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The motion of microswimmers in complex flows is ruled by the interplay between swimmer propul-
sion and the dynamics induced by the fluid velocity field. Here we study the motion of a chiral mi-
croswimmer whose propulsion is provided by the spinning of a helical tail with respect to its body
in a simple shear flow. Thanks to an efficient computational strategy that allowed us to simulate
thousands of different trajectories, we show that the tail shape dramatically affects the swimmer’s
motion. In the shear dominated regime, the swimmers carrying an elliptical helical tail show several
different Jeffery-like (tumbling) trajectories depending on their initial configuration. As the propul-
sion torque increases, a progressive regularization of the motion is observed until, in the propulsion
dominated regime, the swimmers converge to the same final trajectory independently on the initial
configuration. Overall, our results show that elliptical helix swimmer presents a much richer variety
of trajectories with respect to the usually studied circular helix tails.

I. INTRODUCTION

Several microorganisms move in liquids thanks to ro-
tating flagella. For instance, the bacterium Escherichia
coli has several flagella that form a rotating helical bun-
dle [1], while other bacteria, like Pseudomonas aerugi-
nosa, exploit the same propulsion strategy but using a
single helical flagellum [2, 3]. The high swimming speed
and the relatively simple geometry of such a kind of chi-
ral microswimmers make them suitable for various ap-
plications and, in the last decade, artificial versions of
flagellated microswimmers have been proposed for mi-
cromanipulation [4] and drug delivery [5].

The interaction between helical flagellated microswim-
mers and the environment presents a rich behavior that
has received extensive attention in the past decades [6, 7].
Close to interfaces, helical flagellated microswimmers
follow circular trajectories that are clockwise for solid
walls [8–10] and counterclockwise for liquid-air inter-
faces [11–14]. Far from the wall, the hydrodynamic of
active microorganisms is highly affected by the local flow
conditions. A relevant phenomenon is rheotaxis, i.e. the
movement resulting from fluid velocity gradients. As
shown by Fu et al. [15], the rheotaxis of flagellated mi-
croswimmers with helical tail is a purely physical phe-
nomenon due to interplay between velocity gradients and
the shape of chiral flagella. Indeed, for a passive helix,
the shear induces Jeffery-like tumbling motion parallel
to the shear plane [16]. Along the orbit, elongated he-
lices spend more time aligned with streamlines. Since
this configuration is not symmetric with respect to the
shear plane, a chirality-dependent drift generally sets in.
For active helical microswimmer, the passive chirality-
induced drift is often overwhelmed by the propulsion: the
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shear results in a preferential orientation of the swimmers
along which, thanks to the self-propulsion, the swim-
mer moves [15, 17]. Hence, the swimming direction is
ruled by the shear, likely preventing the possibility of
controlling the orientation of microswimmers in an as-
signed flow [15].

A way to escape from the monotonous rheotaxis in
shear flow is to increase the number of degrees of free-
dom (DOF) of the microswimmers, for instance employ-
ing multiple tails [18], or adaptively changing the angle
between body and tail(s) [19]. The existence of exter-
nal flexibility, however, complicates the control of mi-
croswimmers particularly in view of possible technologi-
cal applications. Another possibility to escape from the
rheotaxis is to break some symmetries of the swimmer
geometry. In this aspect, interestingly, it has recently
been shown that the change of the cross-section of the
ellipsoids from circle to ellipse can lead to chaotic or-
bits [20–22].

Inspired by this phenomenon, we numerically analyzed
the dynamics of a microswimmer made by an axisym-
metric body and by an elliptical helix, (i.e. a helix
that lies on an elliptical cylinder) in a shear flow. The
possible presence of a large variety of different trajecto-
ries, requires a systematic exploration of a large num-
ber of initial conditions. This, in turn, pushed us to
develop and apply an accurate and fast computational
approach based on a decomposition of dynamics in an
active and a passive motion that allowed to speed-up the
simulations and to collect, for each case, thousands of
trajectories. Our results show that the elliptical helix
swimmer presents a much richer variety of possible tra-
jectories with respect to the well studied circular helix
tails. In particular, we found for an elliptical helical tail
a much higher spinning frequency is needed to control
the asymptotic swimming regime.
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FIG. 1. Sketch of microswimmer locomotion in a shear flow.
The microswimmer body is a prolate ellipsoid of major axis
rh1 and minor axis rh2. In model I (a), the tail is a circular
helix, i.e. a helix built on a circular cylinder of radius rt1,
while in model II (b), the tail is an elliptical helix, i.e. a he-
lix built on an elliptical cylinder of radii rt1 and rt2 = 3rt1.
(c) The shear flow is in the X1X3 plane of the global coordi-
nate frame OX1X2X3. A body coordinate frame O′e1e2e3

moves with the swimmer body. The polar θ azimuthal φ and
rotation ψ angles are used to describe the orientation of the
body frame with respect to the global frame. Moreover, we
also define the angle between the swimmer axis p = e3 and
X2 as η = arccos(sin θ sinφ). The tail rotates with respect to
the e3 so that each point of the rigid tail describes a circle
in the plane e2e3, with ψt the corresponding rotation angle.
The motion of the microswimmer body is completely defined
when the translational velocity U of the body center, the
body rotational velocity Ω and the tail spinning Ωt = ψ̇t are
given.

II. SET-UP AND METHOD

Two kinds of microswimmers are compared in this
study: one with a circular helical tail, i.e. a helix that
lies on a circular cylinder (model I) and one with an el-
liptical helical tail, i.e. a helix that lies on a cylinder of
elliptical section (model II), see Fig. 1. For both models,
the body is a prolate ellipsoid of radii rh1 and rh2, the
center of the body is indicated as xc. A body coordi-
nate frame O′e1e2e3 with origin at xc and e3 oriented
as the major ellipsoid axis is defined. Concerning the
tail, its centerline follows the helix equation in the body
coordinate frame

r = (rt1 cos(2πs), rt2 sin(2πs), λs− δbt) , (1)

where s ∈ [−n/2, n/2] with n the number of periods of
the tail, δbt is the distance from xc to the tail center, λ
is the pitch of the helix and rt1 and rt2 are the radius of
the elliptical cylinder on which the helix lies. For circular
helix, rt1 = rt2, while for elliptical helix, rt1 = 3rt2. The
flagellum section is a cylinder of radius ρt. All the details
of the swimmer geometry are reported in the appendix A.

The microswimmer has 7 degree of freedoms (DOFs):
3 translation DOFs xc = (xc1, xc2, xc3), 3 rotational
DOFs θc = (θ, φ, ψ) plus the tail orientation φt with
respect to the body. The body orientation is defined by
the unit vector p = (sin θ cosφ, sin θ sinφ, cos θ) here ex-
pressed as a function of the polar θ and the azimuthal
φ angles. It is also instrumental to define the angle

η = arccos(sin θ sinφ) between p and X2, see Fig. 1.
The value η = 0 (η = π) corresponds to a configuration
where the microswimmer is perpendicular to the shear
plane and points toward positive (negative) X2, while
η = 0.5π corresponds to the microswimmer lying in the
shear plane. The swimmer body moves with transla-
tional velocity U and rotational velocity Ω while the tail
spins at a constant speed and consequently Ωt = ψ̇t.

The governing equations of fluid velocity u and pres-
sure p fields are the Stokes equations

∇ · u = 0 , (2)

µ∇2u = ∇p , (3)

with µ the fluid viscosity. The no-slip boundary condi-
tion is applied on the surfaces of the head

u(x) = U + Ω× r , (4)

and of the tail of the microswimmer

u(x) = U + (Ω + Ωtp)× r , (5)

where in both equations r indicates the relative position
of the boundary point with respect to the center of the
swimmer head xc. Note that, in general, U and Ω are
not parallel to the swimmer orientation p. Thus, there
exists no simple relation between the active spin Ωt and
the velocities (U ,Ω).

The method for the solution of the swimming prob-
lem is briefly sketched in the following while details are
reported in the appendix A. The fundamental step is to
get the swimmer generalized velocity (U ,Ω) as a func-
tion of the swimmer configuration and tail spinning ve-
locity Ωt. Once (U ,Ω) are known, the standard rigid
body kinematic equations can be solved for the swimmer
head. The swimming problem is solved by decoupling the
(U ,Ω) into two parts where the active part (Ua,Ωa) cor-
responds to the movement of the microswimmer in a bulk
fluid at rest while the passive part (Up,Ωp) corresponds
to a passive swimmer (Ωt = 0) immersed in the external
flow field ub. Thanks to the linearity, the active part
can be expressed as Ua = ΩtRŨa , Ωa = ΩtRΩ̃a where
R is the rotation matrix that transforms the expression
of a vector in the body reference frame into its expres-
sion in the global reference frame and (Ũa, Ω̃a) are the
velocities for a microswimmer swimming with ωt = 1 in
a configuration where body and global frame coincides.
Concerning the passive part, instead, we exploit the local
decomposition of ub in three components, a rigid trans-
lation at xc, a rigid rotation ωS

p (associated to antisym-
metric part of the velocity gradient Sij) and a deviatoric
part (symmetric part of the velocity gradient Eij). The
deviatoric part Eij can be further decomposed into five
components. For each of them, we can solve a swimming
problem and get the contributions to the swimmer trans-
lational U and angular Ω velocities. Combining all those
contributions, the microswimmer velocity in an external
flow is obtained as

U = ΩtRŨa +U b
p +R

5∑
k=1

β̃kŨ
E
k , (6)

Ω = ΩtRΩ̃a + ΩS
p +R

5∑
k=1

β̃kΩ̃E
k . (7)
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FIG. 2. Microswimmer motion in a simple shear flow. For each case, from 103 to 104 simulations with different initial
conditions were run. Panel a) reports the fraction of the circular helix swimmers that have a drift velocity oriented as X2

(U2 > 0). The bars in panel a) indicate the lateral velocity U2 for the different initial conditions while the bars in panel b) refer
to the normalized average angle 〈η/π〉 between X2 and the microswimmer head orientation p. In the passive regime, all the
trajectories converge to the same final state (I1, panel e) where the swimmer is oriented as −X2 while its velocity is U2

∼= 10−4.
In the active regime, the swimmer is again oriented as −X2, but U2 < 0, see configuration I2 (f) and I3 (g). The dot-dashed
line corresponds to the fraction of swimmers for which U2 > 0. Panel (c) and (d) refer to velocity U2 and orientation 〈η/π〉
for elliptical helix tail. Here, a new intermediate regime appears between the active and passive regime. In this intermediate
regime, both positive and negative drift velocities U2 are possible. Panels (e)-(k) report examples of the swimmer Jeffery-like
tumbling motion (shear in the X1X3 plane). The solid lines on the spheres represent the direction of the swimmer axis p
along one period while the red and blue arrows refer to the direction of the average velocity along X2.

where the first term on the right hand side is the active
contribution, the second term is the uniform translation
U b

p and rotation ΩS
p due to the external flow and the

last terms are the five contribution due to the deviatoric
part of the velocity gradient. The weights β̃k depends
only on ub and on the swimmer orientations, details are
reported in the appendix A. It is worth noting that, as
a first approximation, a more appropriate model for the
head-tail coupling is to fix the exchanged torque [23, 24].
However, in our case, the head-tail coupling enters only
in the active part of Eqs.(6)-(7). Since the active part
corresponds to the movement of the microswimmer in a
bulk fluid at rest, the tail spin Ωt is proportional to the
motor torque and, hence, considering a fixed spin or a
fixed torque only amounts to a linear rescaling with no
effect on the observed phenomenology.

The main advantage of the proposed method is that
only six solutions of the swimming problem are needed;
one for (Ũa, Ω̃a) and five for (ũE

k , Ω̃
E
k ). These swimming

problems can be solved with any Stokes solver. Here we
use the method of fundamental solution (MFS) [25] that
is summarized in the appendix A. Once these solutions
are known, one can integrate the rigid body kinematics
to get the swimmer trajectory. Here, this integration
step is performed using a quaternion formulation and a
4th order Runge-Kutta method.

III. RESULTS

In this study, the microswimmer is immersed in an
unbounded shear flow

ub = (x3τs, 0, 0) . (8)

Without loss of generality, we select as time unit 1/τs
and as length unit of length rh1 the larger axis of the
ellipse. Due to the linearity of the problem, the spin Ωt

is the only crucial parameter for given microswimmer.
For both the circular (model I) and the elliptical (model
II) helical tail microswimmers, we studied the motions at
different tail spinning velocity Ωt. For each Ωt, we simu-
lated from 103 to 104 trajectories starting from different
initial conditions with random orientation. The center of
the head is initially placed in the origin at t = 0. In all
the cases, after a transient, the swimmer orientation con-
verges to periodic trajectories. Concerning the swimmer
translation, different scenarios are possible depending on
the swimmer tail geometry, its spinning velocity Ωt and
its initial condition. A summary of the different possibil-
ities is reported in figure 2 and discussed in the following
sections.
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A. Circular helix

For the circular helix swimmer, in the passive case (tail
spinning velocity Ωt = 0) after a transient, the swimmer
is always oriented along −X2, i.e. normally to the shear
plane X1X3, and it moves along X2, i.e. U2 > 0. In
the Figure 2a, those information are condensed in panel
a) where the fraction of the trajectories that result in
final drift U2 > 0 can be read on the left axes while
the colored bars indicate the actual value of U2. For
instance, the orange bar at Ωt = 0 means that all the
103 initial conditions result in a slightly positive terminal
velocity U2

∼= 1.01 × 10−4 while the blue bar at Ωt =
0.015 indicates that almost all the swimmers reach a final
velocity U2

∼= −3.00 × 10−6. Fig. 2b, instead, reports
the orientation η averaged on a period. For the pure
passive case, Ωt = 0, we always get 〈η〉 ∼= π, i.e. the
swimmer is oriented perpendicularly to the shear plane.
This passive swimmer regime is indicated as I1 and a
sketch of its periodic orbits is reported in Fig. 2e and
in Video SM1 [57]. This result is in agreement with the
shear-induced separation of pure circular helix discussed
in [15] where it was shown that microswimmers point
perpendicularly to the shear plane in the direction here
indicated as −X2. A similar behavior is also observed
for low spinning velocity, Ωt < 0.015.

A further increase of the tail spinning results in a first
change in the dynamics. The average orientation of the
swimmer is the same, 〈η〉 ∼= π, but now the drift velocity
is positive, U2 > 0, I2 Fig. 2f. This is expected, indeed,
as Ωt increases, the swimmer propulsion becomes more
relevant until, finally, it dominates over the passive drift
induced by the shear. Interestingly, in some intervals of
the spinning speed, an additional kinematics appears, I3
Fig. 2g. The swimmer undergoes to a Jeffery-like motion
with 〈η〉 ∈ [0.8, 0.9]π. This motion is characterized by a
slightly smaller value of the average velocity U2. Depend-
ing on the initial condition, some trajectories converge to
a motion of the I2 kind and others to I3. Overall, those
data indicate that the shear always orients the swimmer
along −X2. For small tail spinning (passive case) the
shear dominates the dynamics and the swimmer moves
in the X2 direction while, for large tail spinning (active
case), the self-propulsion dominates and the swimmer
moves in the −X2 direction.

B. Elliptical helix

A much richer scenario occurs for swimmers with an
elliptical helix tail, model II, Fig. 2c. In the passive case,
we observed three main different periodic trajectories.
The overall drift is positive U2 > 0 in this region, as
for model I. The average orientation 〈η/π〉, however, is
significantly different. The first kind of trajectory II1 ori-
entates along −X2 as for model I. The other two kinds of
trajectories, II2 and II3, present Jeffery-like tumbling be-
haviors that differ from II1, see Fig 2h-j and Video SM2,
SM3 and SM4 [57]. In particular, for II3 we observe that
the tumbling occours almost in the shear plane. Sim-
ilar to the shear induced separation of pure helix [16],
such kind of tumbling (Jeffery-like) motion on the shear

FIG. 3. Elliptical helix tail microswimmer. Lateral velocity
U2 (a), normalized average angle 〈η/π〉 (b) and the absolute

tail spin ψ̇′ = ψ̇+ψ̇t (c) as functions of Ωt. Results refer to 450
trajectories for each Ωt. The green color scale indicates the
probability that one initial condition converges to the corre-
sponding value on the vertical axis, for instance, in the passive
case, almost 75% of the swimmers converge to the trajectory
II2 that corresponds to 〈η〉 ∼= 0.7π (dark green). Black solid
line in panel (a) is the velocity of the same microswimmer in
a fluid at rest. Panels (d) and (e) report a detailed view of
the regions enclosed by the violet dotted boxes. The freezing
tail phenomenon discussed in the text is sketched in panels
(f) and (g) while the corresponding average ψ′ is reported as
a solid blue line between 0.8 < Ωt < 3.2 in panel (c).

plane is associated to a lateral velocity (U2) of the mi-
croswimmer that, in our case, it is larger than the one
corresponding to II1, see Fig. 2c. No simple rules are
found to associate the final microswimmer trajectory to
its initial orientation, see Supplementary Section S1 [58]
where examples of the time evolution of the orientation
p are reported together with a diagram representing the
domains in the orientation space that led to II1, II2, II3
trajectories.

As spinning speed Ωt increases, the system undergoes
a gradual regularization. We still observe three different
kinds of trajectory but the values of the average orienta-
tion 〈η/π〉 of II1, II2 and II3 get closer, until they merge.
In this intermediate regime, trajectory II1 switch from
positive to negative U2 and, for this reason, we renamed
it as II4, Fig. 2l. Further increases in Ωt brings the
system to a fully active regime where only II4 trajectory
is observed: the swimmer is oriented along −X2 with
U2 < 0. This regime is analogous to the active regime
for circular helical tail, I2 trajectory.

To better characterize the elliptical helical tail mi-
croswimmer, we performed additional simulations that
allowed us to observe further details of the swimmer
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motion. Results are reported in Fig. 3a for the lateral
velocity U2 and in Fig. 3b for the normalized average
angle 〈η/π〉. For each Ωt we performed 450 simula-
tions with random initial orientation. The green color
scale corresponds to the probability that the swimmers
reach a steady state with the corresponding value of U2

and 〈η/π〉. For instance, at low Ωt (passive regime),
four kinds of stable trajectories exist. Three of them,
II1, II2, II3, were already discussed in Fig. 2. The last
one, indicated as II1b, corresponding to 〈η〉 ∼ 0.95π, is
quite rare (light green in Fig. 3b) and very similar to II1.
As already discussed in Fig 2, the trajectories oriented
perpendicularly to the shear plane (II1 and II1b for which
〈η〉 ∈ [0.9, 1]π) have almost no lateral motion (U2

∼= 0).
In contrast, the other two kinds of trajectories, charac-
terized by Jeffery-like tumbling close to the shear plane
(II2 and II3), show a significant lateral motion, U2 > 0,
see also Fig. 2i and Fig. 2j. Moreover, Fig. 3 also bet-
ter evidences how, through increasing of tail spin Ωt, the
tumbling trajectories II2 and II3 progressively converge
towards the −X2 axes as apparent from the increase of
〈η/π〉. Finally, in the active regime, all the trajectories
merge into a single kind where the swimmer is oriented
normal to the shear plane 〈η〉 ∼= π.

C. Freezing spin

Nevertheless, some islands of complexity persist in this
active region. For instance, the microswimmer is frozen
by the shear flow for spinning 0.8 < Ωt < 3.2. The tail of
the microswimmer, when seen from the global reference
frame, does not spin along the swimmer axis p. This is
apparent in Fig. 3c where the time derivative of the angle
ψ′ is reported. In essence, the tail rotates with respect
to the head (ψ̇t = Ωt is imposed in our model) but the
rotation of the head with respect to the global reference
frame exactly counter balances the spinning (ψ′ = ψ+ψt,

ψ̇′ = ψ̇ + ψ̇t, hence, ψ̇′ = 0⇒ ψ̇ = −ψ̇t), see Supporting
video SM5 [57]. This is a peculiar behavior that occurs
only for the elliptical helical tail and not for the circu-
lar one and it represents a further indication that slight
changes in the swimmer geometry may lead to new phe-
nomena. In fact, the tail of the microswimmer experi-
ences a propulsion torque due to propulsion as well as
a shear torque due to local velocity gradient. The bal-
ance between the two torques on the tail leads to the
freezing. For the lowest spinning velocity for which the
freezing occurs, i.e. Ωt = 0.81, the propulsion torque
is small. Thus, the mayor axis of the tail section is al-
most parallel to the shear velocity direction and, conse-
quently, the torque induced by the shear on the tail is
small, as in Fig. 3f. As the tail spinning Ωt increases, the
propulsion torque increases and the new balance is found
for larger values of ψ′. The maximum shear torque is
achieved when the mayor axis of the tail section is verti-
cal and, indeed, the last value of Ωt = 3.24 for which this
tails freezing occur corresponds to ψ′ ≈ π, see Fig. 3g.

Another unexpected behavior occurs for Ωt ∈ (3, 4.5)
where we observe that, again, the swimmer may con-
verge towards multiple different trajectories, see Fig. 3d
and Fig. 3e. All these trajectories have a negative U2 and

their oscillation around X2 axis is limited, 〈η/π〉 > 0.7.
For these reasons they can be overall classified as II4.
Only after this last region of complexity, the motion gets
finally regularized. In this fully active regime, the final
swimmer speed is linear in the tail spinning, U2 = βΩt,
with β = −4.02 × 10−3. This is expected, indeed, when
the tail spin is large, the final swimmer speed is domi-
nated by the propulsion. Indeed, the value of β we ob-
served is the same as we got in a simulation of the active
swimmer moving in a fluid at rest represented as a black
solid line in Fig. 3a. In essence, in the active regime,
the shear selects the swimmer orientation, and the final
speed is controlled by the tail spin. In the active regime,
the swimmer dynamics is predictable and controllable:
any initial condition results in the same final trajectory.

IV. CONCLUSION

In this manuscript, we proposed an efficient computa-
tional method for the analysis of microswimmer motion
in external flows. We applied our method for the anal-
ysis of microswimmers whose propulsion is due to the
spinning of a flagellum (E.coli-like swimmers). Once the
swimmer geometry is selected, the entire range of spin-
ning speed of the tail can be explored by solving only six
swimming problems. This allowed us to simulate thou-
sands of different trajectories. We compared the mo-
tions of two different swimmers, one carrying a circular
helical tail, i.e. a helix that lies on a circular cylinder,
that is the typical geometry studied in previous theo-
retical and computational works, and another one car-
rying an elliptical helical tail. The alteration of the tail
shape from circular helix to elliptical helix gives rise to
a much richer scenario where different tumbling (Jeffery-
like) trajectories can be observed under the same exter-
nal flow condition and for the same tail spinning speed.
As the propulsion torque increases, a progressive regular-
ization of the motion is observed until, in the propulsion
dominated regime, the swimmers converge to the same
final trajectory for all the initial configurations. These
results may have some implications on the biology of
microorganisms that exploit this propulsion mechanism.
Indeed, the complex Jeffery-like tumbling we observed in
the shear dominated regime may provide an alternative
way to increase the capability of a microswimmer to ex-
plore the space that may cooperate with the well known
run and tumble motion [28]. On the other hand, the
high sensitivity to the shape of the tail implies that the
microorganism must reach a larger spinning frequency in
order to have a full control of its asymptotic swimming
direction. As a result, the presence of more that one
steady state also has to be carefully taken into account
when designing artificial microswimmers whose motion
in external flows needs to be controlled.
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Appendix A: Details on the methods

In this appendix, we discuss the approach we employed
for the solution of the swimming problem for an active
microswimmer with a single intrinsic degree of freedom
(DOF) swimming in an external flow. The DOF is the
spin of the tail with respect to the microswimmer body.
This model can be easily extended to multiple DOFs.
Our method is a combination of known approaches for
solution of the Stokes equation that, for completeness,
are reported in the following sections. The crucial idea it
to decompose the rate of strain in five base components.
This allows to reduce the solution of the swimming prob-
lem to six solutions of the Stokes equation, one for the
active propulsion and five for the passive one. These
swimming problems can be solved with any Stokes solver.
Here we employed the method of fundamental solution
(MFS) [25] Before entering in the details of our formula-
tion, we briefly mention some alternative approaches for
the swimming problem.

Modeling the motion of a microswimmer using multi-
ple rigid bodies is a relatively common approach (see,
e.g. [10, 12]). A key to calculate the trajectory of a
microswimmer is to compute the generalized velocity
(U ,Ω), that can be calculated solving the Stokes equa-
tions plus the force- and torque-free conditions [7]. The
boundary element method is commonly used for Stokes
equations [10, 29], although the solving method can
be replaced by other formulations, such as the method
of regularized Stokeslets [30–32], the boundary inte-
gral method [33], and the spectral boundary element
method [34]. Since usually it is computationally expen-
sive to calculate the generalized velocity (U ,Ω) directly
using full solution of the Stokes equation, several approx-
imate theories were developed for rigid body motion in
Stokes flows. Following Marcos et. al. work [15, 16],
Mathijssen et. al. [35] developed an approximate formu-
lation of an ideal chiral object using the resistive force
theory that allowed to study bacteria rheotaxis close to
a surface. Another alternative approach is to calculate
the generalized mobility matrix of the system [36]. For
a three sphere swimmer model [37], a quadrupole order
accurate multipole expansion was recently employed to
study the swimmer kinematics close to a wall under a
shear flow [38]. The possibility to extend this promis-
ing approach to more complex swimmer geometries is,
however, an open issue.

1. Fundamental solution of Stokes equation

Here, we briefly summarize the method of fundamen-
tal solution (MFS) [25]. In the creeping flow limit, the
governing equation for the fluid velocity u and pressure
p due to a point force singularity of strength f applied
to the point xf is the Stokes equations

∇ · u = 0 , (A1)

µ∇2u = ∇p− f(xf )δ(x− xf ) , (A2)

(e)

𝑑𝑡

(f) (g)

𝝏𝛀𝟏

𝛀𝟐

𝛀𝟏

𝒙𝑖
𝑣

𝒙𝑖
𝑓

(a) (b)

(c) (d)

𝑑ℎ
𝜉

FIG. 4. Sketch of the method of fundamental solutions. (a)
A solid body (domain Ω1) moves in a bulk fluid (domain Ω2).
The solid blue line ∂Ω1 is the boundary of the solid body.
Boundary points xv

i (blue circles) are selected on ∂Ω1 while

source points, xf
i (red squares) are placed inside the solid

body. Panel (c) shows the discretization used for a quarter of
an ellipse while the swimmer head is in the panel (d). Panel
(e) reports the tail centerline while panel (f) refers to the
discretization of the swimmer tail. Each section of the tail is
modelled as a circle where, again, red squares correspond to
force sources and blue circles to the boundary. In panel (g)
a short section of the swimmer tail is shown.

where µ the fluid viscosity, and δ is the Dirac delta func-
tion. The solution of (A1)-(A2) (also knows as Stokeslet)
reads

u(x) = S(xf ,x)f(xf ) , (A3)

with

S(xf ,x) =
1

8πµ

(
I

r
+

(xf − x)(xf − x)

r3

)
, (A4)

where I is the unit matrix, and r = ‖xf − x‖. The tensor
S(xf ,x) is commonly indicated as Oseen tensor.

The MFS [25] was already successful employed in mi-
crofluidics, see e.g. [39, 40]. In brief, as is shown in Fig. 4
(a, b), for problems where the velocity is assigned on the
boundary of a solid domain Ω1 and the velocity field
needs to determined in the external domain Ω2, the key
of the MFS is to find an approximation field u′ that
is defined in the domain Ω1 ∪ Ω2 and that fulfills the
boundary condition at the frontier of Ω1. The fluid ve-
locity field u′ is a smooth field that is defined in both
the domains Ω1 and Ω2. A set of n boundary points xv

i
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located at the boundary ∂Ω1 are selected. For each one
of them, we know its corresponding velocity u(xv

i ) from
boundary conditions. A set of n point forces are placed
inside the domain Ω1 close to the boundary points, the

location of the point forces being indicated as xf
i . Hence,

the velocity u(xv
i ) can be expressed asu(xv

1)
. . .
u(xv

n)

 =

S(xf
1 ,x

v
1) . . . S(xf

n,x
v
n)

. . .

S(xf
1 ,x

v
1) . . . S(xf

n,x
v
n)


f(xf

1 )
. . .
f(xf

n)

 .
(A5)

This system has 3n unknowns and 3n equations.
Once (A5) is solved for f , the approximated velocity
u′ in a generic point x of the domain Ω1 ∪ Ω2 can be
calculated as

u′(x) =

n∑
i=1

S(xf
i ,x)f(xf

i ) . (A6)

In the following, to simplify the notation, we will use the
same symbol u for the approximated velocity and the
true solutions of the Stokes problem.

2. The discretization of the microswimmer

A technical issue in MFS concerns the location xf
i

of the point sources. Our swimmer is composed by a
spheroidal head and a helical tail. Concerning the head,
we first placed the boundary point on a 2D ellipse with
semi-axes rh1 and rh2 lying on the e3e1 plane, approxi-
mately at the same distance dh, [59] [42], see Fig. 4(c).
The ellipsoid is a body of revolution. Hence, we rotated
each point around the major axis e3 of the ellipsoid ob-
taining a circle perpendicular to e1. This circle is di-
vided into boundary points with equal distance dh. In
this study, we select dh/rh1 ∼= 0.047 for a total of 1653
boundary points lying on the swimmer head and indi-
cated as xvh

i .
For each boundary point xvh

i , a point force is located
inside the ellipsoid on the lines that connect xvh

i with the

ellipsoid center xc. The distance rfhi between xc and xfh
i

is given by

rfhi = δhr
vh
i , δh = 1 +

2εh〈dh〉
(rh1 + rh2)

, (A7)

where rvhi is the distances between the ellipse center xvh
i ,

〈dh〉 is the average distance of the neighbor boundary
points and εh is a control parameter. In this study, we
used εh = −1. We also verified that results does not
change for εh ∈ (−0.5,−1). Fig. 4 (d) shows a example
of the ellipsoid after discretization.

Concerning the tail, we first defined its centerline in a
reference system with origin in the swimmer head center
xc as

rt(s) = (rt1 cos(2πs), rt2 sin(2πs), λs− δbt) , (A8)

where s ∈ [−n/2, n/2] with n the number of periods of
the tail, λ is the pitch of the helix δbt is the distance from
xc to the tail center, here set to δbt = rh1 +nλ/2 +rh1/2,

and rt1 and rt2 are the radius of the elliptical cylinder on
which the helix lies. We also performed a set of simula-
tions analogous to the ones discussed in Fig 3 but with
δbt = rh1 + nλ/2 + rh1/5. Beside minor quantitative
differences, the results fairly agree with the one discussed
in the manuscript. We discretize s into m + 1 values
si = −n/2 + in/m, i ∈ (0,m), as shown in Fig. 4(e).
Then, for each of them, we put a circle of radius ρt
perpendicular to the centerline of the helix. This cir-
cle is divided into boundary points with equal distance
dt The associated point force are placed on the concen-
tric circle that perpendicular to the helix centerline, as
is shown in Fig. 4(b). The radius of this concentric cir-
cle is ρt − εtdt. with εt = −1. In this study, we select

dt =
√
λ2 + C2

elpn/m
∼= 0.019, where Celp indicates the

perimeter of the ellipse with radius rt1 and rt2. The two
ends of the helix are closed using semi-spheres. The gen-
eration method of the discretized semi-sphere is the same
as one used for the ellipsoidal head of the microswimmer
where, now, we used rh1 = rh2 = ρt while dt is the dis-
tance among the boundary points of the hemi-sphere.

Setting as unit of length the larger axis of the ellipse,
the circular helical tail microswimmers has the following
geometrical parameters rh1 = 1/2, rh2 = 1/6, rt1 = 0.1,
rt2 = 0.1, ρt = 0.03, n = 3, λ = 2/3. The number point
forces is 1653 for the head and 1534 for the tail. For
the elliptical helical tail all the parameters are the same
as for the circular tail swimmer with the exception of
rt1 = 0.3. The number of point forces on elliptical helix
tail is 2464.

3. Swimmer kinematics and boundary conditions

The microswimmer has seven degrees of freedom
(DOFs), six DOFs represent the rigid motion of the head
while the other the spinning of the tail. Without loss of
generality, for the translational DOFs we selected the
center xc of the ellipsoid that constitutes the swimmer
head, while for the orientational DOFs, we selected the
angles φ, θ and φ reported in Fig. 1. The associated
translational and rotational velocity are here indicated
as U and Ω. The tail rotates around the swimmer axis
p ≡ e3 at a spinning rate Ωt with respect to the head.
The no-slip boundary condition is applied on the surfaces
of the head and the tail of the microswimmer, hence, the
fluid velocity at the swimmer boundary point is

u(xvh
i ) = U + Ω× rvhi , (A9)

(A10)

for the head boundary points xvh
i and

ut(x
vt
i ) = U + (Ω + Ωtp)× rvti , (A11)

where in both equations ri indicates the relative position
of the boundary point with respect to the center of the
swimmer head xc. In our problem, the tail spin Ωt is
given and the other six DOFs are unknown. Thus, ap-
plying (A9) and (A11) into (A5), we get a system of 3n
variables in 3n+6 unknowns. To complete this problem,
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we needed additional six equations that are the force-
and torque- free conditions of the microswimmer

nh∑
i=1

f(xfh
i ) +

nt∑
i=1

f(xft
i ) = 0 , (A12)

nh∑
i=1

rfhi × f(xfh
i ) +

nt∑
i=1

rfti × f(xft
i ) = 0 , (A13)

obtaining a system of 3n+6 variables in 3n+6 unknowns.
The system was solved using the GMRES method [43]

implemented in PETSc [44, 45]. The solution provides
the the rigid body translational U and rotational Ω ve-
locities of the microswimmer head and the 3n compo-
nents of the point force, from which, using (A6) the en-
tire velocity field can be build.

Once the swimmer head generalized velocity (U ,Ω)
is obtained, the swimmer configuration is updated using
the following kinematic equations

dxc

dt
= U , (A14)

dei
dt

= Ω× ei , i = 1, 2, 3 , (A15)

dψt

dt
= Ωt . (A16)

As commonly did in microswimmer problems [10, 46],
in our code, we replaced (A15) with the quaternion for-
mulation [47, 48], to keep a higher numerical accuracy.
Eq. (A14)-(A16) were solved using a 4th order Runge-
Kutta method [49] implemented in PETSc [45, 50].

4. The method of base flow

In principle, the swimming problem presented in the
previous section needs to be solved at any time step of
the Runge-Kutta integrator used to update the swimmer
configuration. This will require a large amount of com-
putational resources. Here we present an approach to
largely speed up the simulation. This approach is based
on the decomposition of the swimmer motion into two
parts, an active part and a passive part. The idea of
motion decomposition in the creep limit has a long his-
tory. For example, the motion of a particle in Stokes
flow can be decoupled into the translation and the ro-
tation parts [36, 51]. Using this approach, Chwang and
Wu [52] derived several exact solutions of the motion
of a spheroid in a Stokes flow. Subramanian and Koch
extended their work and discussed the orientation of a
passive spheroid in the simple shear flow [53, 54] and
planar linear flow [55]. Analytical solutions of the mi-
croswimmer motion with arbitrary geometry in the five
basis flows, however, is difficult. Hence, after decom-
posing the motion, we employed the numerical method
of the fundamental solution (described in the previous
section) to solve the Stokes problems.

More specifically, we decouple the swimmer kinematics
as it follows: i) the active part (Ua,Ωa) corresponding
to the microswimmer self-propelling in a bulk fluid at
rest, and ii) the passive part (Up,Ωp) corresponding to

a passive microswimmer (i.e. no tail spinning, Ωt = 0)
in an external flow ub. In formulae,

U(xc,θc, ψt) = Ua(θc, ψt) +Up(xc,θc, ψt) , (A17)

Ω(xc,θc, ψt) = Ωa(θc, ψt) + Ωp(xc,θc, ψt) . (A18)

where we collectively indicated with θc the three angles
θ, φ and ψ, see Fig. 1 defining the swimmer orientation.
Active motion. For the active part, we first numeri-

cally calculated the unit-spin motion (Ũa, Ω̃a) of a mi-
croswimmer swimming with ωt = 1 pointed toward the
X3 direction with (θ = 0, φ = 0, ψ = 0, ψt = 0). Thanks
to the rotational symmetry of the ellipsoidal head, the
last 2 rotational DOFs can be reduced to single DOF
ψ′ = ψ + ψt. Indeed, if we take a given conformation
on the swimmer and we applied a rotation of the entire
swimmer of an angle ψ = α and then a rotation of the tail
with respect to the head of and angle ψt = −α the initial
and the final conformations are the same. Therefore, we
can easily transform the motion (Ua,Ωa) of an active
swimmer whose tail spins at a rate Ωt from the body co-
ordinate frame O′e1e2e3 to the global coordinate frame
OX1X2X3

Ua(θc, ψt) = ΩtR(θc, ψt)Ũa , (A19)

Ωa(θc, ψt) = ΩtR(θc, ψt)Ω̃a , (A20)

where the rotation matrix R (that transforms the ex-
pression of a vector in the body reference frame into its
expression in the global reference frame) is a function of
θ, φ and ψ′

R =

CφCψ′Cθ − SφSψ′ −Cψ′Sφ− CφCθSψ′ CφSθ
Cψ′CθSφ+ CφSψ′ CφCψ′ − CθSφSψ′ SφSθ

−Cψ′Sθ Sψ′Sθ Cθ

 ,
(A21)

(a) (b)

(c) (d)

FIG. 5. Sketch of the kinetic decoupling of the microswimmer
in a external flow. (a) Active microswimmer motion (Ũa, Ω̃a)
in bulk fluid at rest. (b) Passive microswimmer translation
ub in the external flow. (c) Passive microswimmer motion

(ŨE , Ω̃E) in the symmetric (deviatoric) part of the external
flow. (d) Passive microswimmer rotation ΩS

p in the antisym-
metric part of the external flow.
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k strain rate base Ẽk
ij associated flow ũEk

i

1

1 0 0

0 −1 0

0 0 0

 (x1,−x2, 0)

2

0 0 0

0 −1 0

0 0 1

 (0,−x2, x3)

3

0 1 0

1 0 0

0 0 0

 (x2, x1, 0)

4

0 0 1

0 0 0

1 0 0

 (x3, 0, x1)

5

0 0 0

0 0 1

0 1 0

 (0, x3, x2)

TABLE I. Base flow associated with the decomposition of the
symmetric component of the velocity gradient, see (A26)

where Sθ stands for sin (θ) and Cθ stands for cos (θ) and
so on.

Passive motion. Now, we discuss the passive part
(Up,Ωp) induced by the external flow ub. This is a
quite classical problem that we briefly revise for com-
pleteness [36, 51]. Taylor expansion allows to locally de-
compose the generic flow field ub into three parts,

ubi (xc + δxc) = ubi (xc) + Eij(xc)δx
c
j + Sij(xc)δx

c
j ,

(A22)

Eij(xc) =
1

2
(ubi,j(xc) + ubj,i(xc)) , (A23)

Sij(xc) =
1

2
(ubi,j(xc)− ubj,i(xc)) , (A24)

where Eij and Sij are the symmetric and asymmetric
part of the velocity gradient ui,j = ∂ui/∂xj . The first
term of the right hand side of (A22) gives a pure rigid
body translation U b

p(xc) of the microswimmer without
rotation, see Fig. 5(b). Instead, the effect of the last term
induced a pure rigid body rotation ΩS

p = 1
2∇×u

b where

the ∇×ub is the bulk fluid vorticity, see Fig. 5 (d). The
contribution of the symmetric part of the gradient to the
motion, Fig. 5(c), however, is more complex. Eij has
nine components, but since it is symmetric, i.e. Eij =
Eji, and the fluid is incompressible, i.e. tr(Eij) = Eii =
0, only five of them are independent. Our approach is
firstly to express the strain rate Eij in the body reference
frame

Ẽij = RTEijR , (A25)

where R is the rotation matrix (A21). Then, we decom-
pose it in five basic modes due to the linearity of the
Stokes equations [51, 52].

Ẽij =

5∑
k=1

β̃kẼ
k
ij , (A26)

Indeed, any Ẽk
ij can be expressed as

Ẽij =

β1 β3 β4
β3 −β1 − β2 β5
β4 β5 β2

 , (A27)

by using the 5 components reported in Table I. Given
this decomposition, we numerically solve the swimming
kinematics (ŨE

k , Ω̃
E
k ) of the passive microswimmer for

the five components and sum them with proper weights
β̃k

ŨE
p (x,θc, ψt) =

5∑
k=1

β̃k(x,θc, ψt)Ũ
E
k , (A28)

Ω̃E
p (x,θc, ψt) =

5∑
k=1

β̃k(x,θc, ψt)Ω̃
E
k . (A29)

Finally, we express ŨE
p and Ω̃E

p in the global reference
frame

UE
p (x,θc, ψt) = R(θc, ψt)Ũ

E
k (x,θc, ψt) , (A30)

ΩE
p (x,θc, ψt) = R(θc, ψt)Ω̃

E
k (x,θc, ψt) . (A31)

It is worth noting that the weights β̃k, k = 1 . . . 5 are
functions of external flow ub and swimmer configuration
(θc, ψt) and they do not vary with the geometric details
of the microswimmer. Similar strategies for calculating
the passive motion of the microswimmer can be found
in [53, 55].

In summary, the microswimmer generalized velocity in
an external flow is obtained as

U = ΩtRŨa +U b
p +R

5∑
k=1

β̃kŨ
E
k , (A32)

Ω = ΩtRΩ̃a + ΩS
p +R

5∑
k=1

β̃kΩ̃E
k . (A33)

A sketch of the proposed decoupling is reported in Fig. 5.
The main advantage of this method is that, for given
geometry of microswimmer, regardless the tail spin rate
Ωt, only six simulations are necessary; one for getting
(Ũa, Ω̃a) and five for (ũE

k , Ω̃
E
k ), k = 1 . . . 5. Thus, one

can obtain these quantities accurately previously, and
then solve the microswimmer kinematics (A14)-(A16).

For the microswimmer motion in the shear flow ub =
(X3, 0, 0), we have

Eij =
1

2

0 0 1
0 0 0
1 0 0

 , (A34)

that, using (A25) and (A26), gives

β̃1 = Cψ′(SφSψ′ − CφCψ′Cθ)Sθ , (A35)

β̃2 = CφCθSθ , (A36)

β̃3 =
1

4
(2C(2ψ′)SφSθ + CφS(2ψ′)S(2θ)) , (A37)

β̃4 =
1

2
(CφCψ′C(2θ)− CθSφSψ′) , (A38)

β̃5 =
1

2
(−Cψ′CθSφ− CφC(2θ)Sψ′) . (A39)
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(a) (b)

(c)

FIG. 6. Validation of the numerical method: Jeffery or-
bits. (a) Sketch of an ellipse orbit in a shear flow. The shear
flow is in the X1X3 plane of the global coordinate frame
OX1X2X3. The polar θ and azimuthal φ angles are used to
describe the orientation of the body frame with respect to
the global frame. The unit vector p denotes the orientation
of the ellipsoid. (b, c) Time evolution of angles θ and φ for an
ellipse with aspect ratio rh1/rh2 = 3 moving in a shear flow.
The initial orientation of the ellipse is (θ = 0.21π, φ = 0.23π).
Orange points represent our numerical solution while the an-
alytical solution [36] are reported as blue lines.

To test our approach, we reproduced the Jeffery orbit
[56] for a rh1/rh2 = 3 ellipse in a shear flow, see fig 6.
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