussed. We show that, 
when a mean shear is absent, the self-scaling exponents are universal and they do not depend on the specific flow (3D 
homogeneous turbulence, thermal convection, MHD). In contrast, ESS is not observed when a strong shear is present. 
We propose a generalized version of self-scaling which extends down to the smallest resolvable scales even in cases 
where ESS is not present. This new scaling is checked in several laboratory and numerical experiments. A possible the- 
oretical interpretation is also proposed. A synthetic turbulent signal having most of the properties of a real one has been 
generated. 

1. Introduction 

In order to characterize the statistical properties of  

fully developed turbulence [ 1], one usually studies the 

scaling properties of  moments of  velocity differences 

at the scale r: 

S e ( r )  ---- (Iv(x ÷ r) - v(x)[  p) 

= (16v(r)lP),  (1) 

where(. . . )  stands for ensemble average and v is the 

velocity component parallel to r. At high Reynolds 

number, Re = U o L / v ,  the Sp(r)  satisfies the relation 

Sp(r)  o~ r ((p) (2) 

for L > r >> rlk where L is the integral scale, r/k = 
( v 3 / e )  1/4 is the dissipative (Kolmogorov) scale, e is 

* Corresponding author. 

the mean energy dissipation rate, v the kinematic vis- 

cosity and U0 the rms velocity of the flow. The range 

of  length L > r >> Ok, where the scaling relation (2) is 

observed, is called the inertial range. The Kolmogorov 

(K41) theory [2] predicts ( ( p )  = p / 3 ,  but experi- 

mental [3] and numerical [4] results show that ( (p )  

deviates substantially from the linear law. This phe- 

nomenon is believed to be produced by the intermit- 

tent behavior of the energy dissipation [5] which can 

be taken into account by rewriting Eq. (2) in the fol- 

lowing way: 

Sp(r)  (x {gP/3)rp/3 o~ r r(p/3)+p/3, (3) 

where 6r is the average of  the local energy dissipa- 

tion e ( x )  on a volume of  size r centered on a point 

x. A comparison of  Eqs. (1) and (3) leads to the con- 

clusion that the scaling exponents r ( p / 3 )  of  the en- 
ergy dissipation are related to those of  Sp by ( ( p )  = 
r (p /3)  ÷ p / 3 .  
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Since the Kolmogorov (K62) theory [5], many 

other models [6-12] have been suggested to describe 
the behavior of the ~ (p). However, it turns out that 

the ~'(p) may not be universal in nonhomogeneous, 
anisotropic flow and may depend on the location 

where measurements are done. Specifically, they may 
have different values if one measures either far away 

from boundaries where turbulence is almost homo- 
geneous and isotropic, or in locations of the flow 

where a strong mean shear is present. The if(p) also 

depends on the way in which turbulence is produced, 

for example 3D homogeneous turbulence, boundary 
layer turbulence, thermal convection and MHD. Thus, 

there is the fundamental question of understanding in 

which way all these parameters influence the scaling 
laws. Furthermore, all the above mentioned models 

assume the existence of two well-defined intervals 
of lengths which are the inertial and dissipation 

ranges. According to idea of multiscaling these two 

ranges may eventually be connected by an interme- 
diate region where the viscosity begins to act [13]. 

However, this idea of a well-defined inertial range, 

where viscosity does not act at all, and the idea of 

multiscaling turns out to be incompatible with the 
recently introduced new form of scaling, which has 

been named Extended Self-Similarity (ESS) [14,15] 
(see Section 2). 

The ESS has been observed in 3D homogeneous 

and isotropic turbulence both at low and high Re and 

for a wide range of scales r with respect to scaling 
(2). In contrast, the ESS is not observed when a strong 

mean shear is present [ 16]. All these experimental ob- 

servations also show that the mechanisms by which 

energy is actually dissipated in a flow are very poorly 
understood. Specifically one would like to understand 
how viscosity acts on different scales. This is clearly 

an important point in order to safely use large eddy 
simulations in real applications. 

The purpose of this paper is to rationalize all the 
above mentioned results on scaling both in presence 
and absence of a shear. We propose a generalized 
form of ESS which has been checked in many differ- 
ent flows. We have also generated a signal which has 
all the statistical properties of a real turbulent signal. 

Our interpretation of ESS and this generalized scaling 

suggests that there is no sharp viscous cutoff in the 

intermittent transfer of energy. 
The paper is organized as follows: in Section 2 

we recollect the properties of ESS, in Section 3 we 

discuss the systems where the ESS is not observed, in 
Section 4 the hierarchy of structure functions is de- 
scribed, in Section 5 the generalized form of scaling 

is discussed, in Section 6 a possible theoretical inter- 

pretation is proposed and in Section 7 we discuss the 

multiscaling. Finally conclusions are given in 

Section 8. 

2. Extended self-similarity 

The ESS is a property of velocity structure functions 
of homogeneous and i sotropic turbulence [ 14,15]. It 

has been shown using experimental and numerical data 

[17] that the structure functions present an extended 

scaling range when one plots one structure function 

against the other, namely 

Sn(r) c~ Sm(r) ~(n'm), (4) 

where fl(n, m) = ( ( n ) l ( ( m ) .  The details of ESS have 
been reported elsewhere [15]. In the following we de- 
scribe only the main features. 

As an example we consider two experimental data 
sets at different Rz, which is the Reynolds number 
based on the Taylor scale (Rz --~ 1.4Re 1/2) [1]. The 

two experiments are a jet at Rx = 800 and the wake 

behind a cylinder at Rz = 140. In both cases data have 

been recorded at about 25 integral, scales downstream 
[15]. In Fig. l(a) S6/r  ~(6), computed for the two ex- 

periments, is plotted as a function"of r. In Fig. 1 (b) 
we show S3/r  ~(3) as a function of r. In both figures a 

scaling region is observed only for the highest Rz. In 

constrast if the relative scaling (4) is used, see Fig. 2, 
a clear scaling is present for both Rz with/3(6, 3) -~ 
1.78. The vertical dashed lines in the Fig. 2 correspond 
to r = 5rlk and they roughly indicate the extension of 
the scaling (4), that is 5rlk < r < L. 

The ESS scaling has been checked both on numer- 

ical data and in experiments, in a range 30 < Rx < 
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Fig. 1. Structure functions Sp(r)/r ((p) as a function of r. Data 
taken from an experiment on a jet at R;~ = 800 (O). Data taken 
from the wake behind a cylinder at R;, = 140 (A). (a) p = 6 
and ((6) = 1.78, (b) p = 3 and ((3) = 1. Logarithms are base 
10 in all of the figures if not otherwise indicated. 

2000. A direct  consequence  o f  the scaling (4) is that 

for all p ,  Sp can be writ ten in the fo l lowing  way:  

= Sp(r> CpU~ [ L f \-~-~k / l (5) 

with U0 3 = S3(L),  L = U3o/S being the integral scale 

and Cp dimensionless  constant  selected in such a way 

that f (x)  = I for x >> I. Eq. (5) has been careful ly 

checked by comput ing  the funct ion 

(r) L (Sp( r )~  ,,¢(p) 
ft, ~k = r  \CpUo p} 

I f  [p  is independent  o f  p,  then Eq. (5) is satisfied. 
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Fig. 2. Structure functions S 6 as a function of S 3 at Rx = 800 
(a) and R~. ---- 140 (b), computed from the same data set of 
Fig. 1. Vertical dashed lines indicate the value of $3 at 5~/k. 

This  is seen in Fig. 3 where  log(f6/f2) and 

log(f4/f2) are plot ted as a funct ion of  r/rlk. We 

clearly see that both the ratios are close to 1 within 

2% for r > 5r/k. This result  shows that Eq. (4) is 

satisfied for 5r/k < r < L. 

The  ESS has been also checked  for the tempera-  

ture and veloci ty  fields in R a y l e i g h - B e n a r d  convec-  

tion [18] and in the case o f  a passive scalar [19]. It 

turns out  that the ESS  is a very useful tool in order  to 

dist inguish be tween  Ko lmogorov  and Bolg iano  scal- 

ings [18,20]. Let  us briefly remind  the basic propert ies 

of  Bolg iano  scaling for R a y l e i g h - B e n a r d  convect ion.  
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Fig. 3. Logari thm of  ratio of  the universal functions fn/f2 for two cases n = 6 (~ )  and n = 4 (o) for the wake behind the cylinder 
of  Fig. 1 as a function of  r /&.  

By assuming that the Boussinesq approximation holds, 

one can introduce the Bolgiano scale 

~,5/4 

LB - -  (6) (g~)3/2N3/4 '  

where e is the mean rate of energy dissipation, ot is the 
thermal expansion coefficient, g is the gravity accel- 

eration and N is the rate of temperature dissipation. 
The Bolgiano scaling can be deduced by the exact 
scaling relation <3v(r)6TZ(r))  ~ N r ,  where 6v(r )  = 

v(x  + r) - v (x )  and 6 T ( r )  = T ( x  + r) - T ( x ) ,  and 
by the balance between thermal forcing and nonlinear 

velocity advection 

~v2(r) ~ gotST(r)r .  (7) 

It follows that, disregarding intermittency 

~v(r)  ~ (get)2/5NI/5r3/5,  (8) 

3 T ( r )  ~ (gc t ) - l /5NZ/5r l /5 .  (9) 

One can show that the Bolgiano scaling should be 
observed only for r > LB [1,18]. For r < LB the 
usual Kolmogorov scaling is recovered [ 18]. 

In the case of the Bolgiano scaling it has been found 
that ~'(3) -- 2.08 which is clearly very different from 

the Kolmogorov value ~" (3) = 1. In spite of this large 

difference between the values of the exponent ~'(3), 

using ESS one discovers that the ratio ~'(p)/~'(3) in 

the case of Bolgiano are equal to those of homoge- 
neous and isotropic turbulence. The same property is 

observed for the ~'(p) obtained from measurements 
done on the solar wind [21]. In Table 1 we compare 

the ~(p) measured in different physical systems and 

the ratios f l (p ,  3) for MHD and Rayleigh-Benard con- 
vection. 

Another interesting observation concerns the be- 

havior of f l (p ,  3) with respect to R~. The values of 
f l (p ,  3) reported in Table 1 have been measured in 

the range 30 < R>, < 5 x 106. First we note that, 

within error bars, any change or trend of f l (p ,  3) as a 
function of R>, is absent. Second, we show in Fig. 4 
the dependence of fl(6, 3) on Rz (a similar result has 
been reported in Ref. [22]). This means that far away 
from boundaries, the f l (p ,  3) are constants which do 
not depend on Re and on the way in which turbulence 
has been generated. 

A final point regarding ESS, concerns the general- 
ization of the Refined Kolmogorov Similarity Hypoth- 
esis (RKSH). 
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measured values of ((p) and #(p, 3) for 1 _< p < 8. 

p (p (p (Bolg.) (p (MHD) #(p ,  3) (Bolg.) #(p, 3) (MHD) 

1 0.37 0.77 0.28 0.37 0.36 
2 0.70 1.46 0.55 0.70 0.70 
3 1.00 2.08 0.78 1.00 1.00 
4 1.28 2.66 1.00 1.28 1.28 
5 1.54 3.20 1.20 1.54 1.54 
6 1.78 3.70 1.39 1.78 1.78 
7 2.00 4.16 1.58 2.02 2.02 
8 2.23 4.63 1.75 2.24 2.24 

Note: In the second column we report the ((p) measured in 3D homogeneous and isotropic turbulence (30 < Rx < 2000), in the 
third column the ((p) measured in Rayleigh-Benard convection when the Bolgiano scaling is the relevant one (Rx -- 30), in the 
fourth column the ((p) obtained from the measurements of the solar wind (Rx ~ 5 x 106). We note that the ((3) of the last two 
cases are clearly very different from 1 which is the value of ((3) in the second column. The ratios #(p, 3) computed from the values 
of the third and fourth column are shown in the fifth and sixth columns, respectively. The #(p, 3) are equal within error bars to 
those of the first column. 
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Fig. 4. Dependence of the exponent #(6, 3) as a function of 
logt0 Re. (Rz -~ 1.4Rel/2.) The last point is from Ref. [3]. 
See also Ref. [22]. 

The R K S H  states that er "~ 3 v 3 / r ,  as far as the 

dependence  on the scale r is concerned  and sup- 

ports Eq. (3). We can general ize the R K S H  by  

in t roducing an effective scale L ( r )  = S 3 ( r ) / s ,  as 

suggested by  ESS, and we obtain the fol lowing rela- 

tion: Sr ~-- ~O3p~/S3 • 

General iza t ion of  R K S H  simply states that 

S p ( r )  = ( l~v(r )Pl )  
(8#/3 ) 

- -  8P/3 S3(r )p /3"  (10) 

In Section 6 we give some theoretical support  of  

Eq. (10). 

Eq. (10) has been first proposed in Ref. [15] and 

carefully checked in Ref. [23]. A typical  experimental  

0.0 " , ,  . . . .  , . . . . . . . .  i . . . . . . . . .  I . . . . . .  
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Table 1 
We show some 

Fig. 5. Log-log plot of (e2)S3(r) 2 against S6(r) at R;~ = 500. 
The straight line refers to the slope 1.005. Data are from an 
experiment of turbulence behind a cylinder and the measurement 
point was at about 25 diameter down stream. 

result  is shown in Fig. 5 where (s2>S 2 is plotted as 

a funct ion of  S6(r).  The energy dissipation has been 

computed  us ing the 1D surrogate that is 

x + r  

~r ~- -- r \ ~ /  dx ' .  (11) 

x 

In Fig. 5 one can see a clear scaling extending over 

a lmost  ten decades from the integral scale to 0k. The 

slope of  the straight l ine is 1.005 showing that Eq. (10) 

is compat ible  with exper imental  data. 
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One can argue that Eq. (10) is a trivial one because 

for r < ~k, er is constant and Sp cx r e,  thus the scaling 

Sn :x S ( /3  is obviously satisfied. Furthermore, for r in 

the inertial range Eq. (10) is certainly verified because 

(S3 /e )  cx r. However, in principle the proportionality 

constant of  Eq. (10) in the inertial and in the dissi- 

pative range could be different. The fact that experi- 

mentally they are found equal has several important 

consequences which will be discussed in Section 5. 

3. Systems where ESS is not observed 

In Section 2 we have discussed several systems 

where not only the ESS works but also the exponents 

13(n, 3) are universal because they do not depend on 

the systems and on Re. We want to stress that this kind 

of  universality, observed in different flows, disappears 

if the system is influenced by the presence of a strong 

mean shear. In this case ESS does not work, because 

an extended range of  scaling is not present when Sn is 

drawn as a function of $3. Violation of  ESS has been 

observed experimentally in boundary layer turbulence 

[16,24] and in the shear behind a cylinder [25]. 

In a recent numerical simulation [26] the effect of 

the shear on scaling laws has been carefully investi- 

gated using a Kolmogorov flow. This simulation con- 

cerns a 3D fluid occupying a volume of V = L 3 sites 

with L ---- 160, and forced such that the stationary so- 

lution has a nonzero spatial dependent mean velocity 

( v (x ) )  = x sin (87rz /L) ,  where x is the versor in the 

direction x, and L is the integral scale. In Fig. 6(a) 

and (b) we show the standard ESS analysis by plot- 

ting log(S6) as a function of log(S3) for two specific 

levels za and Zb, where Za and Zb were chosen at the 

level of  minimum and maximum shear respectively. 

The Rz of  the simulation was 40 and no scaling laws 

were present if examined as a function of r.  

Nevertheless, it is clear from Fig. 6(a) that ESS is 

observed for the case of  minimum shear and it is not 

observed for the case of  maximum shear (Fig. 6(b)). In 

both figures, the dashed lines are the best fit done in the 

range between the 20th and 30th grid point and corre- 

spond to the slopes/~(6, 3) = 1.78 and 13(6, 3) = 1.43 

for the minimum and maximum shear, respectively. 
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Fig. 6. (a) Log-log plot of ESS scaling for the longitudinal 
structure function S6(r) versus S3(r). Data are taken from a 
numerical simulation of a shear flow at Rz = 40. The dashed 
line is the best fit with slope 1.79. Every point in the plot 
corresponds to a grid point and the lattice spacing is ~ 1 Ok 
wide. The computation of the structure functions is performed 
in points of the flow where the shear has a minimum. (b) the 
same of (a) but for points where the shear is maximum. The 
dashed line is the best fit with slope 1.43. At variance with 
previous case ESS is not observed. 

However, one finds that generalized Kolmogorov 

similarity hypothesis Eq. (10) is satisfied also for val- 

ues of  r where ESS is no longer satisfied. In order 

to highlight the previous comment, we consider again 

the above mentioned Kolmogorov flow. In Fig. 7(a) 

and (b) we show the result of  the scaling obtained by 

using Eq. (10) at the correspondent z-levels of Fig. 6(a) 

and (b) for p = 6. As one can see the generalized 
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Fig. 7. Check of Eq. (10) for p = 6 using the same numeri- 
cal simulation of the shear flow discussed in Fig. 6 (log-log 
plot). Energy dissipation has been computed by using the 
1D surrogate in order to compare this result with laboratory 
experiments (see Fig. 5). (a) Points of minimum shear, (b) 
points of maximum shear. The points refer to the scales at 
2, 4, 5, 8, 10, 16, 20, 32, 40 grid points and the dashed line is 
the best fit done over these points, corresponding to the slope 
0.99 for both minimum and maximum shear data. Although in 
this case ESS is not observed (see Fig. 6(b)), the generalized 
refined Kolmogorov hypothesis Eq. (10) works within 3%. 

Kolmogorov similarity hypothesis is well satisfied in 

both cases although for Zb ESS is not observed. This is 

anotherimportant  experimental and numerical result 

which we will consider again in Section 5. 
The other relationship which we have observed to 

hold from large to small scales even in absence of ESS 

is the moment hierarchy recently proposed in Ref. [ 12] 

and rewritten in terms of  velocity structure functions 

in Ref. [27]. 

4. Hierarchy of structure functions 

In a recent letter [12] She and Leveque have pro- 

posed an interesting theory to explain the anomalous 

scaling exponents of  velocity structure functions. The 

theory yields a prediction 

~(p) = p /9  Jr 2(1 - (2/3)p/3), 

which is in very good agreement with available exper- 

imental data [15]. 

The She-Leveque model is based upon the 

fundamental assumption on the hierarchy of the 

moments,(en), of  the local energy dissipation. Specif- 

ically they consider that 

{ 
- - A n ~ ]  , (12) 

where An are geometrical constants and e~ ~)  = 

limn--,~((enr+l)/(en)) is associated in Ref. [12] with 

filamentary structures of  the flow. On the basis of 

simple arguments it is assumed that e~ ~)  cx r -2/3. 
The value o f /3  predicted in Ref. [12] is 2. Notice 

that in Eq. (12) for n = 1, taking into account that 

(er) = e is constant in r, one immediately finds that 

= s6/s , (13) 

where Eq. (10) has been used. 
Eq. (12), which has been experimentally tested in 

Ref. [28], can be extended to the velocity structure 

functions [27]. Taking in Eq. (12) the value n = ½p 

and using Eqs. (10) and (13) after some algebra one 

finds the following relation for the velocity structure 

functions: 

Fp+l(r) = Cp(Fp(r)) ~' " F(r),  (14) 

where 

Sp+ ! (r) 
Fp+l(r) -- 

Sp(r) 
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of -0 .4 ,  -0 .2 ,  0, 0.2, 0.4 in order to separate them. The solid 
lines have slope 1. 

and 

• $6 ~(1 /3')/3(1-/3) 

\ 3 

Cp are geometry dependent constants and fl' = flU3. 
Notice that Eq. (14) is certainly valid for any/3 in 

the dissipative range where Sn cx r".  Eq. (14) has been 
experimentally tested in Ref. [27]. 

This can be seen in Fig. 8(a) and (b) where the scal- 

ing obtained for various p using Eq. (14) is reported 

for two different Re. As we have already observed in 

the case of Eq. (10) (Fig. 5), the scaling extends from 
large to small scales even for values of  r where ESS 

is no longer satisfied. It is important to point out that 
the validity of (14) for all scales is not necesserily true 
for any turbulent field, but it is an important feature 
of  the velocity field. As an example, in Appendix A 

we show that the passive scalar field does not present 

the same property. 

5. A g e n e r a l i z e d  f o r m  o f  E S S  

In Sections 3 and 4 we have shown that the Gen- 

eralization of Kolmogorov Refined Similarity hypoth- 

esis (GKRS) Eq. (10) and the hierarchy of moments 
Eq. (14) are two relations which are satisfied even in 
flows where ESS is not observed. These results sug- 

gest that the concept of  ESS could be generalized in 

such a way to take into account the scaling relations 
Eqs. (10) and (14) properly. 

For this purpose we introduce the dimensionless 
structure function 

S/, (r) 
G p ( r ) -  S3(r)p/3" (15) 

According to Kolmogorov theory (15) should be a con- 

stant both in the inertial and in the dissipative range, al- 
though the two constants are not necessarily the same. 

Because of the presence of anomalous scaling, Gp (r) 

are no longer constants and by using (10) we have 

Gp(r) = (erP/3). (16) 

Thus the functions Gp (r) satisfy the hierarchies (12) 
and (14). Following the results of Sections 3 and 4, 

Eq. (16) is valid for all scales even in cases where ESS 
is not verified. Therefore, it seems reasonable to study 
the self-scaling properties of  Gp(r) or, equivalently, 
the self-scaling properties of the energy dissipation 
averaged on an interval of size r, 

Gp(r )  = Gq(r )  p(p'q), (17)  

where we have by definition 

if(p) - p/3 I (3)  
P(P' q) = if(q) - q/3 if(3) " (18) 
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Fig. 9. Log-log plot of  G6(r ) versus Gs(r )  for different labo- 
ratory and numerical experiments. (+)  Data are taken in a wake 
behind a cylinder where standard ESS was not observed [25]. 
(o) Data taken from the region with log-profile of a bound- 
ary layer (courtesy of  G. Ruiz Chavarria) where standard ESS 
was not observed. ([]) Data taken from a numerical simulation 
of thermal convection [18] where standard ESS was observed. 
(A) Data taken from a direct numerical simulation of  a channel 
flow where standard ESS was not observed [29]. 

p(p, q) is given by the ratio between deviations from 

the K41 scaling. It will play an essential role in our 

understanding of energy cascade. Indeed, it is easy to 
realize that it is the only quantity that can stay con- 

stant all along the cascade process: from the integral to 

the sub-viscous scales. It is reasonable to imagine that 

the velocity field becomes laminar in the sub-viscous 
range, Sp(r) cx r p, still preserving some intermittent 
degree parametrized by the ratio between corrections 

to the K41 theory. In order to check the validity of 

Eq. (17) we have plotted in Fig. 9 G6(r) versus Gs(r)  
for many different experimental set-up [25,24,18,29], 

done at different Reynolds numbers and for some di- 
rect numerical simulation with and without large scale 
shear. As one can see, the straight line behavior is very 
well supported within experimental errors (of the or- 
der of 3%) and no deviations from the scaling regime 
are detected. Similar results are obtained, using dif- 

ferent Gp(r) and Gq(r). 
There are two alternative ways to check (17). First 

of all, one can rewrite it in the following way: 

96 (1996) 162-181 

S p ( r )  = (Sq ( r ) )P (P 'q ) (S3 ( r ) )  p /3-r(p 'q)q/3 .  (19)  

If (17) is true then p(p, q) should be equal to r(p, q). 
One can use (19) directly and perform a two variable 
fit of p(p ,  q) and r(p, q). Then the quantity 

p(p, q) - r(p, q) 
tYp,q = P(P, q) (20) 

gives a measure of the accuracy of (17). We have com- 
puted ~rp,q for p and q in the range [1,8] for all the 

experimental and numerical results. We have found 
that 

sup[crp,q] = 0 .01 ,  (21)  
P,q 

where the above test has been done over all the ex- 
perimental and numerical data available to us. This 
result tells us that the accuracy of (17) is extremely 

well verified. 

A second and independent check of (17) can be 

done by using (14). Indeed (14) can be checked ei- 
ther for fixed p as a function of r or for fixed r as 

a function of p. In the second case we may assume 
that the constant Cp in (14) is p-independent and, by 
plotting in a log-log scale Fp+l against Fp for fixed 
r and different p, we can estimate the exponent/3 I. If  
(17) is true then we should observe scaling (14) both 

at large scale and very small scale with the same value 

of fit. Let us remark that the previous statement (on 

which our test of (17) is based) depends on the two as- 
sumptions that the log-Poisson hierarchy for structure 

functions is true and that the constant Cp in (14) are 
p-independent. In Fig. 10(a) and (b) we show a log- 

log plot of Fp+l against Fp for p = 1 . . . . .  6 and r = 
3r/k and r = 30Ok for the case of two numerical simu- 
lations, namely Rayleigh-Bernard thermal convection 
and channel flow. As one can see, a clear scaling is 

observed with the same scaling exponent fll both for 
small and relatively large values of r. This confirms 
the quality of the generalized ESS scaling (17). 

6. A theoretical interpretation 

The aim of this section is to discuss a possible 
theoretical interpretation of the experimental and 
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Fig. 10. Log-log plot of Fp+ 1 against Fp for p = 1 . . . . .  6 and 
r = 30k ([3) and r = 300k (o) for the case of two numerical 
simulations, namely Rayleigh-Bernard thermal convection (a) 
and channel flow (b). As one can see, a clear scaling is observed 
with the same scaling exponent #' both for small and relatively 
large values of r. This confirms the quality of the G-ESS scaling 
(17). 

numerical results previously shown. Our starting point 

is to revise the concept of  scaling in fully developed 

turbulence. 

Let us consider three length scales rl > r2 > r3 and 
our basic variables to describe the statistical properties 

of turbulence, namely the velocity difference 8v(ri) .  

We shall restrict ourselves to those statistical models 

of  turbulence based on random multiplier. Thus we 

shall assume that there exists a statistical equivalence 

of  the form 

6v(ri)  = a i j3v ( r j ) ,  (22) 

where r i < rj and aij is a random number with a 

prescribed probability distribution Pi j .  By definition, 

we have 

a13 = a12a23. (23) 

Eq. (23) is true no matter which is the ratio r l / r2  and 

rz / r3 .  Now we ask ourselves the following question: 

what is the probability distribution Pij  which is func- 

tionally invariant under the transformation (23)? This 

question can be answered by noting that Eq. (23) is 

equivalent to write: 

log a13 = log a12 + log a23 (24) 

(we assume aij > 0). Thus our question is equivalent 

to ask what are the probability distribution stable un- 

der convolution. For independently distributed random 

variables a solution of this problem can be given in a 

complete form [30,31]. If the variables are correlated 

the situation becomes much more difficult to solve, as 

it is well known from the theory of  critical phenom- 

ena. For the time being we shall restrict ourselves to 

independent random variables. 

In this case, for instance, the gaussian and the 

Poisson distributions are well-known examples of  

probability distribution stable under convolution. 

These two examples correspond to two turbulence 

models proposed in literature, namely the log-normal 

model [5] and the log-Poisson model [12,32,33,35]. 

A more general description can be found in [31]. The 

log-Poisson model implies also that the probability 

distribution function (PDF) of 3v on the scale r is 

related to the large scale one via a linear relation 

[32,34,35]. This functional dependence of  the vel- 

coity difference PDF, which is compatible with ESS 

[35], has been previously proposed by Castaing and 
Gagne [10,11]. 

We can have a different point of view on our 

question which is fully equivalent to the above dis- 

cussion (see also [35]). A simple solution to our 
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question is given by all probability distribution Pij 
such that 

(a p) = ~ (gk(rJ)~  ~'k(p) 
k=l \ ~ ]  (25) 

for any functions gk(ri) and Yk(P) (('" ") represents 
average over P/j). Indeed we have 

(aP3) = (af2a;3) 

= ~--i ( gk (rl ) "~ ~'k (P ) f l  ( gk (r2 ) "~ ~/k (P ) 

k=l ~',gk--£'~2)] k=l kgk-£~3)/ 

= [ 'I  ( gk(rl) ~ Vk(P) t=l \ ~ ' /  " (26) 

We want to remark that Eq. (25) represents the most 
general solution to our problem, independent of the 
scale ratio ri /rj .  

Let us give a simple example in order to link 
Eq. (25) to the case of probability distribution stable 
under convolution. Following [12,32,33] let us con- 
sider the case of a random log-Poisson multiplicative 
process, namely 

aij = Aijf l  x, (27) 

where x is a Poisson process P(x  = N ) =  
(fiNe -Cij)/N!. 
By using (27) we obtain 

(aP.) = A p. exp(Cij (tip - 1)). (28) 

Eq. (28) is precisely of the form (25) if we write 

Aij -- gl(rj) exp Cij = gz(ri) (29) 
gl (ri) '  g2(rj)" 

In order to recover the standard form of She-Leveque 
model we need to assume that (see also (35)): 

gl (ri) "~ rp, (30) 

g2(ri) "~ r 2. (31) 

This example highlights one important point in our dis- 
cussion, i.e. the general requirement of scale-invariant 
random multiplier (25) does not necessarily imply a 
simple power-law scaling as expressed by Eqs. (30) 
and (31). Moreover, the general expression (25) is 

compatible to infinitely divisible distribution. For in- 
stance, previous random multiplier model for turbu- 
lence, such as the r-random model or the p-model, 
cannot be expressed in the general form (25) indepen- 
dently of the ratio r i / r j .  

It is worthwhile to review the multifractal language 
in light of the previous discussion. In the multifractal 
language for turbulence, the two basic assumptions 
are: 
(I) The velocity difference on scale r shows local 

scaling law with exponent h, i.e. 8v(r) ".~ r h. 

(II) The probability distribution to observe the scaling 
6v(r) ~ r h is given by r 3-°(h). 

In the multifractal language, therefore, there are 
two major ansatz: one concerns power-law scaling of 
the velocity difference (assumption (I)) and the other 
one concerns a geometrical interpretation (the frac- 
tal dimension D(h)) of the probability distribution to 
observe a local scaling with exponent h. How is it pos- 
sible to generalize the multifractal language in order 
to take into account Eq. (25)? 

As we shall see, the theory of infinitely divisible 
distribution is the tool we need to answer the previous 
question. ,~11 published models of turbulence based on 
infinitely divisible distribution are equivalent to write 
D(h) in the form 

3 - D(h) = d o f  L~_ l '  (32) 

where do and h0 are the two free parameters while 
the function f ( x )  depends only on the choice of 
the probability distribution. For instance for log- 
normal distribution, f ( x )  = x 2. Eq. (32) allows us to 
write 

(3v(r) p) = [ dlz(h) rhpr3-o{h) 

= r h°p+d°n(p) , (33) 

where 

H(p)  = inf(px + f ( x ) ) .  (34) 
x 

We can see that Eq. (33) is equivalent to a random 
multiplicative process given by 

( rj ) d°H(p) 
(a p) (rrJ~i)h°P\ri/  = --  (35) 
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Eq. (35) can be generalized to the form (25) by 

allowing h0 and do to depend on r, i.e. 

<45>-(r?o<r,')' ' ( 3 6 )  

where 

[7o(r) ---- hosh(r) ,  clo(r) = dosd(r) .  (37) 

Eq. (36) is equivalent to (25) by using 

r~o(ri ) clo(ri ) 
g l ( r i )  ---- , g2(r i )  = r i , (38) 

Y1 (p) ---- p, (39) 

F2(P) = H ( p ) .  (40) 

The same results can be obtained by (33), i.e. we 

have 

(3v ( r )  p) = r ~°(r)p+d°(r)H(p). (41) 

Note that the saddle point evaluation of (33) is 

not spoiled by the dependence of h0 and do on 
F. 

We have seen that (25) can be reformulated in terms 
of multifractal language for infinitely divisible distri- 

bution whose function D ( h )  can be rewritten as in 

(32). We can ask the following question: what is the 
physical meaning of (25) or its multifractal analogous 
(36)-(41)? It is precisely the multifractal language 

which allows us to answer this question. Indeed, the 

two basic assumptions for the multifractal language 
can now be replaced in the following way: 

(I) the velocity difference on scale r behaves as 

6v(r )  ~ gt (r)g2(r)X; (42) 

(II) the probability distribution to observe (I) is 
g2(r )  f (x)  . 

Then we have 

= I d#(x)gl (3v(r)l '> (r )P gz (r )PX + f (x) 

---- gl ( r )Pgz ( r )  H(p) (43) 

by employing a saddle point integration. The most 
clear physical interpretation of (43) is that the proba- 
bility to observe a given fluctuation of the velocity dif- 
ference has no more geometrical interpretation linked 

to the fractal dimension D(h) .  The  probability distri- 

butions are controlled by a dynamical variable gz(r) 
which at this stage we still need to understand. An 
insight on the dynamical meaning of gz(r) can be ob- 

tained by the following considerations. 
Let us define e ( r )  the average of the energy dissi- 

pation on a scale r. We can define the eddy turnover 

time r ( r )  on scale r as 

3vZ(r) 
s ( r ) .  (44) 

r ( r )  

We have seen that all experimental and numerical data 

suggest that the following relation is always (see also 

Eq. (10) and Ref. [32]): 

s ( r )  3v3(r) 
_s (45) 

(e) (3v3(r))  ' 

where _s  means that all moments on the fight-hand 

side are equal to the left-hand side. By using (44) and 
(45) we obtain the definition of length L ( r )  

{6v3(r)) 
L ( r )  --  3 v ( r ) r ( r )  - - -  (46) 

6 

L ( r )  cannot be regarded as a real length scale in the 
physical space. Rather, L ( r )  should be considered as 

a dynamical variable entering into the statistical de- 

scription of turbulence. This is precisely the idea be- 
hind ESS which reformulates the scaling properties of 

turbulence in terms of L ( r ) .  Indeed in order to obtain 

ESS from (43) it is sufficient to state that, within the 
range of scales where ESS is observed, gl (r) l/h° 

g2(r)  Ud° ~ L ( r ) .  The physical meaning of ESS is 

strictly linked to (46) and in particular to (45) which 

is a GKRS hypothesis. 

Let us summarize all our previous findings. 
(A) We have introduced the idea of scale invariant 

random multiplier satisfying Eq. (25). 
(B) We have shown that infinitely divisible distribu- 

tions are all compatible with (25). 
(C) We have shown that the multifractal language 

specialized for the case of infinitely divisible dis- 

tribution gives Eq. (25) (with n = 2 and gl (P) 
linear in p) and it is equivalent to scale invariant 
random multiplier. 

(D) Finally we have argued that the correct scaling 
parameter to describe the statistical properties of 
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small scale turbulent flows is not directly linked 

to a simple geometrical interpretation, rather it 
should be considered a dynamical variable. 

Our findings (A)-(D) enable us to have a unified 

theoretical interpretation of the experimental and nu- 
merical results presented at the beginning of this pa- 

per. Indeed Eq. (41) or (43) tells us that the anomalous 

part of the structure functions 

(SvP(r)) 
Gp(r) = (Sv3(r))p/3 (47) 

satisfies the scaling properties 

In [36] it has been shown that the statistical behavior 
of signal increments 

(184~(r)1 p) = (kb(x + r) - ~b(x)l p) "-- r ¢(p) 

is controlled by the coefficients otj,k. By defining the 
ot coefficients in terms of a multiplicative random pro- 

cess on the diadic tree, it is possible to give an explicit 

expression for the scaling exponents ( (p) .  For exam- 

ple, it is possible to recover the standard anomalous 
scaling by defining the t~'s tree in term of the realiza- 

tions of a random variable r/with a probability distri- 
bution P(r/): 

Gp (r) = Gq (r) pp'q , ( 4 8 )  

where pp,q ==- ( ( p -- p / 3 ) / ( (q - q  / 3 ). According to our 

analysis of the experimental and numerical results, the 

scaling (48) is observed down to the smallest resolved 

scale. 
We have shown that, in the theoretical framework 

so far exposed, we recover the ESS when gl (r)l/ho ,,~ 
l/ao ,,~ L(r). If g l  (r) l/h° ~ g2(r) 1/a° we lose ESS, g2 

but its generalized version (48) is still valid. 

6.1. Synthetic turbulence 

We can also use (41) and (43) to simulate a syn- 

thetic signal according to a random multiplicative pro- 

cess satisfying (36). This can be done by using the 

algorithm recently introduced in [36]. 
Let us consider a wavelet decomposition of the 

function q0(x) 

OG 

49(x) = ~_, otj,kgtj,~(x), (49) 
j ,k=O 

where ~tj,k(x) = 2J/2~(2Jx -- k) and ~(x)  is any 

wavelet with zero mean. The above decomposition 
defines the signal as a diadic superposition of basic 

fluctuations with different characteristic widths (con- 
trolled by the index j )  and centered in different spatial 
points (controlled by the index k). For functions de- 
fined on N = 2 n points in the interval [0,1 ] the sums 
in (49) are restricted from zero to n - 1 for the index 
j and from zero to 2 j - 1 for k [37]. 

or0,0 

Oil,0 = r l l ,0ff0,0;  

or2,0 ---- r]2,0Otl,0; 

ot2,2 = r]2,2t~l, l ;  

Oil,1 -~- r]l,lOt0,0; 

Or2,1 • O2,10tl,0; 

Or2, 3 ~-- r/2,3Otl, 1 

(50) 

and so on. Let us note that in the previous multiplica- 
tive process different scales are characterized by dif- 

ferent values of the index j ,  i.e. rj = 2 - j  . If  the rlj,k 
are independent identically distributed (i.i.d.) random 
variable it is straightforward to realize that otj,k are 
random variables with moments given by 

(Iotj,k [P) = r?  l°g2(q'P), (51) 

where the "mother eddy" a0,0 has been chosen equal to 

one. In (51) with 7-:.- we intend averaging over the P (17) 

distribution. In [36] it has been shown that also the 
signal ~b(x) has the same anomalous scaling of (51). 

In order to generalize this construction for functions 
showing ESS or generalized-ESS (G-ESS) scaling of 
the form (41) and (48) is now sufficient to take a prob- 
ability distribution, Pz(r/), for the random multiplier 
with the appropriate scale dependency (25). This will 
be implemented by allowing a dependency of P(rljk) 
on the scale r] = 2 - j ,  i.e. the r/'s random variables 
will be still independently distributed but not identi- 
cally distributed with respect to variation of the scal- 

ing index j .  
According to the previous discussion, ESS corre- 

sponds to have only one seed-function defining the 
multiplicative process, i.e. gl (r)l/h° ¢ g2(r)l/d° in 

the range of scales where ESS is valid (r > 5r/k). On 
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the other hand, at scales smaller that 5-6  Kolmogorov 

scale, ESS is not more valid because g2/a°" begins to 

deviate substantially from gl/h°: only G-ESS should 

be observed and we need a multiplicative process de- 
fined in terms of two differnt seed-functions. 

Following this recipe we define the signal such that: 

<t~v(r) p) = Ut; F(r)p/3G(r)((P)-P/3,  (52) 

where 

F(r)  = <~v(r)3)/U 3. (53) 

The function G(r)  is defined in such a way that for 

F(r)  much greater than Ok~L, G(r)  ~ F(r)  while 
for very small scales r we have G(r)  ".~ Ok/L. In the 

following we choose the simplest ansatz: 

G(r)  = B + A F ( r )  (54) 

with B = Ok/L and A is a dimensionless constant. 
Let us now spend some words in order to clarify 

the previous definitions. Relation (52) is defined such 

that experimental results are reproduced with good ac- 

curacy and G-ESS scaling (48) is satisfied by defini- 

tion. By assuming (54) the only unknown function is 
F(r)  = (~v(r )3) /U 3. On the other hand the function 

{Sv(r) 3) is always very well fitted by the Batchelor 
parameterization: 

(~v(r) 3) = U3 r 3 
L02 (1 -q- (r/0k)2) " (55) 

From expression (52) it is immediate to extract 

the expression for the two seed-functions gl (r), g2(r) 
used in the previous sections, namely: 

( F(r )  ~ 1/3 
g l ( r )  = \ G ( r ) ]  G(r)hO, 

(56) 

g2(r) = G(r)  d°. 

Let us note that gl (r) goes smoothly from the inter- 
mittent value, gl (r )  ~ rh°(ho = 1 for the case of 
She-Leveque model), assumed in the inertial range to 
the laminar value, gl (r) = ~  r, characteristic of  scales 
much smaller than Kolmogorov scale. 

For the practical point of  view we have constructed 
our signal by using a random process for the multiplier 

Oj,k(rj) with a scale-dependent log-Poisson distribu- 
tion. The scale dependency of parameters entering the 
distribution has been fixed in terms of relations (56) 

and (29) and such that the ( ( p )  exponents correspond 
to the She-Leveque [12] expression, namely: 

A 1 g lx j ' j+l  (57) O j k ( r j )  • j , j +  &' , 

where xj,j+l is a Poisson variable with mean Cj,j+I = 
log(g2(rj + l ) /gz(rj  ) ), aj,j+~ = gl (rj ) /gl  (rj + l ) and 
fl = 2. This choice leads to the standard log-Poisson 

scaling in the inertial range 

( 1  - t ip~3)  
( ( p )  = hop + (1 - 3h0) 

(I - #) 

and to the following expression for the ratios of devi- 
ations to the Kolmogorov law: 

H ( p )  - p / 3  1 - fix~3 
PP'q - -  H(q)  - q / 3 '  n ( x )  -- (1 - fl---~ 

The signal constructed according to this scenario 

will be referred to as signal A in the following. 

In Fig. 11 we show the structure function of order 6 

for such a signal plotted versus the separation scale r 
at moderate Reynolds number. Clearly, for this choice 

of  Reynolds number there is not any inertial range of 
scale where scaling exponents could be safely mea- 
sured. On the other hand, our signal shows G-ESS 
scaling, as it is possible to see in Fig. 12. 
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Fig. 11. Log-log plot of the sixth order structure function for 
the signal A with 19 fragmentation at small Reynolds number. 
Notice the absence of any scaling range. 
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Fig. 12. G-ESS (log(G4(r)) versus log(G6(r))) for the sig- 
nal A at the same Reynolds number of Fig. 11. The slope is 
,04,6 ---- 0.241 in perfect agreement with the theoretical pre- 
diction obtained from (18) where for ((p) we have used the 
She-Leveque expression. 

7 .  M u l t i s e a l i n g  

We now turn our attention to a different question 

which is connected to the theoretical results so far dis- 

cussed, namely the role played by viscous effects. It 

is generally argued that the anomalous scaling can be 

observed for scales larger than a given viscous cut- 

off. The physical interpretation of  this statement is 

that nonlinear, intermittent, transfer of  energy is act- 

ing only for scales larger than the viscous scale. Be- 

low such a scale the structure functions are supposed 

to show a simple (regular) scaling (gyP(r)) ~ r p. 
Usually the viscous cutoff is introduced as the scale 

at which the local Reynolds number is of  order 1, 

namely 

6v(r)r 
- -  --~ 1. ( 5 8 )  

P 

This condition can be obtained by the requirement that 

the local energy transfer e(r) ~ (~v3(r)/r) becomes 
equal to the energy dissipation v(6ve(r)/r2): 

Sv2(r) ~v3(r) 
v ~ - - ,  (59) 

r 2 r 

which gives Eq. (58). There is a well-defined pre- 
diction, based on (58), formulated by Frisch and 

Vergassola using the multifractal language. Indeed for 

any exponent h one can introduce the h-dependent 

viscous cutoff given by 

rd h+l ~" v, (60) 

where 6v(r) ~ r h. 

It follows that rd(h) is a fluctuating quantity. There 

are two consequences of  this theory. The first one pre- 

dicts that for the structure functions (~vP(r)) there ex- 

ists a cutoff scale rp dependent on p and moreover 

rp < rq for p > q. 

The second prediction concerns the moment of  the 

velocity gradients F which are 

(F p) ~ (rd(h)(h-l)Prd(h) 3-d(h)) "~ Re -z(p) (61) 

with z(p) = suph[((h -- 1)p + 3 -- D(h)) /( l  + h)]. 
Between the two predictions the first one is quali- 

tatively more peculiar of (60). 

In particular, the first prediction states that between 

the end of  the inertial range (i.e. the region where 
anomalous scaling of  ( ~ v P ( r ) )  with respect to r is 

detected) and the dissipation cutoff rd, the local slope 

is controlled in rather complicate way by D(h). The 

second prediction is somehow weaker because present 

experimental data do not distinguish among sev- 

eral models, so far proposed, for the Re-dependence 
of  (FP). 

In order to compare the multiscaling in the dissipa- 

tion range with our experimental and numerical data, 
we have produced a synthetic turbulence signal (sig- 

nal B hereafter) similar to the one already discussed 

but with do and h0 independent on r. The effect of  

dissipation is introduced is introduced by using (58). 

In Fig. 13 we compare the local scaling exponents 
d( log(6vP)) /d( log r) for p = 6 between the two syn- 

thetic signals. 
In Fig. 14 we plot the relation (45) for p = 6 for 

signal A and B. Finally in Fig. 15 we plot the ra- 
t ,  , '  r ,  P4,6 tio Lr4/Lr 6 for signal B. By comparing Figs. 13-15 

with the analogous experimental and numerical results 

discussed in the previous sections (see Figs. 5, 7 and 
9), we can state that the quantitative and qualitative 
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prediction based on (60) is not verified by experimen- 

tal data. On the other hand, signal A, based on an ex- 

plicit r-dependence of do and h0, seems to be more 

closely related to what observed experimentally. Let 
us remark that signal A has no cutoff effect imposed 

by condition (58). 

The above discussion rules out the effect of  multi- 

scaling on the viscous cutoff (60). Previous claims on 
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Fig. 15. Compensated slope (G4(r)/Gg4"6(r)) for signal B. 
Notice deviations of the order of 10% while for signal A the 
same quantity is constant by definition. 

the validity of  multiscaling effects should be consid- 

ered either wrong or affected by experimental errors. 

On the other hand our model, used to implement the 

synthetic signal A, should be considered a very accu- 

rate model even for a scale close to the regular region 

where 3v(r )  ",~ r. 

There is, however, a theoretical question concern- 

ing multiscaling which we are still not able to answer 

completely and that we shall try to formulate in the 

following. There are two possible scenarios in which 

a viscous cutoff may be considered. 

In the first scenario (let us call it scenario I) we can 

imagine to consider Eq. (58) as a fundamental rela- 

tion independent of  any other theoretical considera- 

tion. The idea is that when the local Reynolds number 

is sufficiently small, then nonlinear effects must be 

neglected. In order to compute the viscous scale, one 

shoud make use of the relation 

~v(r )  "~ U o F ( r ) l / 3 G ( r ) h - l / 3  (62) 

obtained by the two definitions (42) and (52). In 

Eq. (62) h is now the standard multifractal scale- 

independent exponent. Generalized scaling (62) 

should be considered realized with probability 

Ph (r) ~ G ( r )  3-o(h) .  (63) 

Inserting (62) into (58) we obtain 
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rdUoF(rd ) l /3G(rd )  h-l~3 ~ v, (64) 

where rd(h) is the fluctuating cutoff. 
We now look for a solution of Eq. (64) in a region 

where 

r 3 
F ( r )  ~ Lrl2,  (65) 

Ok 
G ( r )  L (66) 

After some algebra we obtain 

rd(h) ~ Re (3h-7)/8. (67) 

Thus rd(h) is a fluctuating quantity as in (60). These 
fluctuations, however, happen in the region where 

3v ( r )  --~ r and therefore, no effect on the scaling of 

structure function is produced. From (62)-(65) we 

can compute the scaling of ( F  p) as function of Re. 

The scaling is independent on rd(h) and it is 

(F p) ~ Re (3/4)(p-¢p), (68) 

consistent with (62) in the limit r --~ 0. Note that 
(F 2) ~ Re (3/4)(2-(2). This implies that for (2 5 ~ 

2 (F2) does not scale as Re. If  we want to recover 3' 
the experimental fact that (s) is constant with Re, we 
should allow for a Re-dependent constant in (62). At 

any rate, because (2 - ~ is a small quantity, these 
effects are quite small in the full range of available 

Re-number. 

We can summarize the scenario I as follows: the 

scaling (48) and (62) are verified to all scales; the con- 
dition (58) introduces a viscous cutoff which fluctuates 
in the region where 6v ( r )  ~ r; intermittency in the 
gradient of the velocity field are prescribed by (62). 

The above conclusions imply that scaling (45) must 
be violated near the viscous cutoff, as one can imme- 

diately check by an explicit computation. One can take 
an opposite point of view and assume that (45) is a 
fundamental relationship which must not be violated. 
This corresponds to the second scenario. 

In the second scenario (58) is disregarded and one 
generalizes (59) as 

v F  2 ~v3(rd) 
(~l)3(rd)) 6, (69) 
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where F is the velocity gradient and rd is the vis- 

cous cutoff. In order to compute rd, one observes that 
F' -,~ 1/ r ( rd)  where r(rd)  is the eddy turnover time 

at the viscous cutoff. We obtain 

~v3(rd)r(rd) 2 SV(rd)(6v3(rd)) 
v ~ ~ ( 7 0 )  v3()) (3 r d e 

where following (46), we used r r d 6 v ( r d )  = 

(6v3 ( rd ) ) / e .  Once again, by using (62), (65) and (66) 

we can obtain an explicit formula for rd(h) 

rd(h)  ~ Re -(3/16)(13/3-h) Ok. (71) 

Thus also in scenario II, we have strong fluctuations 
of the viscous cutoff. 

The computation of the gradients is quite straight- 

forward from (69). We have 

8v3(r )1/2 
F ~ Re 1/2 (~v3(r)) -,~ R e l / 2 G ( r d )  (3h-1/2), 

(72) 

where we have used (62). Finally by using (63) and 

(66) we get 

(tiP) --_ Rep/2G(r d)(Op/2-p/2) 

.~ Rep/2 Re3/4(g3p/2-p/2). (73) 

Note that in scenario II (F 2) ~ Re because (3 = 

1. Because of (73), the II scenario violates (62) and 
(48) for scales smaller than rd(h) while (45) is always 

satisfied. 
It is quite difficult to understand which one of the 

two scenarios is actually verified by experimental and 
numerical data. In most cases the scale resolution does 
not reach the region where ~v(r )  ~ r. At any rate, 
either (45) or (48) should he violated at very small 
scales as the result of viscous effects. This violation is 
rather small and may not be easily detectable at low 
or moderate Reynolds numbers. The common point 
about the two scenarios is that the viscous cutoff (if 
any) acts at a scale where already the velocity structure 
functions behave in a regular way, i.e. ~v(r )  "~ r. 
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8. Conclusions 

In this paper we proposed several new results con- 
cerning the scaling behavior of small scale statistical 

properties of turbulence. It is worth to summarize our 
main findings trying to outline questions which are 

still to be answered. 
(1) We have reviewed the main results on ESS and 

in particular we have shown that in homogeneous 
and isotropic flows in turbulence, Rayleigh- 

Benard convection and solar wind magnetohy- 

drodynamics, the ratio ( ( p ) / ( ( 3 )  seems to have 

an universal behavior. This is a rather striking 
and unexpected result which implies that anoma- 

lous violation of dimensional scaling may be 
explained in an universal way. We do not know 

any simple phenomenological explanation for our 
finding. 

(2) We have shown that ESS is not observed when 

relatively strong shear flows are present. A phe- 
nomenological analysis, based on the Kolmogorov 

equation, shows the relevance of a length scale 

based on the mean energy dissipation and the shear 

strength. This analysis should be refined in order 
to acquire more quantitative predictions. At any 

rate, our observation suggests that previous find- 
ing of violations of ESS should be due to the pres- 
ence of shear flows. 

(3) We have shown that the refined Kolmogorov sim- 
ilarity can be generalized by including ESS. This 
generalization is verified extremely well in both 

experiments and numerical simulations. More im- 
portant, we have shown that the generalized re- 

fined Kolmogorov similarity is true also in cases 
where ESS is not observed. 

(4) Similar to the previous point, we have shown that 

the hierarchy relation based on log-Poisson distri- 
bution for the structure functions is very well sup- 
ported by experimental data, also for very small 
scales where ESS is not observed. In the Appendix 
A we have also shown that this extention of the 
hierarchy to all scales is not a general feature of 
any turbulent field, but it is a property of the ve- 
locity field, which plays an important role in our 
theoretical interpretation. 

(5) Based on our results in (1)-(4) we have proposed a 

generalization of ESS. This generalization is sup- 
ported both by experimental and numerical data 

and it seems not affected by viscous cutoff. 
(6) We developed a theory which unifies the previous 

point. The theory is based on the assumption that 

the probability distribution is infinitely divisible 

and predicts the existence of the G-ESS. The the- 

ory can also be used to generate artificial signals 
which displays all the scaling features observed in 

real data. 

(7) We have shown that the original proposal on the 

multiscaling for the viscous cutoff is incompatible 
with the turbulence data. The theory formulated in 

this paper removes this incompatibility and sug- 
gests that multiscaling is acting at much smaller 

scales than previously proposed. The new point 
on the theory is a change of view in the probabil- 

ity distribution of the original multifractal model 
which is not directly linked to a geometrical in- 

terpretation in terms of fractal dimensions. 

(8) Finally we have shown that violations of either 
the generalized refined Kolmogorov similarity or 

the G-ESS should occur at very small scale. Our 

present data analysis does not allow us to distin- 
guish among the two possibilities. 
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Appendix A 

In Section 4 we have shown that the hierarchy re- 
lation for the velocity structure functions, Eq. (14), 



180 R. Benzi et al./Physica D 96 (1996) 162-181 

0.3 :  

r-~ ~). 2 . 

CZ 
\ 
[o 

O] 

-0,0 

-0.1 

1 1 

/ 
/ 

-0 .2  
-0.C~ . . . . . . . . . . . . . . .  -0.1 -' 0'.'(~ . . . . . . . . . . . . . . . . .  8.1 0 .2  

Lo g [ (R4/R3) ~ R I ] 

Fig. 16. Hierarchy of the structure functions of a passive scalar 
transported by a turbulent flow at Re = 50000, ~ = 0.62. The 
straight line has a slope 1.02. 

has the property of being satisfied from large to small 

scales. In this appendix we want to point out that this 

property, which has very important consequences in 

our theoretical interpretation of Section 6, is not a 

generic feature of any turbulent field. As an example 

we consider the structure functions Rn (r) of a passive 

scalar for which ESS is observed [19]. One can check 

if the following hierarchy (which is similar to Eq. (14) 

for the velocity structure functions) is supported by 

the experimental data [38]: 

Rn+l(r) ( R n ( r )  ~ 
Rn ( r-------~ cx \ R-~-_-l-(r ) ] R l ( r ) , (A.1) 

where Rl(r )  c< R2(r)/Rl(r) 1+~. Eq. (A.I) has been 

checked [38] by using the experimental measurements 

of a temperature field passively transported by a tu- 

ubulent flow [19]. In Fig. 16 we report in log-log 

scale R6(r)/R5(r) versus (Rs(r)/R4(r))aRl(r)  with 

c~ = 0.62 (this value has been experimentally deter- 

mined). We see that the dissipative and inertial range 

both present a slope of 1, showing that Eq. (A. 1) is sat- 

isfied in both regions. However, the transition between 

these two regions is characterized by a jump, which 

is not observed in the case of the velocity structure 

functions (compare Fig. 16 with Fig. 8). This exam- 

ple clearly shows that a hierarchy similar to Eq. (14) 

does not necessarily extend to all scales. This very 

important feature of the velocity field plays a key role 

in our theoretical interpretation in Section 6. 
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