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We demonstrate that the multi-phase Shan-Chen lattice Boltzmann method (LBM) yields a curva-
ture dependent surface tension σ as computed from three-dimensional hydrostatic droplets/bubbles
simulations. Such curvature dependence is routinely characterized, at first order, by the so-called
Tolman length δ. LBM allows to precisely compute σ at the surface of tension Rs and determine
the Tolman length from the coefficient of the first order correction. The corresponding values of δ
display universality for different equations of state, following a power-law scaling near the critical
temperature. The Tolman length has been studied so far mainly via computationally demanding
molecular dynamics (MD) simulations or by means of density functional theory (DFT) approaches
playing a pivotal role in extending Classical Nucleation Theory. The present results open a new
hydrodynamic-compliant mesoscale arena, in which the fundamental role of the Tolman length,
alongside real-world applications to cavitation phenomena, can be effectively tackled. All the re-
sults can be independently reproduced through the “idea.deploy” framework.

PACS numbers:
Keywords: Multi-phase flows, surface tension, lattice Boltzmann method, Tolman length

I. INTRODUCTION

Defining the position of the interface in a multi-phase
mixture is not a straightforward task. Given a bub-
ble/droplet, the average density profile changes smoothly
and not as a step-wise function, so that the exact posi-
tion of a surface separating the two phases is an elusive
concept. On the other hand, for closed interfaces, the
curvature appears explicitly in the free energy as conju-
gated to a curvature coefficient, i.e., the curvature plays
the role of a control parameter [1, 2]. In this context,
the introduction of an arbitrary dividing surface, ideally
separating the gas and the liquid phases, is found to be
necessary [1–3]. The arbitrariness of the location R of
such an interface does not impact on the value of the
free energy, i.e. the free energy is stationary with respect
to variations of R. This, in turn, reflects on the defini-
tion of a generalized surface tension σ[R], which assumes
the shape of a convex function reaching a minimum at
Rs (see Fig. 1), identifying the surface of tension. At
the latter position the Laplace law applies in the usual
form [1–4]. It is possible to show [3] that the stationarity
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of the free energy at the surface of tension Rs yields

∆P =
2σ[Rs]

Rs
+

dσ[R]

dR

∣∣∣∣
R=Rs

=
2σ(Rs)

Rs
. (1)

By considering any other value of R 6= Rs in (1), such as
the equimolar radius Re commonly used in LBM simula-
tions, one obtains the so-called generalized Laplace law
which explicitly depends on the derivative of σ[R]. The
locus of the minima of σ[R] identifies a physical, i.e. non-
arbitrary, dependence of the surface tension σ(R) on the
droplet/bubble size at Rs, σs = σ[Rs] = σ(Rs). Such a
dependence was first examined in the seminal paper by
Tolman [5] (see [6, 7] for reviews), and can be expressed
as a power-law expansion in the curvature, i.e. the in-
verse radius, which at second order reads [4, 8–10]

σ (Rs) ' σ0
(

1− 2δ

Rs
+

2k̄ + k

R2
s

)
. (2)

The flat interface value σ0 appears at the leading order,
the first order coefficient δ defines the Tolman length
[cf. Fig. 1(a)] and k̄ and k are called curvature and
Gaussian-rigidity coefficients, respectively. The present
work mainly focuses on the analysis of δ since, as shown
in the results, the higher order coefficients k and k̄ are
small enough to make higher order terms negligible in
the present setting.

In Tolman’s seminal work [5] δ was defined on ther-
modynamic grounds, starting from Gibbs theory of cap-
illarity [1]. Such an approach, further developed in [11–
13], served as the foundation for studying the behavior
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of δ near the critical temperature [4, 14, 15]. Several
works based on the density functional theory (DFT) [9,
10, 16, 17] have led to expressions for the coefficients δ,
k and k̄, for realistic multi-phase and multi-component
systems. From the numerical perspective, simulations
have mostly focused on molecular dynamics (MD) [18–
20]; Monte Carlo techniques have been adopted as well,
as in the three-dimensional three-body Ising model [21]
and for particles interacting via Lennard-Jones (LJ) po-
tentials [22–24]. The Tolman length was recently inves-
tigated in experimental settings, linked to hydrophobic
interactions relevant for protein folding [25]; δ was mea-
sured in nucleation experiments [26], and its role was an-
alyzed both in confined geometries [27] and in colloidal
liquids [28]. Corrections to the zero-curvature value σ0
have important physical consequences, most notably re-
garding Classical Nucleation Theory (CNT). The latter
states that, using the so-called capillary approximation,
the nucleation rate depends exponentially on σ0 [29].
Hence, such rates are extremely sensitive to curvature
corrections. The latter have been successfully used to
extend CNT [30, 31] and for the analysis of experimental
data [26, 28], eventually allowing to solve previous CNT
controversial results [32].

In this work, we study the Tolman length using a
three-dimensional multi-phase [33, 34] lattice Boltzmann
method (LBM) [35, 36] in the hydrostatic limit. We es-
timate δ by directly computing σ[R] (see Fig. 1(b)) from
a lattice formulation of the pressure tensor [37] follow-
ing a procedure reported in [3] which we detail below.
Considering the past literature it appears that, so far,
the different approaches for modelling and study the Tol-
man length have been mainly concerned either with the
microscopic scales, i.e. MD simulations, or with contin-
uum DFT descriptions. Indeed, a mesoscale perspective
has been considered in the MC simulations of the Ising
model [21, 38–40], which however do not naturally extend
to non-equilibrium settings. Here we present a first step
for a mesoscale modelling of the Tolman length which
embeds momentum conservation, i.e. hydrodynamics,
thus allowing to consider non-equilibrium effects, which
are paramount in non-homogeneous cavitation and nu-
cleation, and to fill the mescoscopic gap seprating MD
simulations and DFT theories.

The paper is organized as follows: in Section II we de-
scribe the fundamentals of the LBM formulation adopted
in this work, highlighting the existence of a lattice pres-
sure tensor for the Shan-Chen model solving the me-
chanic equilibrium condition for a flat interface to ma-
chine precision, i.e. constant value of the normal compo-
nent of the pressure tensor; in Section III we detail the
method used to evaluate the position of the surface of
tension Rs differing from the equimolar surface Re [1, 3]
typically used in the context LBM simulations; in Sec-
tion IV we report the results for the estimation of the
Tolman length δ and its temperature dependence and in
Section V we draw some conclusions.

Figure 1: Panel (a): Sketch of the generalized surface tension
σ[R] normalized to the flat-interface value σ0, as a function
of the droplet curvature R−1

s and of the normalized arbitrary
dividing surface R/Rs. The Tolman length δ is given by the
slope of the locus of the minima of σ[R] in the flat interface
limit R−1

s → 0. Panel (b). Top: data for the generalized
surface tension σ[R] with the minima determining the surface
of tension Rs. Middle part: density field n of a droplet with
an enhancement of the underlying lattice structure with the
discrete velocities reported in red and blue for |ξa|2 = 1, 2
respectively. The points shading and size corresponds to the
magnitude of ψ at the interface with F the local force as in
Eq. (8). In the bottom projection of the density field n we
indicate the positions for the inner Pin and outer Pout bulk
pressures together with the liquid nl and gas ng densities for
a droplet.
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II. LATTICE BOLTZMANN METHOD

The lattice Boltzmann method (LBM) allows to sim-
ulate the Navier-Stokes dynamics of a multi-phase mix-
ture by means of a forced Boltzmann transport equa-
tion acting on a discretized phase-space [35, 36]: the
single-particle distribution function f(x, ξ, t) takes val-
ues on the the nodes {x} of a three-dimensional lattice
at discrete times t. The key advantage of LBM lays in a
remarkably fast convergence to the hydrodynamic limit
by employing only a few velocity vectors {ξi} connect-
ing each lattice point to a set neighboring nodes, with
i = 0, . . . , 18. Hence, one defines the populations as the
single-particle distribution function evaluated for a given
ξi, i.e. fi(x, t) = f(x, ξi, t). The first two moments of
the discretized distribution define the density n =

∑
i fi

and the momentum density nu =
∑
i ξifi, respectively.

The lattice transport equation reads

fi (x + ξi, t+ 1)− fi (x, t) = Ωi (x, t) + Fi(x, t), (3)

where Fi is the forcing term [41] and Ωi is the local
collision operator conserving mass and momentum, i.e.∑
i Ωi =

∑
i ξiΩi = 0, and the locality of Ωi renders

the approach particularly amenable to parallel imple-
mentations [35, 36], such as the architecture-independent
GPU/CPU implementation used for the results reported
in this paper which can be found on the GitHub
repository https://github.com/lullimat/idea.deploy [42–
49]. The left-hand side of (3) represents the populations
streaming while on the right-hand side is composed by
the Bhatnagar-Gross-Krook (BGK) [50] collision opera-
tor

Ωi (x, t) = −1

τ

[
fi (x, t)− f (eq)i (x, t)

]
(4)

and by the Guo [41] forcing term

Fi (x, t) =

(
1− 1

2τ

)
wi

×
[

1

c2s
ξαi +

1

c4s

(
ξαi ξ

β
i − c

2
sδ
αβ
)
u
(eq)
β

]
Fα,

(5)

where repeated Greek indices imply summation. We use
this term to implement in the LBM the force Fα respon-
sible for the phase separation. The equilibrium popula-

tions f
(eq)
i are obtained as a second-order approximation

of the Maxwell distribution

f
(eq)
i = win

[
1 +

ξαi u
(eq)
α

c2s
+

(ξαi u
(eq)
α )2

c4s
− u

(eq)
α u

(eq)
α

2c2s

]
,

(6)
and the equilibrium fluid velocity is computed according
to Guo prescription [41]

uα(eq) (x, t) =
1

n (x, t)

18∑
i=0

ξαi fi (x, t) +
1

2n (x, t)
Fα (x, t) .

(7)

Since its inception, LBM has witnessed the development
of different approaches for multi-phase flows [35, 36] lay-
ing at the foundation of the most modern and success-
ful application of LBM. In this paper we delve deeper
in one specific approach, namely the Shan-Chen (SC)
model [33, 34], and show that it correctly captures a cur-
vature dependent surface tension. The main feature of
the SC model, allowing for the existence of stable gra-
dients of the density n(x, t), is a force computed on the
lattice nodes

Fµ(x) = −Gc2s ψ(x)

18∑
a=1

W (|ξa|2)ψ(x + ξa) ξµa , (8)

where ψ(x, t) = ψ(n(x, t)) is the so-called pseudopoten-
tial, a local function of the density n, implicitly depend-
ing on space and time, cs = 1/

√
3 is the speed of sound, G

is the (self) coupling constant which is related to the tem-
perature, ξ are the discrete forcing directions such that
their squared lengths are |ξa|2 = 1, 2, and W (1) = 1/6
and W (2) = 1/12 are the weights ensuring 4-th order lat-
tice force isotropy [51, 52]. The set of the forcing vectors
ξa coincide with that of the lattice velocities ξi after ex-
cluding the “rest” direction ξ0 = (0, 0, 0). The SC force is
related to a lattice pressure tensor [37, 53, 54] that reads

Pµν(x) = nc2sδ
µν+

Gc2s
2
ψ(x)

18∑
a=1

W
(
|ξa|2

)
ψ(x+ξa)ξµa ξ

ν
a .

(9)
We remark that the tensor in the Eq. (9) is such that
the flat-interface mechanical equilibrium condition, i.e.
constant normal component PN(x) = p0 throughout the
interface, is obeyed on the lattice with a value of p0 that is
constant to machine precision. By performing the Taylor
expansion of Eq. (9) one obtains, at the leading order,
the bulk pressure

P (n) = nc2s +
Gc2se2

2
ψ2(n) (10)

where e2 = 1 for the values of the weights used in this
work. Eq. (10) allows for phase coexistence when the
coupling is below the critical value G < Gc, which is de-
termined by the vanishing of the first and second deriva-
tives in n, i.e. dP/dn = 0 and d2P/dn2 = 0. The
SC model has been steadily developed during the past
thirty years allowing to perform the most diverse simu-
lations: from heterogeneous cavitation [55] to emulsions
rheology [56], all while handling complex boundary and
load conditions, allowing for a direct comparison with
microfluidics experiments [57]. The ability to model the
Tolman length in LBM opens new fundamental research
avenues for the study of nucleation and cavitation phe-
nomena in the mesoscale regime, offering at the same
time great computational efficiency and a direct bridge
to experiments.

https://github.com/lullimat/idea.deploy
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III. METHOD

As outlined in Section I, the free energy needs to be
independent on the choice of the position for the arbi-
trary dividing spherical surface R. Such a stationarity
condition yields the generalized Laplace law [1–3, 14]

∆P =
2σ [R]

R
+

[
dσ

dR

]
(11)

with σ[R] the generalized surface tension and its notional
derivative [dσ/dR] = σ′[R] and ∆P = Pin − Pout, with
Pin and Pout the values of the bulk pressure in the cen-
ter of the bubble/droplet and far away from the inter-
face, respectively (see Fig. 1). At the minimum of σ[R],
Eq. (11) reduces to the usual Laplace law, and the con-
dition σ′[R]|R=Rs = 0 defines the position of the surface
of tension Rs. Hence, by direct comparison to Eqs. (2)
and (11), it follows that at second order in R−1s the latter
reads

∆P =
2σs(Rs)

Rs
' 2σ0

Rs

(
1− 2δ

Rs

)
. (12)

In order to estimate the Tolman length we simulate
droplets and bubbles at different temperature (i.e. cou-
pling G) and compute the deviations from the Laplace
law using the surface of tension radius Rs to estimate
the bubble/droplet size. We now discuss how to estimate
Rs from the simulations generalizing the arguments pre-
sented in [3] to an arbitrary spatial dimension d. Let us
start from the mechanic equilibrium condition ∂µP

µν = 0
and consider the following pressure tensor decomposition

Pµν = PNδ
µν − (PN − PT)qµν , (13)

where PN and PT are the (locally) normal and tangential
components to the bubble/droplet interface, respectively.
The projector along the tangential direction is defined as
qµν = δµν − nµnν where nµ is the normal vector to the
interface which is given by the direction of the largest
gradient. It follows that the normal vector for a droplet
interface has the opposite orientation with respect to the
one of a bubble, so that the latter yields a negative cur-
vature. Hence, the mechanic equilibrium condition reads

∂µP
µν = nνnµ∂µPN + nν∂µn

µ (PN − PT) = 0, (14)

which can be re-expressed in polar coordinates as

nν
d

dr
PN (r) +

(d− 1)nν

r
[PN (r)− PT (r)] = 0,

where we considered that nν∂µn
µ = (d− 1)nν/r, where

d is the number of spatial dimensions and r is the value of
the radial coordinate. Finally, without loss of generality,
we can select the normal/radial direction to be parallel
to the x-axis, i.e. nµ = eµx yielding

d

dr
PN (r) +

d− 1

r
[PN (r)− PT (r)] = 0. (15)

Now, it is possible to obtain a sequence of identities that
are satisfied by the mechanic equilibrium condition. As
a first step one can multiply Eq. (15) by rn so that, after
reshuffling derivatives, one obtains

d

dr
[rnPN(r)] = rn−1[(n− (d− 1))PN(r) + (d− 1)PT(r)].

(16)
Next, it is possible to take the integral of both sides be-
tween Rin and Rout, i.e. from the position of the inner
bulk phase to the position of the outer bulk phase, thus
obtaining

RnoutPout −RninPin

=

∫ Rout

Rin

dr rn−1[(n− (d− 1))PN(r) + (d− 1)PT(r)],

(17)

where we have identified the value of the normal com-
ponent in the bulk with the value of the scalar pres-
sure, P in,out

N = Pin,out. Now, let us define the pressure-
jump function PJ(r;R) = Pin − (Pin − Pout)θ(r − R),
where θ(r−R) is the Heaviside function. The integral of
nrn−1PJ (r;R) between Rin and Rout reads

n

∫ Rout

Rin

dr rn−1PJ(r;R)

= PoutR
n
out − PinR

n
in +Rn(Pin − Pout).

(18)

We now subtract Eq. (18) from Eq. (17) and obtain an
integral expression for the pressure jump ∆P = Pin−Pout

across the interface

∆P =
n

Rn

∫ Rout

Rin

dr rn−1[PJ(r;R)− PN(r)]

+
d− 1

Rn

∫ Rout

Rin

dr rn−1[PN(r)− PT(r)].

(19)

Finally, we set n = d − 1, thus eliminating the normal
component of the pressure tensor PN, and equate to the
generalized Laplace law (cf. Eq. (11)) yielding

∆P =
d− 1

Rd−1

∫ Rout

Rin

dr rd−2[PJ(r;R)− PT(r)]

=
(d− 1)σ[R]

R
+

[
dσ

dR

]
.

(20)

It is possible to extract the expressions for σ[R] and
[dσ/dR] [3] obtaining for d = 3

σ[R] =

∫ +∞

0

dr
( r
R

)2
[PJ(r;R)− PT(r)], (21)

[
dσ

dR

]
= − 2

R3

∫ +∞

0

dr r(r−R)[PJ (r;R)−PT (r)], (22)

where we took the limits Rin → 0 and Rout → ∞. We
evaluate Eq. (21) by means of the SC lattice pressure
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Figure 2: Value for the surface tension as a function of the
dimensionless coupling G/Gc−1 ∈ {0.029, 0.033, 0.038, 0.045,
0.056, 0.070, 0.079, 0.091, 0.119, 0.159, 0.215, 0.293}. Triangles
and filled circles represent the data obtained from the inter-
polation of Rs ·∆P/2 in the limit R−1

s → 0, for two different
pseudo-potential functions ψ (cf. Fig. 4(a)). Empty circles in-
dicate the value numerically computed from the flat-interface
simulations. The dashed line represent a power-law scaling
with the mean-field exponent µ = 3/2 [14].

tensor in Eq. (9), integrating along the x axis so that
PN = P xx and PT = P yy = P zz. Once σ[R] is evaluated
we obtain the value of Rs by interpolating the position of
the minimum. We wish to stress that in the derivation of
Eq. (21) the only hypothesis that has been used is that
of mechanic equilibrium. It is possible to calculate an
analytical expression for σ[R]/σs: recasting Eq. (11) as
R2∆P = d

[
R2σ [R]

]
/dR, we integrate from Rs to R and

obtain [3] the expression σ[R]
σs

= 1
3

(
Rs

R

)2
+ 2

3
R
Rs

, which

in [21] is referred to as “universal”, i.e. not depending
on temperature or on the droplet/bubble size, mirroring
that σ[R] depends on the arbitrary value of R.

IV. RESULTS

The simulations source code can be found on GitHub
https://github.com/lullimat/idea.deploy [42–49]. A
Jupyter notebook [48] is available from the “idea.deploy”
framework to reproduce the results reported in this pa-
per. We simulate three-dimensional droplets and bubbles
in a cubic system of linear size L with periodic boundary
conditions using the D3Q19 discrete velocity set with
c2s = 1/3 [35, 36] (see Fig.1). We adopt two possible
definitions for the pseudo-potential function, namely
ψ = exp(−1/n) and ψ = 1 − exp(−n) [34, 52].
The range of dimensionless coupling constants
G/Gc−1 ∈ {0.029, 0.033, 0.038, 0.045, 0.056, 0.070, 0.079,
0.091, 0.119, 0.159, 0.215, 0.293} where Gcc

2
s = −2.463

and Gcc
2
s = −1.333 for ψ = exp(−1/n) and

Figure 3: Panel (a): surface tension at an arbitrary divid-
ing surface σ[R] normalized by the minimum (Rs, σs) for all
simulations: data collapse on a master curve (see text for
details) independently on the droplet/bubble size, coupling
constant and equation of state. Panel (b): dashed lines indi-
cate the Laplace law using the values of σ0 reported in Fig. 2,
while the points represent the simulations data. Bubbles and
droplets have opposite corrections with respect to the dashed
lines. Colors correspond to the value of the dimensionless
coupling G/Gc − 1 ∈ {0.070, 0.119, 0.159, 0.215, 0.293} from
dark red to blue.

ψ = 1 − exp(−n), respectively. The value of L is
chosen to be an odd number so that the center of
mass of the system exactly falls on the coordinates
of a node. The simulated system sizes are L ∈
{41, 43, 47, 51, 55, 61, 67, 77, 87, 103, 123, 157, 213, 335}.
The radial density field n(r) is initialized to the following
profile

n(r,R) =
1

2
(nin+nout)−

1

2
(nin−nout) tanh(r−R), (23)

where the inner nin and outer nout densities are initial-
ized to the equilibrium values of the gas ng and liquid nl
for a flat interface [37], for bubbles and droplets accord-
ingly. The initial value of the radius is set to maintain

https://github.com/lullimat/idea.deploy
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a fixed aspect ratio for all simulations as R = L/4. The
radial coordinate r is computed taking the center of the
system as the origin. The values Pin and Pout are com-
puted in the middle of the system (bL/2c, bL/2c, bL/2c)
and at the farthest corner (L − 1, L − 1, L − 1), respec-
tively. The outcome of the simulations is analyzed only
if all the coordinates of the center of mass lie within
a distance of 10−3 from the center of the domain. We
use two convergence criteria for the simulations, both
comparing quantities at a time distance δt = 211: i)
we consider the relative variation of the ∆P with re-
spect to the previous configuration, and when the lat-
ter is such that |∆P (t) − ∆P (t + δt)|/∆P (t) < 10−5

the simulation is considered as converged; ii) we con-
sider the magnitude δu of the spatial average of the dif-
ference between the components of two velocity fields,
δu = L−3

∑
x

∑
α |uα(x, t + δt) − uα(x, t)| so that the

simulation is considered as converged when δu < 10−12.
Meeting only one of the two criteria is enough to finalize
the simulation. The set of simulations for the flat inter-
face has been performed on a two-dimensional domain us-
ing the D2Q9 discrete velocity set with c2s = 1/3 [35, 36]
and the forcing weights are obtained by the projection
of the three-dimensional case, i.e. W (1) = 1/3 and
W (2) = 1/12. The domain sizes are Lx = 100, Ly = 4
for all simulations and the density profile is initialized
according to

n (x, x0, w) =
1

2
(nl + ng)

−1

2
(nl − ng) tanh

[
x−

(
x0 −

w

2

)]
+

1

2
(nl − ng)

{
tanh

[
x−

(
x0 +

w

2

)]
+ 1
}
,

(24)

where x0 is the center of the strip and w = Lx/2 its
width.

We report in Fig. 2 the value for the surface ten-
sion σ0 in the flat interface limit. Full symbols repre-
sent the interpolation of the droplets/bubbles data for
σs(Rs) = Rs · ∆P/2 in the limit R−1s → 0. Such val-
ues of σ0 are used in Fig. 4 as normalization constant.
Empty circles represent the results obtained from the
flat-interface simulations by numerically computing the
integral

σ0 =

∫ Lx

Lx/2

dx[PN(x)− PT(x)] (25)

where PN(x) = P xx(x) and PT(x) = P yy(x) have been
obtained from the lattice pressure tensor (9) using the
two-dimensional values of the weights W (1) = 1/3 and
W (2) = 1/12. The scaling with respect to the dimen-
sionless coupling G/Gc − 1 matches the mean-field case
with exponent µ = 3/2 [14, 58]. Different choices for the
pseudo-potential function, yielding different equations of
state, result in the same scaling law and the same pref-
actor thus implying that the results belong to the mean-
field universality class. In particular, this result allows

Figure 4: Panel (a): Surface tension at the sur-
face of tension computed from the simulations by means
of the Laplace law σs(Rs) = ∆P · Rs/2. Col-
ors correspond to different values of the dimension-
less coupling G/Gc − 1 ∈ {0.029, 0.033, 0.038, 0.045, 0.056
, 0.070, 0.079, 0.091, 0.119, 0.159, 0.215, 0.293} from red to
blue. Panel (b): results for the Tolman length δ estimated
by the fits in panel (a) as a function of the dimensionless cou-
pling G/Gc − 1: data for different choices of ψ fall onto a
universal curve which is well approximated by a power law
with exponent λ ' −1.

to describe both set of data in terms of a single reduced-
coupling scale G/Gc − 1.

Figure 3(a) displays the values for σ[R] (see Eq. (21))
obtained from the simulation data, superposing to the
expected integrated result for σ[R]/σs, for bubbles and
droplets of different sizes, with different equations of state
P (n) (10) and at different temperatures. Hence, based
on the derivation in [3] and using the SC lattice pressure
tensor [37] we obtain a result that is compliant with the
thermodynamics of curved interfaces [1, 3] allowing us
to estimate Rs. Notice that most of MD works rely on
the use of the equimolar radius Re, implying in three di-
mensions the cancellation of the second order curvature
corrections in σ(R) [8], with the exception of [22] that
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applies the so-called mechanical definition of δ for a flat
interface. In order to find the value of Rs the authors
of [21] estimate the minimum of σ[R] from the statisti-
cal average of an excess free energy normalized to the
area of spherical volumes of varying size by means of MC
simulations, with the need to keep in check finite-size
corrections to the statistics. Both MD and MC have in
common the necessity of averaging quantities over ther-
mal fluctuations, which however is not required in the
present LBM simulations.

In Fig. 3(b) we report the data points (R−1s ,∆P ) and
compare to the Laplace law, considering bubbles as hav-
ing negative curvature. The slope of the dashed lines
is given by 2σ0 and deviations from the flat interface
limit appear with opposite sign for bubbles and droplets.
Next, we analyze the corrections: in Fig. 4(a) we show
the data for the surface tension at the surface of tension
estimated from ∆P and Rs, i.e. σs(Rs) = ∆P ·Rs/2 [63],
normalized by the flat interface value σ0, i.e. we ana-
lyze the yz projection of Fig. 1(a) for different tempera-
tures. We first determine the value of σ0 by interpolat-
ing the data for σs(Rs) as a function of R−1s in the limit
R−1s → 0. Such values match those computed from flat
interface simulations (see Fig. 2). Then we fit the cor-
rections which are well approximated by linear functions
(see Eq. (12)) reported in dashed. We estimate the Tol-
man length from the lines slope which is equal to −2δ.
In Fig. 4(b) we report the values of δ as a function of the
dimensionless coupling G/Gc− 1: data for different ψ lie
on the same curve which is well approximated by a power
law with exponent λ = −1. It is possible to compute this
value of the exponent from the expression λ = −ν−β [4]
when inserting the mean-field values of the exponents
β = 1/2, ν = 1/2, which characterize the critical behavior
of the order parameter (liquid-gas density difference) and
of the correlation length, respectively [58]. The latter ex-
pression for λ has been derived by Blokhuis and Bedeaux
in [4] from the expansion in R−1 of ∆P for a spherical
surface, which they could match with the expansions for
σ[R] and σ′[R] obtained from thermodynamic arguments
in [8]. In particular they found that the flat-interface def-
inition [5] δ = ze − zs, where ze and zs are the positions
of the equimolar surface and of the surface of tension re-
spectively, needs to be modified into δ′ = δ+A, obtained
as the infinite radius limit of the curvature expansion.
While it is known that δ has a zero mean-field expo-
nent it is A [4] that yields the singular behavior. Such a
modified expression for the Tolman length of a flat sur-
face has also been used in MD studies [59]. Theoretical
mean-field works report a negative sign for δ leveraging,
however, the flat-interface definition δ = ze−zs which can
be modified as discussed above [4] thus possibly changing
the sign [3]. Lattice-gas results [21] as well as a recent
molecular simulation [20], report a positive sign as we
find in the present work. Indeed, any further quantita-
tive comparison between LBM and MD would require a
direct mapping between the pseudo-potential function ψ,
defining the lattice SC force, and the pair interaction po-

Figure 5: Panel (a): Curvature dependence of the alterna-

tive definition of the Tolman length δ̂±(Rs) = ±(Re − Rs),
reporting in black diamonds the extrapolated value in flat
interface limit R−1

s → 0 for different values of the di-
mensionless coupling G/Gc − 1 ∈ {0.029, 0.033, 0.038, 0.045,
0.056, 0.070, 0.079, 0.091, 0.119, 0.159, 0.215, 0.293} with col-
ors ranging from red to blue. Panel (b): Scaling of the flat
interface limit value against G/Gc − 1. Panel (c): Quantita-
tive comparison against the definition from Eq. (12).

tential used in MD, which however is a rather delicate
task. Indeed, in the recent years, there have been some
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progress in mapping MD onto equivalent lattice Boltz-
mann schemes [60] although being limited to the single-
phase case.

We report now a detailed comparison of the definition
of the Tolman length adopted so far, against another pos-

sible choice δ̂±(Rs) = ±(Re−Rs), with the plus and mi-
nus signs for droplets and bubbles respectively, adopted
in [21]. The equimolar radius Re is defined by solving the
equation M = 4πR3

e nin/3 + (V − 4πR3
e/3)nout where M

is the total mass of the system of volume V = L3. This
equation is equivalent to the request of vanishing adsor-
bance [3] as a function of the arbitrary dividing surface.

In Fig. 5(a) we report the size dependence of δ̂±(Rs) for
different values of the coupling G reporting in black di-
amonds the extrapolated value in the flat interface limit
R−1s . In Fig. 5(b) the latter are plot against the dimen-
sionless coupling G/Gc−1 on a log-log scale showing the
same scaling relation obtained for the alternative defi-
nition δ. Finally in Fig. 5(c) we report a quantitative
comparison between the two different definitions.

V. CONCLUSIONS

In conclusion, we demonstrate the ability of the multi-
phase Shan-Chen LBM to capture relevant features of
the curvature corrections to the surface tension: we find
a temperature-dependent Tolman length δ displaying a
power-law behavior near the critical point. Further-
more, δ shows a universal scaling for different equations
of state. The advantage of this approach is manifold:
i) the thermodynamic properties of the interfaces are
emergent, as in MD, but from an underlying simplified
lattice dynamics, ii) the intrinsic hydrodynamic compli-
ance of LBM is unprecedented in the previous simula-

tion literature, opening a new direction in which to study
systematically the role of curvature corrections in more
complex hydrodynamic regimes and iii) the contained
computational cost allows to explore a broad parame-
ter space. Future work will probe the possibility of us-
ing more refined versions of the Shan-Chen model and
tune the different curvature coefficients similarly to what
has been previously done with the surface tension [52]
and disjoining-pressure [61], as well as refining math-
ematical control of the model. Finally, we shall con-
sider hydrodynamic fluctuations compliant with thermo-
dynamics by extending to the SC multi-phase model the
works [53, 62] which leverage the Multi-Relaxation time
collisional operator. By doing so, we would be able to
study the effects of the Tolman length on the homoge-
neous nucleation rates along the lines of [20, 32]. The
simulations source code and a Jupyter notebook to repro-
duce all the results and figures can be found on GitHub
https://github.com/lullimat/idea.deploy.
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