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Abstract

Thermal convection is ubiquitous in nature as well as in many industrial applications.
The identification of effective control strategies to, e.g., suppress or enhance the convective
heat exchange under fixed external thermal gradients is an outstanding fundamental and
technological issue. In this work, we explore a novel approach, based on a state-of-the-art
Reinforcement Learning (RL) algorithm, which is capable of significantly reducing the heat
transport in a two-dimensional Rayleigh-Bénard system by applying small temperature fluc-
tuations to the lower boundary of the system. By using numerical simulations, we show that
our RL-based control is able to stabilize the conductive regime and bring the onset of con-
vection up to a Rayleigh number Rac ≈ 3 · 104, whereas in the uncontrolled case it holds
Rac = 1708. Additionally, for Ra > 3 · 104, our approach outperforms other state-of-the-art
control algorithms reducing the heat flux by a factor of about 2.5. In the last part of the
manuscript, we address theoretical limits connected to controlling an unstable and chaotic
dynamics as the one considered here. We show that controllability is hindered by observabil-
ity and/or capabilities of actuating actions, which can be quantified in terms of characteristic
time delays. When these delays become comparable with the Lyapunov time of the system,
control becomes impossible.
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1. Introduction

Rayleigh–Bénard Convection (RBC) provides a widely studied paradigm for thermally-driven
flows, which are ubiquitous in nature and in industrial applications [1]. Buoyancy effects,
ultimately yielding to fluid dynamics instability, are determined by temperature gradients [2]
and impact on the heat transport. The control of RBC is an outstanding research topic
with fundamental scientific implications [3]. Additionally, preventing, mitigating or enhancing
such instabilities and/or regulating the heat transport is crucial in numerous applications.
Examples include crystal growth processes, e.g. to produce silicon wafers [4]. Indeed, while
the speed of these processes benefits from increased temperature gradients, the quality of
the outcome is endangered by fluid motion (i.e. flow instability) that grows as the thermal
gradients increase. Thus the key problem addressed here: can we control and stabilize fluid
flows that, due to temperature gradients, would otherwise be unstable?
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In the Boussinesq approximation, the fluid motion in RBC can be described via the following
equations [5]:

∂u

∂t
+ u · ∇∇∇u = −∇∇∇p+ ν∇2u + ŷαg(T − T0), (1)

∂T

∂t
+ u · ∇∇∇T = κ∇2T. (2)

where t denotes the time, u the incompressible velocity field (∇∇∇·u = 0), p the pressure, ν the
kinematic viscosity, α the thermal expansion coefficient, g the magnitude of the acceleration of
gravity (with direction ŷ), and κ the thermal diffusivity. For a fluid system confined between
two parallel horizontal planes at distance H and with temperatures TC and TH = TC + ∆T ,
respectively for the top and the bottom element (∆T > 0), it is well known that the dynamics
is regulated by three non-dimensional parameters: the Rayleigh and Prandtl numbers and the
aspect ratio of the cell (i.e. the ratio between the cell height and width Lx), i.e.

Ra =
gα(TH − TC)H3

κν
, Pr = ν/κ, Γ = H/Lx. (3)

Considering adiabatic side walls, a mean heat flux, q, independent on the height establishes
on the cell:

q = 〈uyT 〉x − κ∂y〈T 〉x = const, (4)

where 〈·〉x indicates an average with respect to the x-axis, parallel to the plates, and • the
time averaging. The time-averaged heat flux is customarily reported in a non-dimensional
form, scaling it by the conductive heat flux, κ∆T/H, which defines the Nusselt number

Nu =
q

κ∆T/H
. (5)

As the Rayleigh number overcomes a critical threshold, Rac, fluid motion is triggered
enhancing the heat exchange (Nu > 1).

Dubbed in terms of Rayleigh and Nusselt numbers, our control question becomes: can we
diminish, or minimize, Nusselt for a fixed Rayleigh number?
In recent years, diverse approaches have been proposed to tackle this issue. These can be di-
vided into passive and active control methods. Passive control methods include: acceleration
modulation [3, 6], oscillating shear flows [7], and oscillating boundary temperatures [8]. Active
control methods include: velocity actuators [9], and perturbations of the thermal boundary
layer [10, 11, 12]. Many of these methods, although ingenious, are not practical due, e.g., to
the requirement of a perfect knowledge of the state of the system, or a starting condition close
to the conductive state - something difficult to establish [11]. Another state-of-the-art active
method, that is used in this paper as comparison, is based on a linear control acting at the bot-
tom thermal boundary layer [13]. The main difficulty in controlling RBC resides in its chaotic
behavior and chaotic response to controlling actions. In recent years, Reinforcement Learning
(RL) algorithms [14] have been proven capable of solving complex control problems, dom-
inating extremely hard challenges in high-dimensional spaces (e.g. board games [15, 16] and
robotics [17]). Reinforcement Learning is a supervised Machine Learning (ML) [18] approach
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(a) Linear Control

Neural Network

Controller

(b) RL control

Figure 1.: Schematics of linear (a) and Reinforcement Learning (b) control methods applied to
a Rayleigh–Bénard system and aiming at reducing convective effects (i.e. the Nusselt number).
The system consists of a domain with height, H, aspect ratio, Γ = 1, no-slip boundary
conditions, constant temperature TC on the top boundary, adiabatic side boundaries and a
controllable bottom boundary where the imposed temperature TB(x, t) can vary in space and
time (according to the control protocol) while keeping a constant average 〈TB(x, t)〉x = TH .
Because the average temperature of the bottom plate is constant, the Rayleigh number is
well-defined and constant over time. The control protocol of the linear controller (a) works
by calculating the distance measure E(x, t) from the ideal state (cf. Eq. (10)-(11)) and, based
on linear relations, applies temperature corrections to the bottom plate. The RL method (1b)
uses a Neural Network controller which acquires flow state from a number of probes at fixed
locations and returns a temperature profile (see details in Fig. 2). The parameters of the
Neural Network are automatically optimized by the RL method, during training. Moreover,
in the RL case, the temperature fluctuations at the bottom plate are piece-wise constant
and can have only prefixed temperature value between two states, hot or cold (cf. Eq. (12)).
Operating with discrete actions, reduces significantly the complexity and the computational
resources needed for training.

aimed at finding optimal control strategies. This is achieved by successive trial-and-error in-
teractions with a (simulated or real) environment which iteratively improve an initial random
control policy. Indeed, this is usually a rather slow process which may take millions of trial-
and-error episodes to converge [19]. Reinforcement learning has also been used in connection
with fluid flows, such as for training smart inertial or self-propelling particles [20, 21, 22], for
schooling of fishes [23, 24], soaring of birds and gliders in turbulent environments [25, 26], op-
timal navigation in turbulent flows [27, 28], drag reduction by active control in the turbulent
regime [29], and more [30, 31, 32, 33, 34, 35].

In this work, we show that RL methods can be successfully applied for controlling a
Rayleigh–Bénard system at fixed Rayleigh number reducing (or suppressing) convective ef-
fects. Considering a 2D proof-of-concept setup, we demonstrate that RL can significantly
outperform state-of-the-art linear methods [13] when allowed to apply (small) temperature
fluctuations at the bottom plate (see setup in Figure 1). In particular, we target a minim-
ization of the time-averaged Nusselt number (Eq. (5)), aiming at reducing its instantaneous
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counterpart:

Nuinstant(t) =
〈uyT 〉x,y − κ∂y〈T 〉x,y

κ∆T/H
, (6)

where the additional average along the vertical direction, y, amends instantaneous fluctu-
ations.

Finding controls fully stabilizing RBC might be, however, at all impossible. For a chaotic
system as RBC, this may happen, among others, when delays in controls or observation
become comparable with the Lyapunov time. We discuss this topic in the last part of the paper
employing Reinforcement Learning to control the Lorenz attractor, a well-known, reduced
version of RBC [36].

The rest of this manuscript is organized as follows. In Section 2, we formalize the
Rayleigh–Bénard control problem and the implementation of both linear and RL controls.
In Section 3, we present the control results and comment on the induced flow structures. In
Section 4 we analyze physical factors that limit the RL control performance. The discussion
in Section 5 closes the paper.

2. Control-based convection reduction

In this section we provide details of the Rayleigh–Bénard system considered, formalize the
control problem and introduce the control methods.

We consider an ideal gas (Pr = 0.71) in a two-dimensional Rayleigh–Bénard system with
Γ = 1 at an assigned Rayleigh number (cf. sketch and (x, y) coordinate system in Figure 1).
We assume the four cell sides to satisfy a non-slip boundary condition, the lateral sides to
be adiabatic, and a uniform temperature, TC , imposed at the top boundary. We enforce the
Rayleigh number by specifying the average temperature,

TH = 〈TB(x, t)〉x, (7)

at the bottom boundary (where TB(x, t) is the instantaneous temperature at location x of
the bottom boundary). Temperature fluctuations with respect to such average,

T̂B(x, t) = TB(x, t)− TH , (8)

are left for control.
We aim at controlling T̂B(x, t) to minimize convective effects, which we quantify via the

time-averaged Nusselt number (cf. Eq.(5)). We further constrain the allowed temperature
fluctuations to

|T̂B(x, t)| ≤ C ∀x, t, (9)

to prevent extreme and nonphysical temperature gradients (in similar spirit to the experiments
in [11]).

We simulate the flow dynamics through the Lattice-Boltzmann method (LBM) [5] employ-
ing a double lattice, respectively for the velocity and for the temperature populations (with
D2Q9 and D2Q4 schemes on a square lattice with sizes Nx = Ny; collisions are resolved via
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the standard BGK relaxation). We opt for the LBM since it allows for fast, extremely vector-
izable, implementations which enables us to perform multiple (up to hundreds) simulations
concurrently on a GPU architecture. See Table 1 for relevant simulation parameters; further
implementation details are reported in Appendix A.

Table 1.: Rayleigh–Bénard system and simulation parameters.

Parameters

Ra 103 −→ 107 Rayleigh Number

Pr 0.71 Prandtl Number

Γ 1 Aspect Ratio

Control

C 0.75 Control amplitude limit, Eq. (9)

∆t 16 −→ 180 Control loop (unit: LBM steps)

ti 0 (training) Start evaluation time, for averages in Eq. (5)

” 150∆t (test) ”

te 500∆t End evaluation time, for averages in Eq. (5)

Lattice Boltzmann simulation (Appendix A)

NX = NY 20 −→ 350 Grid size

c2
s 1/3 Speed of sound

τ 0.56 Relaxation time

TC 1 Top boundary temperature

TH 2 Bottom boundary mean temperature

τT (τ − 1/2)/Pr + 1/2 Temperature relaxation time

ν c2
s(τ − 1/2) Kinematic viscosity

κ 1/4(2τT − 1) Thermal diffusivity

αg Ra κν
(TH−TC)NY 3 Effective gravity

Starting from a system in a (random) natural convective state (cf. experiments [11]), con-

trolling actions act continuously. Yet, to limit learning computational costs, T̂B(x, t) is up-
dated with a period, ∆t (i.e. control loop), longer than the LBM simulation step and scaling
with the convection time, tconvection ∼ H/Ubulk. We report in Table A1 the loop length,
which satisfies, approximately, ∆t ≈ 1/20 tconvection, and the system size, all of which are Ra-
dependent. Once more, for computational efficiency reasons, we retain the minimal system size
that enables us to quantify the (uncontrolled) Nusselt number within 5% error (Appendix A).

In the next subsections we provide details on the linear and reinforcement-learning based
controls.

2.1. Linear control

We build our reference control approach via a linear proportional-derivative (PD) control-
ler [13]. Our control loop prescribes instantaneously the temperature fluctuations at the bot-
tom boundary as

T̂B(x, t) = R(T̃B(x, t)) = −R((kP − kD∂t)E(x, t)) (10)
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with kP , kD being constant parameters and the (signed) distance from the optimal conductive
state (ux = uy = 0), E(x, t), satisfying

E(x, t) = 〈uy(x, y, t)〉y/V0, (11)

where V0 is a reference vertical velocity. To ensure the constraints given by Eqs. (7),(9) we
operate a clipping and renormalization operation, R(·), as described in Appendix B.

Various other metrics, E(x, t), have been proposed leveraging, for instance, on the shadow
graph method (E(x, t) = (〈ρ(x, y, t)〉y − ρ0)/ρ0 [11]), and on the mid-line temperature
(E(x, t) = (T (x,H/2, t)− T1/2)/∆T , with T1/2 = 1/2(TH + TC), [10]). These metrics provide
similar results and, in particular, an average Nusselt number for the controlled systems within
5%. Hence, we opted for Eq. (11) as it proved to be more stable. Note that, by restricting to
kD = 0, one obtains a linear proportional (P) controller. While supposedly less powerful than
a PD controller, in our case the two show similar performance. The controller operates with
the same space and time discretization of the LBM simulations, with the time derivative of
E(x, t) calculated with a first order backwards scheme. We identify the Rayleigh-dependent
parameters kP and kD via a grid-search algorithm [37] for Ra ≤ 106 (cf. values in Table 2).
In case of higher Ra, due to the chaoticity of the system, we were unable to find parameters
consistently reducing the heat flux with respect to the uncontrolled case.

Table 2.: Parameters used for the linear controls in Lattice Boltzmann units (cf. Eq. (10);
note: a P controller is obtained by setting kD = 0 ). At Ra = 107 we were unable to find PD
controllers performing better than P controllers, which were anyway ineffective.

P control PD control
Ra Nx = Ny kP kP kD
1 · 103 20 0.0 0.0 0.0
3 · 103 20 3.16 · 102 3.16 · 102 0.0
1 · 104 20 4.12 · 102 5.28 · 102 8.24 · 104

3 · 104 25 8.97 · 102 5.45 · 104 1.91 · 106

1 · 105 30 16.4 94.8 1.05 · 104

3 · 105 40 9.38 11.5 1.87 · 103

1 · 106 100 6.61 1.84 · 104 3.06 · 105

3 · 106 200 7.38 0.12 31.8
1 · 107 350 0.33 - -

2.2. Reinforcement Learning-based control

In a Reinforcement Learning context we have a policy, π, that selects a temperature fluctu-
ation, T̂ (x, t), on the basis of the observed system state. π is identified automatically through
an optimization process, which aims at maximizing a reward signal. In our case we define the
system state, the allowed controlling actions and the reward are as follows:

• The state space, S, includes observations of the temperature and velocity fields (i.e.
of nf = 3 scalar fields) probed on a regular grid in GX × GY = 8 × 8 nodes for the
last D = 4 time steps (i.e. t, t − ∆t, . . . , t − (D − 1)∆t, where t is the current time).
Note that the probe grid has a coarser resolution than the lattice, i.e. GX < NX ,
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GY < NY , which allows to reduce the complexity of the control problem. It holds,
therefore, S = RD·nf ·GX ·GY .
• The action space, A, includes the temperature profiles for the lower boundary that the

controller can instantaneously enforce. To limit the computational complexity, we allow
profiles which are piece-wise constant functions on ns = 10 segments (cf. Figure 1).
Moreover, each of the ns function elements, T̃k (k = 1, 2, . . . , ns), can attain only two
temperature levels, i.e.

T̃k ∈ {C,−C}. (12)

To enforce the constraint in Eq. (7),(9) we normalize the profile according to Ap-

pendix B, generating the final profile T̂k = R(T̃k). After normalization, the action
space includes 2ns − 1 distinct actions.
• The reward function defines the goal of the control problem. We define the reward, rl+1,

as the negative instantaneous Nusselt number (cf. Eq. 6) which results from applying a
temperature profile al ∈ A at time tl. In formulas, it holds

rl+1 = −Nuinstant(tl+1). (13)

Note that the RL controller aims at maximizing the reward accumulated over time
(rather than the instantaneous reward), which minimizes the average Nusselt number,
Eq. (5), as desired.

We employ the Proximal Policy Optimization (PPO) RL algorithm [38], which belongs to the
family of Policy Gradient Methods. Starting from a random initial condition, Policy Gradi-
ent Methods search iteratively (and probabilistically) for optimal (or sufficient) policies by
gradient ascent (based on local estimates of the performance). Specifically, this optimization
employs a probability distribution, π(ai|si), on the action space conditioned to the instantan-
eous system state. At each step of the control loop, we sample and apply an action according to
the distribution π(a|s). Notably, the sampling operation is essential at training time, to ensure
an adequate balance between exploration and exploitation, while at test time, this stochastic
approach can be turned deterministic by restricting to the action with highest associated
probability. In our case, at test time we used the deterministic approach for Ra < 3 · 106 and
the stochastic approach for Ra ≥ 3 · 106, as this allowed for higher performance.

The PPO algorithm is model-free, i.e. it does not need assumptions on the nature of the
control problem. Besides, it does not generally require significant hyperparameter tuning, as
often happens for RL algorithms (e.g. value based method [38]).

When the state vector si is high-dimensional (or even continuous), it is common to para-
meterize the policy function in probabilistic terms as π(ai|si) = π(ai|si;θ), for a parameter
vector θ [15]. This parameterization can be done via different kinds of functions and, cur-
rently, neural networks are a popular choice [39]. In the simplest case, as used here, the neural
network is a multilayer perceptron [14] (MLP). An MPL is a fully connected network in which
neurons are stacked in layers and information flows in a pre-defined direction from the input
to the output neurons via “hidden” neuron layers. The i-th neuron in the (n + 1)-th layer

operates returning the value h
(n+1)
i , which satisfies

h
(n+1)
i = σ

b(n)
i +

∑
j

A
(n)
ij h

(n)
j

 , (14)
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where the h
(n)
j ’s are the outputs of the neurons of the previous layer (the n-th one), which

thus undergo an affine transformation via the matrix A
(n)
ij and the biases b

(n)
i . The non-linear

activation function σ provides the network with the capability of approximating non-linear
functions [39]. During training, the parameters θ get updated through back propagation [40]
(according to the loss defined by the PPO algorithm) which results in progressive improve-
ments of the policy function.

To increase the computational efficiency, we opt for a policy function factorized as follows

π(ai|si) = π
(
T̃1, T̃2, . . . , T̃ns

∣∣∣si) =

ns∏
k=1

πk

(
T̃k

∣∣∣si) . (15)

In other words, we address the marginal distributions of the local temperature values
T̃1, T̃2, . . . , T̃ns

. We generate the marginals by an MLP (with two hidden layers each with
σ(·) = Tanh(·) activation) that has ns final outputs, y1, y2, . . . , yns

, returned by sigmoid
activation functions, in formulas:

yk = φ(zk) =
1

1 + exp(−zk)
, k = 1, 2, . . . , ns (16)

with zk = (
∑

j A
(2)
kj h

(2)
j + b

(2)
k (see Fig. 2, note that 0 ≤ φ(zk) ≤ 1). The values y1, y2, . . . , yns

provide the parameters for ns Bernoulli distributions that determine, at random, the binary
selection between the temperature levels {−C,C}. In formulas, it holds

πk

(
T̃k = +C

∣∣∣si) = Bernoulli(p = yk). (17)

The final temperature profile is then determined via Eq. (12) and the normalization in
Eq. (B1). We refer to Fig. 2 for further details on the network.
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(input)

Figure 2.: Sketch of the neural network determining the policy adopted by the RL-based
controller (policy network, π, cf. Fig. 1(b) for the complete setup). The input of the policy
network is a state vector, s, which stacks the values of temperature and both velocity com-
ponents for the current and the previous D − 1 = 3 timesteps. Temperature and velocity
are read on an evenly spaced grid of size GX = 8 by GY = 8. Hence, s has dimension
nf ·GX ·GY ·D = 3 · 8 · 8 · 4 = 768. The policy network π is composed of two fully connected
feed forward layers with nneurons = 64 neurons and σ(·) = tanh(·) activation. The network
output is provided by one fully connected layer with σ(·) = φ(·) activation (Eq. (16)). This
returns the probability vector y = [y1, y2, . . . , yns

]. The kj-th bottom segment has temperat-
ure C with probability yk (Eq. (17)). This probability distribution gets sampled to produce
a proposed temperature profile T̃ = (T̃1, T̃2, . . . , T̃ns

). The final temperature fluctuations

T̂1, T̂2, . . . , T̂ns
are generated with the normalization step in Eq. (B1) (cf. Eqs. (7) and (9)).

The temperature profile obtained is applied to the bottom plate during a time interval ∆t
(control loop), after which the procedure is repeated.
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Ra

2

4

6

8

10

Nu

Uncontrolled
Linear P Control
Linear PD Control
RL104 106

Ra
10−1

100

101

Nu
 - 

1

Figure 3.: Comparison of Nusselt number, averaged over time and ensemble, measured for
uncontrolled and controlled Rayleigh–Bénard systems (note that all the systems are initialized
in a natural convective state). We observe that the critical Rayleigh number, Rac, increases
when we control the system, with Rac = 104 in case of linear control and Rac = 3 · 104 in
case of the RL-based control. Furthermore, for Ra > Rac, the RL control achieves a Nusselt
number consistently lower than what measured in case of the uncontrolled system and for
linear controls (P and PD controllers have comparable performance at all the considered
Rayleigh numbers, see also [13]). The error bars are estimated as µNu/

√
N , where N = 161

is the number of statistically independent samplings of the Nusselt number.
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3. Results
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(a) Ra = 1 · 104
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(b) Ra = 3 · 104
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RL
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P control
PD control

(c) Ra = 1 · 105

100 0 100 200 300 400 500
Time (env steps)

1

2

3

4

5

6

7

RL
Uncontrolled
P control

(d) Ra = 1 · 106

Figure 4.: Time evolution of the Nusselt number at four different Rayleigh regimes, with the
control starting at t = 0. The time axis is in units of control loop length, ∆t (cf. Table A1).
Up to Ra = 3 · 104 (a,b), the RL control is able to stabilize the system (i.e. Nu ≈ 1), which
is in contrast with linear methods that result in a unsteady flow. At Ra = 105 (c), the RL
control is also unable to fully stabilize the system, yet, contrarily to the linear case, it still
results in a flow having stationary Nu. For Ra = 106 (d) the performance of RL is not as
stable as at lower Ra, the control however still manages to reduce the average Nusselt number
significantly.

We compare the linear and RB-based control methods on 9 different scenarios with Rayleigh
number ranging between Ra = 103 (just before the onset of convection) and Ra = 107

(mild turbulence, see Table A1). Figure 3 provides a summary of the performance of the
methods in terms of the (ensemble) averaged Nusselt number. Until Ra ≈ 104, the RL con-
trol and the linear control deliver similar performance. At higher Ra numbers, in which the
Rayleigh–Bénard system is more complex and chaotic, RL controls significantly outperform
linear methods. This entails an increment of the critical Rayleigh number, which increases
from ≈ 103, in the uncontrolled case, to ≈ 104, in case of linear control, and to ≈ 3 · 104 in
case of RL-based controls. Above the critical Rayleigh, RL controls manage a reduction of the
Nusselt number which remains approximately constant, for our specific experiment, it holds

Nuuncontrolled −NuRL ≈ 2.5 for Ra < 3 · 106.
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In contrast, the linear method scores only

Nuuncontrolled −Nulinear ≈ 1.5 for Ra < 106,

while at higher Rayleigh it results completely ineffective.
The reduction of the average Nusselt number is an indicator of the overall suppression

-or the reduction- of convective effects, yet it does not provide insightful and quantitative
information on the characteristics of the control and of the flow. In Figure 4, we compare the
controls in terms of the time histories of the (ensemble-averaged) Nusselt number. We include
four different scenarios. For Ra = 3·104 the RL control is able to stabilize the system (Nu ≈ 1)
while both linear control methods result in periodic orbits [13]. At Ra = 105, RL controls are
also unable to stabilize the system; yet, this does not result in any periodic flows as in the
case of linear control. Finally, at Ra = 106 we observe a time-varying Nusselt number even
using RL-based controls. To better understand the RL control strategy, in Figures 5 and 6,
we plot the instantaneous velocity streamlines for the last two scenarios.

For the case Ra = 105 (see Figure 5(c)), the RL control steers and stabilizes the system
towards a configuration that resembles a double cell. This reduces convective effect by effect-
ively halving the effective Rayleigh number. In particular, we can compute a effective Rayleigh
number, Raeff, by observing that the double cell structure can be constructed as two vertic-
ally stacked Rayleigh–Bénard systems with halved temperature difference and height (i.e.,
in formulas, ∆T ′ = ∆T/2 and H ′ = H/2). It thus results in an effective Rayleigh number
satisfying

Raeff =
gα∆T ′H ′3

νκ
=

1

16

gα∆TH3

νκ
=

1

16
Ra, (18)

which is in line with the observed reduction in Nusselt.
At Ra = 3 · 106 it appears that the RL control attempts, yet fails, to establish the “double

cell” configuration observed at lower Ra (cf. Figure 6(c)). Likely, this is connected to the
increased instability of the double cell configuration as Rayleigh increases.

These results were achieved with less than an hour of training time on an Nvidia V100 for
the cases with low Rayleigh number (Ra . 105). However, at Ra & 106 the optimization took
up to 150 hours of computing time (the majority of which is spent in simulations and the
minority of which is spent in updating the policy). For further details on the training process
of the RL controller see Appendix D.
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t = 30 t = 56 t = 65 t = 92 t = 137 t = 146 t = 173

(a) Uncontrolled

t = 30 t = 56 t = 65 t = 92 t = 137 t = 146 t = 173

(b) Linear proportional controlled

t = 0 t = 13 t = 26 t = 40 t = 53 t = 66 t = 80

(c) RL controlled

Figure 5.: Instantaneous stream lines at different times, at Ra = 105, comparison of cases
without control (a), with linear control (b), and with RL-based control (c). Note that the
time is given in units of ∆t (i.e control loop length, cf. Table A1. Note that the snapshots
are taken at different instants). RL controls establishes a flow regime like a “double cell
mode” which features a steady Nusselt number (see Figure 4c). This is in contrast with linear
methods which rather produce a flow with fluctuating Nusselt. The double cell flow field has
a significantly lower Nusselt number than the uncontrolled case, as heat transport to the top
boundary can only happen via diffusion through the interface between the two cells. This
“double cell” control strategy is established by the RL control with any external supervision.
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t = 0 t = 57 t = 114 t = 171 t = 228 t = 285 t = 342 t = 400

(a) Uncontrolled

t = 0 t = 57 t = 114 t = 171 t = 228 t = 285 t = 342 t = 400

(b) Linear proportional controlled

t = 0 t = 57 t = 114 t = 171 t = 228 t = 285 t = 342 t = 400

(c) RL controlled

Figure 6.: Instantaneous stream lines at Ra = 3 ·106, comparison of cases without control (a),
with linear control (b), and with RL-based control (c). We observe that the RL control still
tries to enforce a “double cell” flow, as in the lower Rayleigh case (Figure 5). The structure
is however far less pronounced and convective effects are much stronger. This is likely due
to the increased instability and chaoticity of the system, which increases the learning and
controlling difficulty. Yet, we can observe a small alteration in the flow structure (cf. lower
cell, larger in size than in uncontrolled conditions) which results in a slightly lower Nusselt
number.
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4. Limits to learning and control

In this section we discuss possible limits to the capability of learning automatic controls when
aiming at suppressing convection. Our arguments are grounded on general physics concepts
and thus apply to other control problems for non-linear/chaotic dynamics.

In Sect. 2, we showed that RL controls are capable of substantially outperforming linear
methods in presence of sufficient control complexity (Ra & 104). It remains however unclear
how far these controls are from optimality, especially at high Ra. Here we address the physics
factors certainly hindering learning and controlling capabilities.

Having sufficient time and spatial resolution on the relevant state of the system is an obvious
requirement to allow a successful control. Such resolution however is not defined in absolute
terms, rather it connects to the typical scales of the system and, in case of a chaotic behavior,
with the Lyapunov time and associated length scale. In our case, at fixed Ra, learnability
and controllability connect with the number and density of probes, with the time and space
resolution of the control, but also with its “distance” with respect to the bulk of the flow.

The system state is observed via a number of probes in fixed position (see Figure 1b). For
a typical (buoyant) velocity in the cell, vb, there is a timescale associated with the delay with
which a probe records a sudden change (e.g. creation/change of a plume) in the system. When
this timescale becomes comparable or larger than the Lyapunov time, it appears hopeless for
any control to learn and disentangle features from the probe readings. In other words, as Ra
increases, we expect that a higher and higher number of probes becomes necessary (but not
sufficient) in order to learn control policies.

Besides, our choice to control the system via the bottom plate temperature fluctuations
entails another typical delay: the time taken to thermal adjustments to propagate inside the
cell. In particular, in a cell at rest, this is the diffusion time, tD ∼ H2

κ ∼ Ra1/2. If the delay
gets larger or comparable to the Lyapunov time, controlling the system becomes, again, likely
impossible.

To illustrate this concept, we rely on a well-known low-dimensional model inspired by
RBC: the Lorenz attractor. The attractor state is three-dimensional and its variables (usu-
ally denoted by x, y, z; see Appendix E) represent the flow angular velocity, the horizontal
temperature fluctuations and the vertical temperature fluctuations. We consider a RL control
acting on the horizontal temperature fluctuations (y variable) that aims at either minimizing
or maximizing the sign changes of the angular velocity (i.e. maximizing or minimizing the
frequency of sign changes of the x variable). In other words, the control aims at keeping the
flow rotation direction maximally consistent or, conversely, at magnifying the rate of velocity
inversions. In this simplified context, we can easily quantify the effects of an artificial delay
in the control on the overall control performance (Figure 7). Consistently with our previous
observations, when the artificial delay approaches the Lyapunov time the control performance
significantly degrades.

Notably, in our original 2D RBC control problem (Sect. 2), control limitations are not
connected to delays in observability. In fact, as we consider coarser and coarser grids of probes,
the control performance does not diminish significantly (cf. Fig. 8; surprisingly, observations
via only 4 allow similar control performance to what achieved employing 64 probes). This
suggests that other mechanisms than insufficient probing determine the performance, most
likely, the excessively long propagation time (in relation to the Lyapunov time) needed by the
controlling actions to traverse the cell from the boundary to the bulk. This could be possibly
lowered by considering different control and actuation strategies.
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Figure 7.: Performance loss due to an artificial delay imposed to a RL controller operating on
the Lorenz attractor. The controller, operating on the y variable of the system (reduced model
for the RBC horizontal temperature fluctuations) aims at either maximizing (LA oscillator)
or minimizing (LA stabilizer) the number of sign changes of the x (in RBC terms the angular
velocity of the flow). The delay, on the horizontal axis, is scaled on the Lyapunov time, λ−1,
of the system (with λ the largest Lyapunov exponent). In case of a delay in the control loop
comparable in size to the Lyapunov time, the control performance diminishes significantly.
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Figure 8.: Average Nusselt number for a RL agent observing the
Rayleigh–Bénard environment at different probe density, all of which are lower than
the baseline employed in Section 3. The grid sizes (i.e information) used to sample the state
of the system at the Ra considered does not seem to play key role in limiting the final control
performance of the RL agent.
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5. Discussion

In this paper we considered the issue of suppressing convective effects in a 2D
Rayleigh–Bénard cell, by applying small temperature fluctuations at the bottom plate. In
our proof of concept comparison, limited to a square cell and fixed Pr, we showed that
controls based on Reinforcement Learning (RL) are able to significantly outperform state-of-
the-art linear approaches. Specifically, RL is capable of discovering controls stabilizing the
Rayleigh–Bénard system up to a critical Rayleigh number that is approximately 3 times lar-
ger than achievable by linear controls and 30 times larger than in the uncontrolled case.
Secondly, when the purely conductive state could not be achieved, the RL still produces
control strategies capable of reducing convection, which are significantly better than linear
algorithms. The RL control achieves this by inducing an unstable flow mode, similar to a
stacked double-cell, yet not utilized in the context of RBC control.

Actually no guarantee exists on the optimality of the controls found by RL. Similarly it
holds for the linear controls, which additionally need vast manual intervention for the iden-
tification of the parameters. However, as we showed numerically, theoretical bounds to con-
trollability hold which are regulated by the chaotic nature of the system, i.e. by its Lyapunov
exponents, in connection with the (space and time) resolution of the system observations
as well as with the actuation capabilities. We quantified such theoretical bounds in terms
of delays, in observability and/or in actuation: whenever these become comparable to the
Lyapunov time, the control becomes impossible.

There is potential for replication of this work in an actual experimental setting. However,
training a controller only via experiments might take an excessively long time to converge.
Recent developments in reinforcement learning showed already the possibility of employing
controllers partially trained on simulations (transfer learning [17]). This would not only be
a large step for the control of flows, but also for RL where practical/industrial uses are still
mostly lacking [14].

Appendix A. Rayleigh–Bénard simulation details

We simulate the Rayleigh–Bénard system via the lattice Boltzmann method (LBM) that we
implement in a vectorized way on a GPU. We employ the following methods and schemes

• Velocity population: D2Q9 scheme, afterwards indicated by fi(x, t);
• Temperature population: D2Q4 scheme;
• Collision model: BGK collision operator [41, 5];
• Forcing scheme: As seen in [5] most forcing schemes can be formulated as follows

fi(x + ei∆t, t+ ∆t)− fi(x, t) = [Ωi(x, t) + Si(x, t)] ∆t (A1)

ueq =
1

ρ

∑
i

fiei +A
F∆t

ρ
(A2)

with Si and A defined by scheme. We choose the scheme by He et al. [42] for its improved
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accuracy which reads

A =
1

2
(A3)

Si =

(
1− ∆t

2τ

)
f eq
i

ρ

ei − u

c2
s

F (A4)

• Boundary model: bounce-back rule enforcing no-slip boundary conditions [5].

To limit the training time, we implemented the LBM vectorizing on the simulations. This en-
abled us to simulate multiple concurrent, fully independent, Rayleigh–Bénard systems within
a single process. This eliminates the overhead of having numerous individual processes running
on a single GPU which would increase the CPU communication overhead.

When a RL controller selects a temperature profile for the bottom boundary this is endured
for number of LBM steps (this defines one environment step, or env step, with length ∆t).
The reason for these, so-called, sticky actions is that within one env step the system does not
change significantly. Allowing quicker actions would not only be physically meaningless but
also possibly detrimental to the performance (this is a known issue when training RL agents
for games where actions need to be sustained to make an impact [43]). Furthermore, due to
our need to investigate the transient behavior, we set the episode length to 500 env steps. In
this way, the transient is extinguished within the first 150 env steps. After each episode the
system is reset to a random, fully developed, convective RB state.

In dependence on the Rayleigh number (i.e. system size), it takes between millions and
billions env steps to converge to a control strategy. To limit the computing time, we consider
the smallest possible system that gives a good estimate for the uncontrolled Nusselt number
(error within few percent).

In Table A1 we report the considered Rayleigh numbers and related system sizes.

Table A1.: Rayleigh–Bénard environments considered. For each Rayleigh number we report
the LBM grid employed (size NX × NY ), the uncontrolled Nusselt number measured from
LBM simulations and a validation reference from the literature.

Ra NX and NY

Length 1 env step
(i.e. control loop length)

(units: lbm steps)
Nu Nu reference [44]

1 · 103 20 16 1.000 1.000
3 · 103 20 16 1.141
1 · 104 20 30 2.090 2.15
3 · 104 25 60 2.753
1 · 105 30 60 3.847 3.91
3 · 105 40 60 4.768
1 · 106 100 60 6.136 6.3
3 · 106 200 100 7.500
1 · 107 350 180 10.900
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Appendix B. Control amplitude normalization

To limit the amplitude of the temperature fluctuations and ensure their zero-average (see
Eq. (7), (9)) we employ the following three normalization steps, indicated by R(·) in the
manuscript. Let T̃B(x, t) be the temperature fluctuation proposed by either the linear control

or the RL-based control, we obtain T̂B(x, t) as

T̃ ′B(x, t) = Clip(T̃B(x, t),−C,C) (B1)

T̃ ′′B(x, t) = T̃ ′B(x, t)− 〈T̃ ′B(x, t)〉x (B2)

T̂B(x, t) =
T̃ ′′B(x, t)

maxx′(1, |T̃ ′′B(x, t)|/C)
. (B3)

Note that the first operation is a clipping of the local temperature fluctuation between ±C,
which is necessary only for the linear control case.

Appendix C. RL algorithm implementation and hyperparameters

In this appendix we elaborate on our design choices about the implementation of RL for
Rayleigh–Bénard control.

• Discretization of the bottom boundary in 10 sections. A literature study [45, 46] and
preliminary experiments have shown that large/continuous action spaces are currently
rather challenging for the convergence of RL methods. In our preliminary experiments
we observed that discretizing TB in 20 sections was even less effective that in 10 sections,
and that 5 sections were instead insufficient to get the desired performance.
• 3 layer multilayer perceptron (MLP) for state encoding. We considered this option over

a convolutional neural network (CNN) applied on the entire lattice. The latter had
significantly longer training times and lower final performance. Besides, we included in
the state observed by the MLP the system readings in the D previous env steps, which
is known to be beneficial for performance [43].
• PPO algorithm. We considered this option over value-based methods which were how-

ever more difficult to operate with due to the need of extensive hyperparameter tuning.
Furthermore, we used the open source implementation of PPO included in the stable-
baselines python library [47] (note: training PPO demands for a so-called auxiliary value
function [38]. For that we employed a separate neural network having the same structure
as the policy function).

C.1. Hyperparameters

We used the work by Burda et al. [43] as a starting point for our choice of the hyperparameters.
We specifically considered two separate hyperparameter sets. i targeting final performance
over training speed, used for Ra ≤ 106. ii targeting speed over final performance, used only
on the highest Rayleigh number case (Ra > 106) and for the research on the probe density.
Below one can see the PPO hyperparameters used (see [14] and [38] for further explanations).

• Number of concurrent environments: 512 (set 2: 128)
• Number of roll-out steps: 128
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• Number of samples training samples: 512 · 128 = 65536 (set 2: 128 · 128 = 16384)
• Entropy coefficient cs: 0.01
• Learning rate α: 2.5 · 10−4

• Discount factor γ: 0.99
• Number of mini-batches: 8 (set 2: 16)
• Number of epoch when optimizing the surrogate: 4 (set 2: 32)
• Value function coefficient for the loss calculation: 0.5
• Factor for trade-off of bias vs. variance for Generalized Advantage Estimator Λ: 0.95
• PPO Clip-range: 0.2

Appendix D. Training curves

We report in Figure D1 the learning curves for our RL control (performance vs. length of the
training session). These curves provide information on the time necessary to converge to a
strategy and thus are an indication of the difficulty and stability of the process.
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0 10 20 30 40 50
Number of training steps (in millions)

2.5

3.0

3.5

4.0

4.5
RL
Uncontrolled
P control
PD control

(b) “Mid” Ra of 3 · 105
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Figure D1.: Performance of RL during training (case of the Rayleigh–Bénard system). We
report the average Nusselt number and its fluctuations computed among a batch of 512
concurrent training environments. (a) “low” Ra (0 . Ra ≤ 1 · 5 . 104) in which the control
achieves Nu ≈ 1 in a stable way, (b)“mid” Ra (5 ·104 . Ra ≤ 1 . 106) which still gives stable
learning behavior but converges to Nu > 1 and, lastly, (c) “high” Ra (1 · 106 . Ra) in which
the higher chaoticity of the system makes a full stabilization impossible.

Appendix E. Implementation Lorentz Attractor Control

To illustrate our argument that a delay comparable to the Lyapunov time is detrimental to
the control performance, we introduce two control problems defined on the Lorentz Attractor
(LA). These LA control problems are defined considering the following equations

ẋ = σ(y − x), (E1)

ẏ = x(ρ− z)− y + a, (E2)

ż = xy − βz, (E3)

subject to |a| ≤ 1 (E4)

with a being a relatively small controllable parameter, and σ = 10, ρ = 28 and β = 8/3. The
control loop and integration loop (via RK4) have the same time stepping ∆t = 0.05. The two
control problems are as follows

(1) “LA stabilizer”. We aim at minimizing the frequency with which the flow direction
changes (i.e. the frequency of x sign changes). Reward: Ri = −1 if xi−1xi < 0 and zero
otherwise;

(2) “LA oscillator”. Similar to LA stabilizer but with inverse goal. Reward: Ri = +1 if
xi−1xi < 0 and zero otherwise.

We start the system in a random state around the attractor, the controller is an MLP
network, and we use the PPO RL algorithm (similarly to our approach for the complete
Rayleigh–Bénard case). We furthermore limit the control to three states, a = −1 ∨ 0 ∨ 1, for
training speed purposes.

Applying RL on these control problems with no delay results in the behaviors shown in
Figure E1. The control develops complex strategies to maximize/minimize the frequency of
sign changes of x.
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Figure E1.: System trajectories with RL control, respectively aiming at minimizing (a) and
maximizing (b) the number of x sign changes. Panel (a) shows that the RL agent is able to
fully stabilize the system on an unstable equilibrium by using a complex strategy in three
steps (I: controlling the system such that it approaches x, y, z = 0 which results in a peak (II)
which after going through x = 0 ends close enough to an unstable equilibrium (III) such that
the control is able to fully stabilize the system). Furthermore, Figure E1a shows that the RL
agent is able to find and stabilize a unstable periodic orbits with a desired property of a high
frequency of sign changes of x.
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