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Abstract

We study the diffusivity of a small particle immersed in a square box filled with

a non-ideal multicomponent fluid in the presence of thermal fluctuations. Our

approach is based on the numerical integration of fluctuating lattice Boltzmann

models (LBM) for multicomponent mixtures. At changing the wettability on

the particle’s surface, we measure the mean square displacement (MSD) and

compare with the prediction of the Stokes-Einstein theory. Two main set-ups

are tested, involving periodic boundary conditions and wall boundary condi-

tions realized on the computational box. We find that full periodic boundary

conditions give rise to random advection after millions of lattice Boltzmann time

steps, while this effect is mitigated in the presence of wall boundary conditions.

The matching with the Stokes-Einstein relation is therefore guaranteed when

we use the appropriate frictional properties measured in the presence of con-

finement. Our results will help the exploration of nanoscale applications with

multicomponent fluids using LBM in the presence of thermal fluctuations.
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1. INTRODUCTION

The lattice Boltzmann models (LBM), known to bridge the macroscopic [1]

and microscopic scale problems [2], have been well developed in past few decades [3,

4]. They have been successfully formulated to study complex fluid phenomena,

including turbulence [5, 6, 7], non-ideal fluids with phase transition and/or seg-

regation [8, 9, 10, 11, 12, 13], polymer flows [14, 15, 16], active matter [17].

Through the Chapman-Enskog expansion, the LBM can recover the hydrody-

namic representation of the Navier-Stokes equations [18, 19]. Recent studies

have shown interests in integrating finite-size particles into the LBM framework,

such as particle suspensions [20, 21, 22, 23, 24], pickering emulsions [25], self

assembly particles [26, 27, 28]. However, there are relatively few LBM studies in

the literature on particle-fluid interaction problems at the nanoscale, where the

effects of the thermal fluctuations cannot be neglected. The deterministic hydro-

dynamics of Navier-Stokes equations is inadequate to describe the flow evolution

at the nanoscales [29, 30]. For this reason, there have been pioneering works to

extend the LBM in the presence of thermal fluctuations, designing the so-called

fluctuating lattice Boltzmann models (FLBM) [31, 32, 33, 34, 35, 36]. Recently,

FLBM have been used to study non-ideal multicomponent fluids [37, 38] and

also the effects of thermally excited capillary waves on the break-up properties of

a thin liquid ligament [39]. Moreover, FLBM have been used to understand the

influence of thermal fluctuations on the particle settling under confinement [40].

When the particle is coupled with the FLBM, it will naturally perform Brown-

ian motion. In such conditions, the mean squared displacement (MSD) of the

particle in an unconfined domain is expected to follow the Einstein’s relation in

time t [41, 42] 〈
(x(t)− x(t0))2

〉
= 6Dunconft, (1)

where the particle is located at x and the diffusion coefficient in unconfined

domains is indicated with Dunconf . Based on the fluctuation-dissipation rela-

tion [41], the diffusion coefficient Dunconf can be represented by kBT/(6πηRp),
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where kBT is the system thermal energy, η is the dynamic viscosity and Rp is

the particle radius. Notice that the denominator in Dunconf is essentially the

friction coefficient experienced by a spherical particle with radius Rp in uncon-

fined domains. Due to the large computational cost associated with the study

of Brownian motion, only short-time Brownian motion studies of colloids have

been proposed in the FLBM framework [2]. The long-time Brownian motion

has rarely been studied. In this paper, we aim to quantitatively tackle the prob-

lem of the Brownian motion of a wetted particle immersed in a multicomponent

fluid. In Section 2, we introduce our multicomponent FLBM algorithm which

couples with finite-size wetted particles. In Section 3, we present our simula-

tion setup. Results are discussed in Section 4, where we show that the particle

experiences a random advection by using periodic boundary condition which

does not allow a fair assessment of the Einstein’s relation with the diffusion co-

efficient predicted by the fluctuation-dissipation relation [41]. We show how to

remove this pathology when working with wall boundary conditions; the precise

matching with the Einstein’s relation, however, requires the knowledge of the

friction in the presence of confinement. We draw our conclusions in Section 5

2. METHODOLOGY

In this section, we introduce the multicomponent FLBM for the binary mix-

ture of two fluids [37]. Also, the wetted finite-size particle model [20, 21, 25],

which is used to simulate the solid particle, is coupled with the fluctuating multi-

component fluids. Technical details of the FLBM have already been extensively

presented in [37], and here we only briefly recall the most important aspects for

the sake of completeness. We consider fli(x, t) as the discretized particle’s prob-

ability distribution function on the i-th direction of a lattice cell with velocity

ci. l represents the fluid component l = A,B, and the lattice cell is located at

x at time t. In this paper, we employ the D3Q19 model, corresponding to a 3D

LBM model with discretized 19 velocity directions ci (i = 0...Q− 1). The LBM

evolution equation for the binary fluid, which considers collision, fluid-fluid in-
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teractions, and stochastic noise, can be written as:

fli(x+ci, t+1)−fli(x, t) = Ω [fli(x, t)− f eq

li (x, t)]+Fli(x, t)+ξli(x, t), l = A,B,

(2)

where Ω is a collision kernel [3, 4], Fli is forcing term for fluid-fluid interactions,

and ξli is a stochastic source. The collision kernel is chosen to be the multiple

relaxation time (MRT) collision kernel [43, 34, 44]. The basic idea of the MRT

kernel is to introduce a moment space to decompose the probability functions

into “modes”. The lower-order modes are related to hydrodynamic quantities

(density, momentum and stress tensor). The higher-order modes are the “ghost

modes”, which do not contribute to the hydrodynamic behavior [43, 34]. The

collision kernel relaxes the distribution function towards the local equilibrium

f eq

li , which is given by

f eq

li (x, t) = ωiρl (x, t)

[
1+

ci · u (x, t)

c2s
+

[ci · u (x, t)]
2

2c4s
− [u (x, t) · u (x, t)]

2c2s

]
, (3)

in which ωi is a suitable weight needed to impose the isotropy in the interac-

tion, ρl (x, t) and u (x, t) are the hydrodynamic macroscopic density for each

component and mixture velocity, respectively, which can be calculated from the

distribution function:

ρl(x, t) =

Q−1∑
i=0

fli(x, t), u(x, t) =

∑Q−1
i=0

∑
l fli(x, t)ci

ρtot(x, t)
, (4)

where ρtot(x, t) =
∑

l ρl(x, t) is the total density of the two components. The

term Fli is the Shan-Chen forcing term which models the non-ideal interactions

for the mixture [45, 46, 47, 48, 49]. The Shan-Chen forcing term is given by

Fl(x, t) = −Gϕl(x, t)
∑
l′ 6=l

Q−1∑
i=0

ωiϕl′(x + ci, t)ci (5)

where G is a strength coefficient, ϕl is known as the pseudo-potential function

which is set to the fluid density ϕl = ρl. In all the simulations performed, the

coupling coefficient is set to G = 1.5 lattice Boltzmann units (lbu). The term
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ξli(x, t) in Eq. (2) is a stochastic force. The noise term does not influence on the

conserved density modes, while higher modes receive the stochastic source fol-

lowing the fluctuation-dissipation relation [37]. Through the Chapman-Enskog

expansion [34, 44], we can recover the equations for the fluid densities and the

hydrodynamical velocity [30] (superscript T means transposition):

∂tρtot +∇ · (ρtotu(H)) = 0, (6)

∂tρA +∇ · (ρAu(H)) = ∇ · [M∇µ+ Ψv] , (7)

∂t(ρtotu(H)) +∇(ρtotu(H)u(H)) = −∇Pb +∇· [η(∇u(H) + (∇u(H))T ) +Σt], (8)

where the hydrodynamical velocity u(H) is given by u(H) = u+(FA+FB)/2ρtot,

Pb and µ are the bulk pressure and the chemical potential, respectively [49].

The mass diffusion coefficient M and η are related to the relaxation times of

the fluid. In all the simulations performed, the mass diffusion coefficient is set

to M = 1/6 lbu, and the dynamic viscosity is set to η = 0.383 lbu. We use

the same kinematic viscosity in both fluids (i.e. the same relaxation time in the

LBM framework). The stochastic stress (Σt) and the stochastic diffusion (Ψv)

contribution to the equations of hydrodynamics are given by

Σt =
√
ηkBT(Wt + WT

t ) Ψv =
√

2DkBTWv (9)

where kBT is the thermal energy, while and Wt and Wv are a Gaussian ten-

sor and a Gaussian vector with independent and uncorrelated components and

variance equal to unity. For the particle model, the technical details have been

introduced in previous studies, readers can follow references [20, 21, 25]. Here

we recall the basic ingredients. We integrate the wetted finite-size particle in the

FLBM framework. The particle is built on lattices by declaring nodes belonging

to the particle (“particle nodes”). The particle exchanges the momentum with

surrounding fluids through the bounce back [20]. The particle moves due to the
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Figure 1: Contact angle as function of the tunable parameter w for the wettability of the

particle. When w = 0, a neutral wetting condition is modelled with contact angle equal to

90◦. When w > 0 (hydrophobic case), the particle’s contact angle is larger than 90◦; when

w < 0 (hydrophilic case), the particle’s contact angle is smaller than 90◦. Black and red colors

refer to two different resolutions for the particle radius (Rp = 10, 4 lbu). Small particle radii

are enough to retrieve converged results.

action of the external forces on it; due to this motion, new lattice nodes that were

originally belonging to the fluid will belong to the particle (cover-node behav-

ior). Consistently, new fluid nodes are generated which were initially belonging

to the particle (uncover-node behavior). To impose the total mass conservation,

the mass correction algorithm described in Ref. [25] has been implemented in

this paper. We introduce the virtual fluid in the outer-most layer of the particle

for tuning the particle’s wettability. The densities in the virtual fluid nodes

for the two components are defined as ρA,v and ρB,v. The parameter w is a

dimensionless number that regulates the affinity of the particle towards one of

the two fluids [25]. The wettability properties described in the following (i.e.

hydrophobic, neutral, hydrophilic) refer to the affinity of the particle towards

the majority component in the bulk phase. A positive (negative) w will corre-
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spond to a hydrophobic (hydrophilic) case. We also placed the wetted finite-size

particle at the fluid-fluid interface and measured the contact angle of the par-

ticle by tuning the parameter w. Fig. 1 shows the contact angle as function of

w. Two different radii of the particle have been tested: Rp = 4 lbu (red line)

and Rp = 10lbu (blue line). The results show that the particle wettability can

be tuned from around 30◦ contact angle to 150◦ contact angle.

3. NUMERICAL SETUP

zy

x

Component
Component

A
B

L

L

L

Figure 2: Sketch of the setup for the Brownian motion of the wetted particle in the cubic box.

The box is an isometric domain with a size of L×L×L. The solvent is a fluctuating mixture

of the two components, A and B, with the majority of component A in the bulk phase.

The solvent solver is based on the implementation of a multicomponent fluctuating lattice

Boltzmann model (FLBM) [37]. The wetted particle is coupled with the binary fluid [21, 25].

The numerical set-up for the Brownian motion simulation is shown in Fig. 2.

We place a particle with radius Rp in the cubic box with domain size L×L×L,

where L = 60 lbu. The domain boundary conditions can be periodic bound-

aries or neutral wetting walls. The box is filled with the two species of fluids

(A and B) in a mixed state. The component A is the majority component of

the mixture with density ρA = 2.21 lbu in the bulk, while component B is the

minority component with density ρB = 0.09 lbu in the bulk. As described pre-

viously, the particle’s wettability can be tuned as hydrophilic (increased affinity
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for component A), neutral (no preference) or hydrophobic (increased affinity

for component B). Fig. 3 shows the concentration of the two components in

proximity of the particle’s surface and in the bulk. The density of the particle

is set to ρp = 2ρtot. We define the intrinsic diffusion timescale tdiff as the time

it takes for fluid perturbations to diffuse over a lengthscale comparable to a

particle radius [2]

tdiff = Rp
2/ν. (10)

To perform simulations and match the asymptotic Brownian motion behavior
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Figure 3: We report the density profiles of the two components along an axial line (Panel (a))

at changing the wettability boundary conditions: hydrophilic (Panel (b)); neutral (Panel (c))

and hydrophobic (Panel (d)). The wettability property refers to the majority component in

the bulk phase (component B).
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Figure 4: Mean square displacement MSD as a function of the dimensionless time unit t/tdiff

at changing the wetting parameter w. Blue, green, and red colors represent wetted particle

equipped with hydrophilic(w = −0.88), neutral(w = 0) and hydrophobic cases(w = 0.32).

Cyan color represent the short-time Brownian motion from Ref. [2]. The particle’s MSD does

not match the Einstein’s prediction when t/tdiff > 100. Errorbars are the standard deviation

estimated from different Brownian motion experiments.

with the Einstein’s prediction, we need at least 104 time units. Thus, we cannot

use very high resolution for the particle and we chose the radius of the particle

equal to Rp = 4 lbu. The domain size is set to 603 lbu, and the timescale tdiff

is tdiff = 96 lbu. The wetting parameters of the particle are set to w = −0.88

(hydrophilic), w = 0 (neutral), and w = 0.32 (hydrophobic). The thermal

energy is set to kBT = 1 · 10−4 lbu. For each wetting parameter, we perform

simulations with 107 lbu timesteps with 10 realizations of the noise to get enough

statistics.
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4. RESULTS

We start by analyzing a case with periodic boundary conditions [2]: the

particle is initially placed in the center of the cubic box and is kicked by the

fluctuating solvent. Fig. 4 presents the MSD as a function of the dimensionless

time t/tdiff at changing wetting parameters w. For t/tdiff < 100, we observe a

neat convergence towards the expected theoretical result. However, the con-

vergent behavior is lost when t/tdiff > 100, and the MSD eventually deviates

from the Einstein’s relation. The reason for the mismatch is traced back to

the fact that the particle is modeled on the lattice, and its movement gives rise

to a “cover-uncover” behavior on the lattice itself [2, 25]. The cover-uncover

behaviour, by definition, introduces spurious momentum contributions, because

when nodes are covered, some others are uncovered, and there is inevitably an

adaptation dynamics that is needed for the new uncovered nodes to “equilibrate”

with the surrounding fluid. These spurious momentum contributions should be

small for large particles; unfortunately, particles need to be sufficiently small to

make the Brownian diffusion simulation affordable in terms of computational

time. Consequently, after some time, the system will develop a spurious advec-

tion flow in a random direction. The random advection is removed if we design

a new set-up, where we place walls with a neutral wetting boundary condition

at the boundaries. Results of numerical simulations with this new set-up are

reported in Fig. 6. Results are normalized by the expected asymptotic result

for an unconfined domain. We observe, however, that the normalized MSD for

the three wetting conditions does not approach a unitary value for large times.

To delve deeper into the observed discrepancy, we notice that the particle can

experience confinement effects [40]. Hence, the theoretical estimate of the diffu-

sion coefficient should be performed by including the friction in the presence of

the bounding walls. The diffusion coefficients for the confined and unconfined

domains, which are Dconf and Dunconf respectively, are defined as

Dconf =
kBT

γconf
, Dunconf =

kBT

γunconf
, (11)
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Figure 5: Settling simulations: we consider particle settling in a cubic box with domain size

L3. The particle with radius Rp is falling under the gravity g (see inset). In the main panel

we report cm (see Eq. (12)) as a function of the tunable wettability parameter w. We analyze

particle settling simulations in three cases: w = −0.88 (hydrophilic), w = 0 (neutral), and

w = 0.32 (hydrophobic). The errorbars are the standard deviation of cm estimated from

different simulations.

where γconf is the friction of the solvent in the confined situation, and the fric-

tion γunconf is for the unconfined case. The friction for the unconfined domain

can be calculated through the Stoke’s law. For the friction under confinement,

the friction γconf can be calculated as γconf = Fp/U
(z)
conf , where Fp is the ex-

ternal forcing acting on the particle, and U
(z)
conf is the drift velocity which can

be obtained from a dedicated simulation. We thus performed particle settling

simulations under confinement without thermal fluctuations [50] for hydrophilic,

neutral and hydrophobic cases. The domain size is the same as the Brownian

motion simulation which is 603 lbu. We place the particle in the center of the

domain, and apply the gravity acceleration g = 10−6 lbu in the z direction. Af-

ter a transient time, the particle’s velocity reaches a stationary state, which is

defining the drift velocity. We then define cm as the ratio between the particle’s

drift velocity under confinement and the Stokes’ prediction for an unconfined

11
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Figure 6: The normalized Brownian particle’s MSD as function of the dimensionless time

t/tdiff at changing wettabilities. Results for the MSD are normalized with the Einstein’s

prediction for an unconfined domain. Errorbars are the standard deviation estimated from

different Brownian motion experiments.

domain driven by the same volume force:

cm =
U

(z)
conf

U
(z)
unconf

. (12)

Figure 5 shows the ratio cm as function of the wetting parameter w. Three

wetting parameters, which are w = −0.88, w = 0,w = 0.32 representing hy-

drophilic, neutral and hydrophobic cases respectively, have been investigated.

As we can see, the ratio cm is always smaller than 1, indicating that the fric-

tion under confinement is larger than the Stokes’s friction. Also, we observe

that a larger errorbar appears in the hydrophobic case, which indicates that

the particle is more sensitive to external fluid kicks in this situation. According

to Eq. (11) and Eq. (12), the diffusion coefficient Dconf can be obtained as:

Dconf =
γunconf
γconf

Dunconf = cmDunconf . (13)
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Figure 7: The normalized Brownian particle’s MSD as function of the dimensionless time

t/tdiff at changing wettabilities. The MSD normalized with the Einstein’s prediction by

substituting the diffusivity for unconfined domains with the diffusivity measured in confined

domains. Errorbars are the standard deviation estimated from different Brownian motion

experiments.

Consequently, the theoretical expectation for the diffusion coefficient in the

presence of confinement is smaller than the unconfined result. In Fig. 7 we report

the normalized MSD as function of t/tdiff at changing wetting conditions. At

difference with respect to Fig. 6, we now normalize the MSD with the diffusion

prediction based on Dconf . Now, the simulation results approach a unitary value

for the three wetting conditions. Summarizing, the presence of the bounding box

with walls allows to remove spurious random advection; however, this introduces

small – but measurable – confinement effects. These effects need to be taken

into account for a quantitative matching with the diffusion prediction at large

times.
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5. CONCLUSIONS

In this paper, we simulated Brownian diffusion of a wetted particle with

radius Rp in a cubic box L× L× L filled with the fluctuating binary mixture.

The solvent is simulated with the multicomponent FLBM [37], and different

wettabilities of the particle have been considered based on [25]. To quantita-

tively understand the Brownian motion of the finite-size particle, we have tested

two boundary conditions on the cubic box: periodic and neutrally wetted walls.

For the periodic set-up, the particle’s motion experienced a random advection

flow which causes a deviation from the Einstein’s relation, due to the “cover-

uncover” behavior triggered by the particle’s motion [25]. The use of neutrally

wetted walls removes such pathology; however, in the presence of confinement,

the friction coefficient needs to be corrected to allow for a precise matching

with the Einstein’s relation. On a future perspective, one could consider the

present contribution a precursor study for the more complicated situation where

the wetted finite size particle rests at the interface separating 2 immiscible flu-

ids [51]. Also, further investigations on the dynamics of Brownian particles in

shear flow to study the Taylor dispersion could be interesting. Moreover, we

would like to mention that the particle is still not very well resolved. Hence,

it could be a challenging computational task to perform numerical simulations

with larger resolutions to tackle these kind of problems.
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