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Finding the distant source of an odor dispersed by a turbulent flow is a vital task for many
organisms, either for foraging or for mating purposes. At the level of individual search, animals like
moths have developed effective strategies to solve this very difficult navigation problem based on the
noisy detection of odor concentration and wind velocity alone. When many individuals concurrently
perform the same olfactory search task, without any centralized control, sharing information about
the decisions made by the members of the group can potentially increase the performance. But how
much of this information is actually valuable and exploitable for the collective task ? Here we show
that, in a model of a swarm of agents inspired by moth behavior, there is an optimal way to blend
the private information about odor and wind detections with the publicly available information
about other agents’ heading direction. At optimality, the time required for the first agent to reach
the source is essentially the shortest flight time from the departure point to the target. Conversely,
agents who discard public information are several fold slower and groups that do not put enough
weight on private information perform even worse. Our results then suggest an efficient multi-agent
olfactory search algorithm that could prove useful in robotics, for instance in the identification of
sources of harmful volatile compounds.

Animals are often on the move to search for some-
thing: a food source, a potential mate or a desirable site
for laying their eggs. In many instances their navigation
is informed by airborne chemical cues. One of the best
known, and most impressive, olfactory search behavior
is displayed by male moths [1–4]. Males are attracted
by the scent of pheromones emitted in minute amounts
by calling females that might be at hundreds of meters
away. The difficulty of olfactory search can be appreci-
ated by realizing that, due to air turbulence, the odor
plume downwind of the source breaks down into small,
sparse patches interspersed by clean air or other extra-
neous environmental odors [5, 6]. The absence of a well-
defined gradient in odor concentration at any given loca-
tion and time greatly limits the efficiency of conventional
search strategies like gradient climbing. Experimental
studies have in fact shown that moths display a differ-
ent search strategy composed of two phases: surging, i.e.
sustained upwind flight, and casting, i.e. extended alter-
nating crosswind motion. These phases occur depending
on whether the pheromone signal is detected or not. This
strategy and others have inspired the design of robotic
systems for the identification of sources of gas leaks or
other harmful volatile compounds [7–11]. Albeit the ef-
fectiveness of individual search is already remarkable in
itself, the performance can be further boosted by cooper-
ation among individuals, even in absence of a centralized
control [12–17].

In this Letter, we tackle the problem of collective olfac-
tory search in a turbulent environment. When the search
takes place in a group, there are two classes of informa-

tive cues available to the agents. First, there is private
information, such as the detection of external signals –
odor, wind velocity, etc – by an individual. This percep-
tion takes place at short distances and is not shared with
other members of the group. Second, there is public in-
formation, in the form of the decisions made by other in-
dividuals. These are accessible to (a subset of) the other
peers, usually relayed by visual cues, and therefore with
a longer transmission range. Since the action taken by
another individual may be also informed by its own pri-
vate perception of external inputs, public cues indirectly
convey information about the odor distribution and the
wind direction at a distance. However, the spatial and
temporal filtering that is induced by the sharing of public
cues may in principle destroy the relevant, hidden infor-
mation about the external guiding signals.
These considerations naturally lead to the question if

the public information is exploitable at all for the collec-
tive search process. And if it is, how should the agents
combine the information from private and public cues to
improve the search performances ? Below, we will ad-
dress these questions by making use of a combination of
models for individual olfactory search and for flocking
behavior, in a turbulent flow.
A model for collective olfactory search. The setup for

our model is illustrated in Fig 1A. Initially, N agents are
randomly and uniformly placed within a circle of radius
Rb at a distance Lx from the source S. The odor source
S emits odor particles at a fixed rate of J particles per
unit time. The odor particles are transported in the sur-
rounding environment by a turbulent flow u with mean
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wind U (details are given below). Notice that the odor
particles are not to be understood as actual molecules,
but rather represent patches of odor with a concentration
above the detection threshold of the agents. The entire
system is placed inside a larger square box of size bLx

with reflecting boundary conditions for the agents. A
complete list of parameters with their numerical values
is given in the Supplementary Material.

FIG. 1. Collective olfactory search. (A) Odor particles dis-
persed by the turbulent environment are shown by semi-
transparent blue dots emitted by the source S. Agents (red)
are initially placed far from the source in a packed configura-
tion. (B) Perception of an agent (red). Detected odor parti-
cles by the agent are shown as darker blue dots and neighbors
of the agent are shown in green. Arrows indicate the instan-
taneous moving direction of agents. We set Lx = 250Rd,
Rb = 25Rd, Ra = 5Rd, Rd = 0.2 b = 2.5 (C) Trajectory of
an isolated agent performing the cast-and-surge program (see
text). The locations where the agent detects the presence of
odor particles are shown as blue crosses.

Response to private cues. The behavior elicited by
private cues such as odor and wind speed is in-
spired by the cast-and-surge strategy observed in moths.
We adopted a modified version of the “active search
model” [18] that works as follows.

We assume that the agents have access to an estimate
of the mean velocity of the wind as moths actually do via
a mechanism named optomotor anemotaxis [19]. In the
model this estimate û(t) is an exponentially discounted
running average of the flow velocity u perceived by the

agent along its trajectory: û(t) = λ
∫ t

0
u(s) exp[−λ(t −

s)]ds. The parameter λ is the inverse of the memory time:
for λ→ 0 the estimate converges to the mean wind, while
for λ→∞ it reduces to the instantaneous wind velocity
at the current location of the agent. In the following we
have taken λ = 1 which is of the same order of magnitude
of the inverse correlation time of the flow. It is worth
pointing out that the only effect of the wind is to provide
contextual information about the location of the source.
Indeed, in our model the agents are not carried away
by the flow, an assumption that is compatible with the
fact that the typical airspeed of moths and birds largely
exceeds the wind velocity.

At each time interval ∆t, the agent checks if there are
odor particles within its olfactory range Rd (see Fig. 1B).
If this is the case, then it moves against the direction of
the current estimated mean wind at a prescribed speed
v0. When the agent loses contact with the odor cue, it
starts the “casting” behavioral program: it proceeds by
moving in a zig-zag fashion, always transversally to the
current estimated mean wind, with turning times that
increase linearly with the time from the last odor de-
tection (a sample trajectory is shown in Fig 1C, see the
Supplementary Material for details about the implemen-
tation). We denote by v

priv
i (t) the instantaneous veloc-

ity of agent i prescribed by this cast-and-surge program.
This is uniquely based on private cues and would indeed
be the actual velocity adopted by the agent if it were
acting in isolation.
Response to public cues. To describe the interactions

among agents we have drawn inspiration from flocking
and adopted the Vicsek model to describe the tendency
of agents to align with their neighbors (see [20, 21] and
references therein). We assume that an individual can
perceive the presence of its peers within a visual range Ra

(see Fig. 1B) and actually measure their mean velocity.
According to this model, the behavioral response elicited
in agent i by its neighbors is

v
pub
i (t) = v0

∑
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, (1)

where Di is the disk of radius Ra centered around the
position of the i−th individual. In order to account for
errors in the sensing of the velocities of the neighbors
we have added, as is customarily done, a noise term in

the form of a rotation by a random angle v
pub
i (t) ←

R(θ)vpub
i (t). Here θ is independently sampled for each

agent and at each decision time from a uniform distri-
bution in [−ηπ, ηπ]. The strength of the noise η may
range from zero (no noise) to unity (only noise): in the
following we set η = 0.1.
In the absence of external cues, and for small enough

noise, the group of agents described by this dynamics dis-
plays collective flocking and moves coherently in a given
direction – totally unrelated with the source location,
however.
Combining private and public information. To study

collective olfactory search we then merged the two models
above as follows. The velocity of the i−th agent is a linear
combination of the two prescriptions arising from private
and public cues, resulting in the update rule

vi(t) = (1− β)vpriv
i (t) + βvpub

i (t),

ri(t+∆t) = ri(t) + v0
vi(t)

||vi(t)||
∆t.

(2)

The parameter β, that we have dubbed “trust”, mea-
sures the balance between private and public informa-
tion. For β = 0 the agents have no confidence in their
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peers, they ignore the suggestion to align and behave in-
dependently by acting on the basis of the cast-and-surge
program only. Conversely, for β = 1 agents entirely fol-
low the public cues and discard the private information.

While it is reasonable to expect that for β = 1 the
unchecked trust in public cues leads to poor performances
in olfactory search, the nontrivial question here is rather
if there is any value at all in public information; that is,
in other words, if the best results are obtained for a finite
β strictly larger than zero.

Modeling the turbulent environment. To complete the
description of our model, we have to specify the under-
lying flow and the ensuing transport of odor particles.
In our simulations the flow is given by an incompress-
ible, two-dimensional velocity field, u(x, t) with a con-
stant, uniform mean wind U and statistically stationary,
homogeneous and isotropic velocity fluctuations. The
odor particles are considered as tracers whose position, x,
evolves according to ẋ = u(x, t). For the velocity fluc-
tuations we first considered a stochastic flow and then
moved to a more realistic dynamics where the flow obeys
the Navier-Stokes equations.

Results for the stochastic flow This model flow is
characterized by a single length and time scale and is
obtained by superimposing a few Fourier modes whose
Gaussian amplitudes evolve according to an Ornstein-
Uhlenbeck process with a specified correlation time. The
resulting flow is spatially smooth, exponentially corre-
lated in time and approximately isotropic (see Supple-
mentary Material for details).

We studied the performance of collective search as a
function of the trust parameter β while keeping the other
parameters fixed to the values detailed in the Supplemen-
tary Material. Initially, the agents are waiting in place
without any prescribed heading direction until one of the
agents detects the odor particles carried by the flow. Af-
ter this event, agents move as per the equations of motion
Eq. (2). Since the search task is a stochastic process, we
run many episodes for each value of β to compute the
average values of several observables of interest. A given
episode is terminated when at least one of the agents is
within a distance Ra from the source. At this stage we
say that the search task is accomplished and agents have
(collectively) found the odor source.

We focused our attention on four key observables: (i)
the mean time needed to complete the task which mea-
sures the effectiveness of the search; (ii) the average frac-
tion of agents that, at the time of completion, are close to
the source; (iii) the order parameter which measures the
consensus among members of the group about their head-
ing direction; (iv) the degree of alignment of the agents
against the mean wind.

In Fig. 2A we show the average time T for the search
completion in units of the shortest path time Ts = Lx/v0,
which corresponds to a straight trajectory joining the
target with the center of mass of the flock at the initial
time. We observe that there exists an optimal value of
the trust parameter β ≈ 0.85 for which agents find the

FIG. 2. Collective olfactory search in a stochastic flow. (A)
Average search time T for the first agent that reaches the
target normalized to the straight-path time, Ts = Lx/v0. The
inset shows a blow-up of region close to the minimum. (B)
Fraction of agents within a region of size Rb around the source
at the time of arrival of the first agent reaching the target. (C)
Averaged order parameter ψ (D) Average alignment against
the mean wind M . For all data, the error bars denote the
upper and lower standard deviation with respect to the mean
value. Statistics is over 103 episodes. The parameters were
set as λ = 1, N = 100, J = 1, η = 0.1, v0 = 0.5, ∆t = 1,
Lx = 50.

odor source in the quickest way. Remarkably, for this
value we obtain T ≃ 1.03Ts: this means that the agent
which arrives first is actually behaving almost as if it had
perfect information about the location of the source and
were able to move along the shortest path (see movie
Beta=0.85.mp4).

This result has to be contrasted with the singular case
of independent agents who act only on the basis of pri-
vate cues (β = 0) which display a significantly worse
performance (the time to complete the task is more than
threefold longer) and move in a zig-zagging fashion (see
movie Beta=0.00.mp4). It is also important to remark
that the average time grows very rapidly as β increases
above the optimum. As β approaches unity, agents are
dominated by the interactions with their neighbors and
pay little attention to odor and wind cues. As a result,
they form a flock which moves coherently in a direction
that is essentially taken at random. If by chance this
direction is aligned against the wind, the task will be
completed in a short time. However, in most instances
the flock will miss the target and either turn because of
the noise η or bounce on the boundaries until, again by
sheer chance, some agent will hit the target (see movie
Beta=0.95.mp4). This behavior results in a very long
average time accompanied by very large fluctuations. As
the outer reflecting boundaries are moved away by in-
creasing b, this effect becomes more and more prominent.

Since we focused on the time of arrival for the first
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FIG. 3. Collective olfactory search in a turbulent flow. A: Search time T for the first agent reaching the target normalized by
the shortest-path time Ts. B: An enlargement of A that highlights the region close to the minimum. C: Mutual alignment order
parameter ψ averaged over time and episodes. D: Average wind alignment M . Right panels: snapshots of the velocity field
(grey arrows) at four different times t. The agents (red arrows) navigate in the turbulent flow with the optimal trust parameter
β = 0.8. Blue dots represent odor particles dispersed by the flow, while the large blue circle corresponds to the source.

agent that reaches the source, it is natural to ask what
has happened to the other members of the group that
have been trailing behind. In Fig. 2B we show the aver-
age fraction of agents that are within a distance Rb (the
initial size of the group) when the first agent reaches the
target and the task is completed. This quantity is an
indicator of the coherence of the group at the time of
arrival. It turns out that this fraction has a maximum
value ≈ 0.3 at about the same value of β ≈ 0.85 that
gives the best performance in terms of time. This means
that on average about one third of the group has been
moving coherently along the straight path that connects
the initial center of mass of the flock to the target.
To quantify the consensus among agents about which

direction they have to take, it is customary to introduce
the order parameter

ψ(t) =
1

Nv0
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When all the agents move in the same direction,
whichever it may be, then ψ = 1. Conversely, if the
agents are randomly oriented then ψ ≃ N−1/2 ≪ 1. In
Fig. 2C we show the order parameter averaged over all
agents and all times along the trajectories. As in the
previous case we observe a maximum around the range
of values of β where performance is optimal.
Another parameter of interest is the upwind alignment

of the agents

M(t) = 1−
1

N

N
∑

i=1

||Û + v̂i(t)|| . (4)

When all the agents move upwind one hasM = 1 whereas
if they all move downwindM = −1. As shown in Fig. 2D
the upwind alignment, averaged over time, has a maxi-
mum around β = 0.85 which again confirms that a large

fraction of the group is heading against the mean wind
even if it has access only to a local running time aver-
age (the memory time is λ−1 = 1, much shorter than
Ts = 100).
The previous results point to the conclusion that there

is a relatively narrow range of the trust parameter β,
around 0.85, for which the collective olfactory search pro-
cess is nearly optimal, i.e. the time to reach the target is
close to the shortest possible one, and takes place with a
remarkable coherence of the group.
Results for a turbulent flow. To test the robustness

of our findings in a somewhat more realistic situation
we also considered the case where the wind velocity is
obtained from a direct numerical simulation (DNS) of
2D Navier-Stokes equations

∂tω + u ·∇ω = ν∆ω − αω + f , (5)

where ω = ∇ × u, the forcing f acts at small scales
so to generate an inverse kinetic energy cascade, that is
stopped at large scales by the Ekman friction term with
intensity α. In order to attain a statistically steady state,
the viscous term with viscosity ν dissipates enstrophy at
small scales. In this way we obtain a multiscale flow
which is non-smooth above the forcing scale and smooth
below it (see [22–24] for phenomenological and statisti-
cal flow properties). DNS have been carried out using
a standard 2/3 dealiased pseudo-spectral solver over a
bi-periodic 2π× 2π box with 2562 collocation points and
2nd order Runge-Kutta time stepping, see Supplementary
Material for technical details. In this flow the large scale
of the velocity field is about half the size of the simulation
box. The numerically obtained velocity field, for a dura-
tion of about 10 eddy turnover times, was then used to
integrate the motion of odor particles in the whole plane
exploiting the periodicity of the velocity field. Finally,
the mean wind is then superimposed. Further details
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about the simulations are available in the Supplementary
Material.
Fig. 3 summarizes the main results obtained with the

turbulent flow. As shown in the left panel, the average
time taken by the first agent to reach the source is very
similar to the one obtained for the stochastic flow. It
displays a minimum time close to the shortest-path time
Ts = Lx/v0 at values of the trust parameter β ≈ 0.8. The
other observables display very similar features as the ones
observed with the stochastic flow.
In the right panels we show four snapshots of the agents

at different times during the search process, for β = 0.8,
i.e. close to optimality. The flock appears to be moving
coherently in the upwind direction and the task is com-
pleted in a time 1.04Ts just a few percent in excess of
the nominal minimal time.
Conclusions and discussion. We have shown that

there is an optimal way of blending private and pub-
lic information to obtain nearly perfect performances in
the olfactory search task. The first agent that reaches
the target completes the task by essentially moving in
a straight line to the target. This behavior is striking,
since in isolation agents move in a zig-zagging fashion
(see Fig.1C). Interestingly, the information about odor
and wind is essential to achieve this behavior, but its
weight in the decision making is numerically rather small,
about 20%. Although we do not expect that this number
stays exactly the same upon changing the various param-
eters of the model, we suspect that there is a common
trend for having optimal values of the trust parameter β
at the higher end of its spectrum, that is, closer to unity.
This may reflect the existence of a general principle of a
“temperate wisdom of the crowds” by which public infor-
mation must be exploited – but only to a point. In the
present case, one way of summarizing our findings would
be the following rule: follow the advice of your neighbors
but once every four or five times ignore them and act
based on your own sensations.
With reference to the remarkable similarity between

searching in stochastic and turbulent flows shown by
Figs. 2 and 3, we stress that this is likely due to the spe-
cific sensing mechanisms that we have chosen, which is es-
sentially based on single-point single-time measurements.
If private cues included consecutive inputs along the
agent’s trajectory and/or on spatially coarse-grained sig-
nals we expect that the results could have been more sen-
sitive to the structure of small-scale and high-frequency
turbulent fluctuations.
Our results suggest how to build efficient algorithms for

distributed search in strongly fluctuating environments.
It is important to point out, however, that our construc-
tion is inherently heuristic. Our model heavily draws
inspiration from animal behavior, combining features of
individual olfactory search in moths and collective navi-
gation in bird flocks. A more principled way of attacking
the collective search problem would be to cast it in the
framework of Multi Agent Reinforcement Learning [25]
and seek for approximate optimal strategies under the
same set of constraints on the accessible set of actions
and on the available private and public information. It
would then be very interesting to see if the strategy dis-
covered by the learning algorithms actually resembles the
one proposed here, or points to other known behavior
displayed by animal groups, or perhaps unveil some yet
unknown way of optimizing the integration of public and
private cues for collective search.
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