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A class of dynamical models of turbulence living on a one-dimensional dyadic-tree structure is
introduced and studied. The models are obtained as a natural generalization of the popular GOY
shell model of turbulence. These models are found to be chaotic and intermittent. They represent the
first example of (1+1)-dimensional dynamical systems possessing non trivial multifractal
properties. The dyadic structure allows us to study spatial and temporal fluctuations. Energy
dissipation statistics and its scaling properties are studied. The refined Kolmogorov hypothesis is
found to hold. ©1997 American Institute of Physids$1070-663197)00708-3

I. INTRODUCTION 1 P
) ) ) _ o (ePy= —f d3xe(x) ~r 7P, 2)
Spatio-temporal intermittency is the most intriguing as- r3Jam

pect of a fully developed three-dimensional turbulent ﬂow'where(-) means averaging over all boxsr) of sizer in
Turbulent structures are thought to be generated by ChaOtlﬁhich the volume occupied by the fluid is partitioned.

intermittent energy transfer from large to small scales. The The celebrated refined Kolmogorov hypothedRiKH)
cascade is pictorially described by the Richardson SCeNAMNGy s the statistics of velocity differences in the inertial range

large scale eddies destabilize and generate small scale edd{ﬁﬁh the statistics of the coarse-grained energy dissipation:
with shorter eddy turnover times. In this way, a hierarchy of 5
fluctuations on smaller and smaller scales and with shorter () e 3)

rs

and shorter characteristic times is produced. r

_Kolmogorov 1941 theorydescribes the statistics of ve- oo the symbok means that quantities on both sides
locity differences,s,v, at scaler in terms of the averaged have the same scaling properties.
energy dissipatiorz, neglecting completely possible spatio-
temporal fluctuations. The velocity field statistics is charac-g(p
terized, among others, by the scaling exponet{p), of

Using (3), it is easy to relate the scaling exponents
) with the scaling exponents of the energy dissipation:

structure functionsS,(r), in the inertial range: {(p)=7(p/3)+p/3. (4)
B o\ o o This relation is the natural consequence of the RKH and it is
Sp(N=(lv(x+r)—v(X)[P)=(|6v[P)~r<P. (D quite well satisfied experimentalyOn the other hand, no

satisfactory theoretical arguments which predi¢} have
ever been found.
The simplest way to explain phenomenologically the
{ 5rv|p>~8p/3r PI3: r(p)=p/3. presence of intermittent deviations consists in describing the
energy transfer mechanism in terms of fragmentation sto-
On the other hand, experiments sHdhat scaling exponents  chastic processes. In these modéiépne introduces a set of
deviate from the linear behavior. This departure from lineareddies leaving on a dyadic structure.
ity is the main signature of intermittency and implies non-  Random fragmentation models state that the energies
Gaussian probability distribution functions for the velocity contained in eddies at successive scales are connected to
differences in the inertial range. each other by independent stochastic variables with a distri-
Intermittency also affects energy dissipation statisticspution that does not depend on the scale. For example, in the
Experimentd show that the energy dissipation defines a mul-randomB-model we have:,= B¢, 1, Wheree,, denotes the
tifractal measure on the fluid volume. The multifractal mea-energy transfer due to a typical eddy of size=2""r,. In
sure is characterized by the scaling properties of the coarsgne randomg-model also the active volume&/,, occupied
grained energy dissipatiog, , namely, by eddies of size,, is supposed to change randomly from
scale to scaleV, =8V, . From the definition2) we have

30n leave on absence from the Dipartimento di Fisica, Univediitior ~ 7(P) = —logyBP™") and the corresponding expression
Vergata. L(p)=p/3—logy, (B8P3 1) must be valid if the RKH holds.

In the Kolmogorov description, a simple dimensional argu-
ment leads to the predictions
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Due to the freedom in the choice of the distribution all ~ resentative of an entirghell of Fourier amplitudes. The non
these models are able to fit with good accuracy experimentdinear structure of NS equations is preserved, but all three-
values. On the other hand, they lack any direct linking withdimensional properties of the original embedding space are
the original Navier—Stoke€NS) equations. lost.

In this paper, we investigate a class of dynamical models The most popular shell model is the Gledzer—Ohkitani—
which fill the gap between purely stochastic fragmentationyamada(GOY) model (Refs. 13—18 The GOY model can
models and the original NS dynamics. In particular, we de-be seen as a severe truncation of the NS equations. Dynami-
fine and study a dynamical model on(&+1)-dimensional cal variables are described by a single complex madéor
(that is, having space and time dimensiodgadic tree. We each shell of wave numbels such ask,<k<k,,;, with
decompose the original velocity field in terms of fluctuationsk,=\" and A being an arbitrary scale parameter>f1),
localized both in Fourier and real spaces. One can look atsually taken equal to 2. In the equations, only quasi-local
this model as an approximation of the original NS equationsouplings between nearest and next to nearest neighbor
in a wavelet basigsee the next section shells are kept.

Previous (1+1)-dimensional models studied in the Recently, a new class of shell models based upon the
past® did not seem to develop nontrivial dynamics. More helical decomposition of NS equatidis has been
recently, (1+3)-dimensional dynamical tree models have suggestetf and studied? In this way, it is possible to obtain
been investigated by Grossmann and cowork®t§jn the  a second non positive defined invariant closer to the NS he-
same spirit of our work. These models have been obtaineticity. The models, which have now two complex variables
directly from NS equations, using a spatially resolvedper shell ¢ and u, , transporting positive and negative
Fourier—Weierstrass decomposition, and have been shown teelicity, respectivelyare simple generalizations of the GOY
possess multifractal properties. model. From now on we will concentrate only on one of

At a difference from the models studied in Refs. 10 andthem(see below, which has been previously shown to share
11, we do not impose all the original geometrical constraintsnany properties with true turbulent three-dimensional
of the NS equations. For example, we do not have neitheflows?!
divergenceless velocity fields nor three-dimensional struc- In particular, in Ref. 21 it has been shown that this
tures of the real space. In this way we can embed the moda@hodel has thesamedegree of intermittency found experi-
in a one-dimensional real space and simplify enormously thenentally in fully developed turbulence, if the set of free pa-

structure of the nonlinear terms. rameters is chosen in order to conserve energy and helicity in
The most important advantage is that we can increasthe inviscid and unforced limit.
the total number of resolved scalésnd therefore we can Shell models can be thought of as field problems in zero

reach high Reynolds numbergaying the price of having a spacial dimension: Their obvious limitation consists in treat-
model which is not exactly derivable from the original NS ing all degrees of freedom in a Fourier shell at once; the
equations. physical object they describe are coherent planar waves, fill-

The main result of this paper is to present for the firsting the whole volume of the fluid.
time a one-dimensional dynamical system sharing some of Real turbulence consists of localized eddies of all sizes
the most important properties with a real three-dimensionathat interact, merge and subdivide locally: The physical pic-
turbulent flow. In particular, we analyze structure functionture is that of a large eddy which decays into smaller eddies.
intermittency and the energy dissipation spatial distributionThe number of degrees of freedom in such a field problem in
RKH is found to be remarkably well satisfied. These modelsd dimensions grows with the wave number Bgk)~ k¢
are the natural ground where testing new developments qid=0 in shell models
large-dimensional dynamical-system theory and new ap- The first step in reproducing this kind of hierarchical
proaches to turbulerit.e., multi-scale system$lows. As we  structure is to transformehainmodel into aree model with
discuss in the following, numerical simulations need stated=1. This is achieved by letting grow the number of degrees
of-the-art multi-processor computers. of freedom with the shell inder as 2.

The paper is organized as follows. In Sec. II, we discuss  As in the original shell models, this tree model must be
how to jump from zero-dimensional shell models to one-in some sense reminiscent of the NS equations. It can be
dimensional spatially resolved tree models; the tree model isegarded as describing the evolution of the coefficients of an
introduced in Sec. Ill; in Sec. IV, numerical results on struc-orthonormal wavelets expansion of a one-dimensional pro-
ture functions intermittency, viscous scales dynamics and erjection of the velocity fieldv (x,t):
ergy dissipation field statistics are presented; conclusions fol-

low in Sec. V. v(x,t)=2 5n,j(t)¢n,j(x)- )
nj

Il. FROM CHAINS TO TREES Here ¢, ;(x) are a complete orthonormal set of wavelets
In order to understand turbulent energy transfer dynamgenerated from an analyzing wavelgt o(x) by discrete

ics and related intermittent effects, dynamical deterministigranslations and dilations:

models have been proposed. Among these models, shell an2 ne

models have recently attracted the interests of many re- Unj () =240 2x—1]). ©

searchergsee Ref. 12 for a popular introductipimhe basic  In principle, it is possible to plug the three-dimensional gen-

idea in such models is to retain only a few variables as reperalization of(6) in the NS equations and deriving an exact
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dynamical evolution for the wavelet coefficiedtsFor the ntl n+l
sake of simplicity, we will be interested in approximated 2

one-dimensional truncation of the wavelet resolved dynam-

ics. In particular, we can construct dynamical equations of

the type of shell models for our tree variables, viewed as the FIG. 3. Pictorial representation of nonlinear interactions of @d).

analogues of the expansion coefficiefngﬁ . Similar wavelet

decomposition, but with purely stochastic coefficieﬁtﬁj

have been used for defining synthetic multi-affine sighfls. scale n there are 2! boxes, covering a total length

In Fig. 1, we pictorially show our tree structure, covering A=2""1| =1/2.

the one-dimensional intervéD,A]. Each dynamical vari- For the sake of convenience we define the tree model in

able{;n’j is represented by a box of length=2"", occupy-  terms ofdensityvariables,u, ; (depicted as balls in Figs. 2

ing the regionA(n) ranging from {—1)I, to jl,,. Ateach  and 3, which would correspond &g, ;=2"%, ; in a wavelet
expansion. In this notatiofu, ;|? represents the energy den-
sity in a flow structure of lengtth,=2"" and spatially la-

®

o beled by the indey.
o n-2
o o n-1
g o Ill. THE TREE MODEL
° ? e o We have chosen the helical shell model studied in Ref.
n+2 21 as the starting point for the construction of our hierarchi-
@ . cal structure. The dynamical equations of this shell model
. " are the following:
ol Up =iKn(aUy 1Ups o+ bUI_ 1Un, g+ CUp U +)*
n
n+l —wkGuy + 8y 0 F @)
n+2 and the same holds, with all helicities reversed, tQr.

Here,n=1,... N, whereN is the total number of shells;

is the viscosity,F* the external forcing acting on a large-
2 scale shelhy anda,b,c are three parameters, which are de-
termined by imposing conservation of energy and helicity in

o " the inviscid and unforced limit:
o o n
dE d
spegeo  ml == > (Ju} P+|u;12) | =0,
3 Lo s n+2 dt dt n
2ree (8)
© dH d
o . o =5 2 ka(lup [P~ |uy[» ] =0,
FIG. 2. Pictorial representation of nonlinear interactions of [@g. dt dt\ 5
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The statistical properties of this model have been studied in dgE d o1 S
Ref. 21: the system turned out to have an intermittent energy gy = m( nE, 2 n|un,j| + |Un,j| ) =0,

transfer very similar to what one can find in the original NS (10
equations.

Hereafter we will fix the intershell separatian=2. For dH d . o .
this particular (and standand choice, we must fixa=1, gt~ dt HZJ 27 Kn|un j|*~{un*|=0.

b= —5/12 andc= —1/24.

We introduce a spatial degree of freedom in the system
by using the notatiom,f,j to indicate the complex helical Lgt us be reminded t'hat our tree variables can be roughly
variable on scale and spatial position labeled by the index Viewed as the one-dimensional model counterparts of the
j. For a given shelln, the indexj can vary from 1 to amplitudes,unjzz"’zvnj, in a wavelet expansion of the ve-
2n-1 locity field [see Eq.(6)].

In this tree structure, each variahlg; continues to in- This analogy must be carried only on qualitative
teract with the nearest and next nearest levels, as ir{7/&q. grounds, in particular if one considers that, in the wavelet
however, a variety of possibilities is now opened by the presbasis, the Laplacian of the viscous term is not diagonal and
ence of many horizontal degrees of freedom localized orthat we have drastically reduced the possible interactions
each shell. The simplest choice is depicted in Fig. 2, where among variables. However, in a wavelet expansion, we ex-
portion of the tree structure is shown and the evolving inpect the nonlinear and dissipation terms to be large only if
time variable,u, j, is represented by a black ball. In the the involved scales are of similar sizes: This corresponds to

figure, solid lines connect interacting ballgriables. the physical property that eddies in a fluid mainly transfer
The dynamical tree equations are as follows: energy to eddies of similar scale. Also interaction among the
S n _ _ position indices can be expected to be localized, with the
Un = ikn{a/{Un .1 5-1(Un+2 437 Uni24-2) precise degree of localization depending on the details of the

wavelet basis.

U (U U 5 )]
ntLAtTnezg oL T2 Besides the simple implementati@), one can build up

+ b/2[u:71ﬁu;+112j,1+ Unt1,2)] more complex equations, simply turning on new interactions
T among variablegalways conserving energy and heligity
+c[un_27un_1ﬂ}* - vkﬁurtjwL 5n,n0F+, (99  The guideline in restricting the possible choices can be phe-

. R ) nomenologically motivated by requiring a certain degree of
where, in the indiceg, is the integer part of ((+3)/4) and  |ocality, both in Fourier and real spaces.

J is the integer part of ((+1)/2). As an example, an enlarged set of interactions is de-
The interaction terms with coefficierd$4, b/2 andc are  picted in Fig. 3: in particular two contributes reminiscent of
depicted in Figs. @), 2(b), and Zc), respectively. the Desnyansky—NovikoDN) shell modet* have been

The same equation holds, with all helicities reversed, foradded see Figs. &) and 3e)]. Structurally new interactions
U;j . The numerical values @&, b andc are the same as the are those depicted in Fig.(f3, where only horizontal cou-
original helical shell. In the unforced and inviscid limit our plings are considered.
system conserves the total energy and helicity, namely, By putting them all together we have

s + + - - - - -
Upn ;= iKn{a/4{ (Unq -1 Unt1 2)(Unio 437 Ui g2 Unio -1t Unia g) JHDI2LU (Ui g g

TUppagTU 7 T un+l,2;)] telu_, J:(un—1,2j—1+ un—l,zj)]

- + + - -
+d[—Upi15-1Uns12 " Uns1g-1Unr1 gt €U, 7Un_1;

+e2u;ju;_lﬁ+f[urtjﬂu,;j”—u;j_lu;j+l—u;j_1u;j+l+ UpjoUni— 1]} — vkﬁu,:"jJrén,noF*, (1)
[

the integer part of ((+1/2)) andj stays for the index in order to conserve the tot.al energy and heli¢it®) of the
(j—1) if j is even and for the index ¢-1) if j is odd. system. Each of the three interactions typ&®©Y, DN and

The interaction terms with coefficiendg4, b/2, ¢, d and horizonta) conserves separately and H: this leaves some
f are depicted in Figs. (@), 3(b), 3(c), 3(d)—(e) and 3f), freedom only in the choice of the two relative weightaind
respectively. In considering the horizontal interactions off in (11). We fixedd=f=1; while the coefficients,b,c are
Fig. 3(f), the tree must be viewed as leaving on the surface othe same as before amrg=_3/4 ande,=1/4.

a cone, with the last positionon each level connected to the In our simulations we have considered both the simple
first one on the same level. version of the hierarchical system described (By and by
2358 Phys. Fluids, Vol. 9, No. 8, August 1997 Benzi et al.
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Fig. 2, which we will call version A, and the more complete dynamical variables on nearby locations in the last shells
description by(11) and by Fig. 3, denoted hereafter as ver-(i.e., in the dissipative rangsynchronize after relatively few
sion B. time steps.
The mechanism underlying this phenomenon can be eas-
ily understood if one considers what follows: at the viscous
IV. NUMERICAL RESULTS cutoff (which corresponds in our case mg~11), the ratio
between variables belonging to two successive scales

_ _ _ Un|/|un_41] undergoes an abrupt decrease, when passing
In our simulations we have considered a total number ofrom the inertial range {<ny) to the viscous range

levelsN=16. The total number of sites forming the tree is (n>n,). Then, in the dynamical equation far=ny, inter-

thenNy=2"—1=65535, each one described in terms of two actions involving the upper levels become largely predomi-
complex variables. nant with respect to the others: this naturally leads to a simi-
When dealing with this tree structure, the computer efi3r pehavior of variables sitting on two close locations,
fort needed for numerical simulations increases enormouslyyhose dynamics turns out to be governed by essentially the
with respect to the original chain model: in order to collectsame equation. This synchronization is then transmitted and
reliable statistics a computing time 6f(10%) longer is Now  spread out into lower levels, in which nearby variables be-

A. Numerical implementation

needed. _ _ come equal in groups of 4, 8, 16,.. , and so on, as thehell
For this reason, we have implemented our numerical €Xindex n increases.
periments on the APE-100 machifte. In both cases A and B, this synchronization does not

APE-100 is a single instruction multiple dat8IMD)  affect the inertial shells. In the version A of the model this
parallel architecture, based on a three-dimensional cubigrocess starts already front =11. In case B the situation
mesh of nodes with periodic boundary conditions, each nodghanges: the horizontal interactions are quite effective in
being connected to its 6 neighbors. The particular version Wreaking the synchronization on two close sites nearby the
used is a 512-node configuration, with a floating point perjssipative cutoff and synchronization effects are thus shifted

formance of 50 Mflops peak speed on a single processofgwards the very last levelsiE 15 and 16, in our cage
Each processing node contains a floating point 32 bit real

arithmetics processor dra 4 Mbyte local memory.
We used the parallelism of this machine in the simplestC. The energy dissipation field
way, !ts 512 processors |.ntegratg .s!multane_o_usly the same The first step in constructing the energy dissipation field
equations, starting from different initial conditions. A good of our model is to consider the following function:
statistics is then obtained by time-averaging on each single
processor and ensemble-averaging over all processors. Tn,j= Vk§(|u§,,-|2+|uﬁ,j|2), 13

In both cases A and B, we put the following parametersy hich represents the energy dissipatitemsityin the struc-
values into the dynamical equations: ture covering the region ;(n) of length 2", centered in the

N=16, spatial site labeled by. These structures are represented by
5 boxes in Fig. 1.
v=2.0X10"", The total energy dissipation density,
* = (5.0x1073,5.0x10°3), (12) €= (1/A+) [ x,€(X)dx, whereA+ is the total space length, is,
by definition, the sum of all these contributiofsum over
no=1, boxes at all scales in Fig):1
ko=6.25x10"2,
o e=2 2 "y (14)
We used the Runge—Kutta fourth-order method in integrat- ni

ing the system, with a time step varying from “0to On the other hand, in order to study the scaling properties of

5.0<10°" time units, depending on case A or B. In both tpe energy dissipation field, one has to disentangle the

cases we integrated the model for a total number of steps Yontributions coming from the coarse-grained energy dissi-
the order of 10 on each processor of the parallel machine; ation fielde, , as defined in Sec. I, Eq2). In our formula-
ros -y .

con.su:_ierlng all processors, we were ablc_e to collect a tOta;[i)on, we can then rewrite as follows:
statistics of 500 eddy-turnover times, using a few days o

computing time. 1
p g €= — G(X)dX
AT AT
B. Synchronization 1 2 1 1 2!
Before considering the statistical properties of the sys- - znflgl 2nJAj(n)€(X)dX N 2“*1121 enj

tem, let us mention a dynamical effect which emerged im-
mediately in numerical integrations, that is, synchronization (15)
on the last(dissipative levels. where the last expression is independenh@nd thee, ;'s
Even starting to integrate from an initial configuration are the coarse-grained energy dissipation densities, obtained
having different values on different sites of each tree levelas averages over spatial regions of lengt.2Note that the

Phys. Fluids, Vol. 9, No. 8, August 1997 Benzi et al. 2359

Downloaded—-28-Jan-2003-t0-160.80.2.16.-Redistribution-subject-to-AlP-license-or-copyright,~see-http://ojps.aip.org/phf/phfcr.jsp



0.040 T r T 10.0

0
.8
LAY
0.030 | ] 100 | ® 4
® 9 9
o]
¢ 00,
= * . o
£ 0
F 0020+ . &: 300 f ¢
-1}
2 *oo
*
0.010 | i i 1 -50.0 f
1L l it .
0.000 i ] 1 _70.0 1 i L 1
0 10000 20000 30000 0.0 40 8.0 120 16.0
j n

FIG. 4. Instantaneous configuration of the coarse-grained energy dissipatidG. 5. Log-log plot of the sixth order velocity field structure function,
density field,ey j, over the last level sitegersion B. Ss(n), against the wave numbéy, , for versions A(white circleg and B
(black diamonds

average density, ; over Aj(n) does not coincide simply These moments have been evaluated by time, space and
with the density n,; of the structure living inA;(n), ensemble-averaging our variables over the total integration
namely, time, the spatial locations and the processors of the APE
machine:
€nj= 77n,j+ E 77m,k(m)+ E <77m,k(m)>l(m)- (16) 1
m<n m>n o T 2 — 2 p

_ _ _ Sp(n)= 2 ———(|up,;(tLm)[2+[ug (Lm)[?)P,
Here, in the secon¢third) term of the rhs we take into ac- mtj MT2 (18
count density contributions coming from largésmalle)
scale structure¢as an example, all regions contributing to  p ()= el (t,m),

the definition ofe,; are represented as shadowed boxes in P mtj MT2"
Fig. 1). The indexk(m) in the second term of rhs labels the
location of larger scale structures containing the regio
Aj(n) under consideratioishadowed boxes witm<n in

Fig. 1. In the third term, an average is performed over
k(m) e I(m), wherel(m) labels the set of structures con-
tained inA;(n), for anym>n [in Fig. 1,1(m) labels the two Sy(n) =k, ™,

where m is the processor indexvarying from 1 to
"™ =512) andt is the time step index.

These moments are expected to follow, in the inertial
range, the scaling lawsee Egs(1), (2)]:

boxes ain+1, the four boxes ah+2 and so oh _ (19)
The best spatially resolved energy dissipation field is for Dp(n)=ky e
n=N, with the two scaling exponents related together by the RKH
relation (4), eventually.
GN'j:rngN Dok s 1=1,..., 271 (17 In Fig. 5, the log—log plot of the sixth order structure

function Sg(n) againsik,, is presented for the two versions A

In F|g 4, the instantaneous values assumeck@’y in and B: the two different Slopes in the inertial range indicate
the N1/2=232768 locations of the last level are showed. Thea degree of intermittency strongly dependent on how the
chaotic, intermittent character of this spatial signal is evi-variables of the tree interact.
dent. Let us notice that in both versions A and B, the interac-
tion range in Fourier space is the sarfgetypical eddy at
scalen interacts always with the nearest and next nearest
scalemn—1,n+1,n—2 andn+2); nevertheless, in the two
cases the interaction range in physical space is different and
a different number of connections between scales is consid-

Performing long-time numerical integrations of E¢8.  ered. This seems to be of primary importance in determining
and (11), we have studied the statistical properties of boththe intermittency degree of the system.
versions A and B of our tree model. We have investigated In order to obtain a quantitative measure of the structure
the scaling properties of velocity field structure functions,functions scaling exponents, we performed a fit over the in-
Sy(n), and of coarse-grained energy dissipation momentsgrtial range shells, using extended self similafB59:2 in
D,y(n). Fig. 6, the logarithm of the sixth order momeg(n) against

D. Scaling laws and the refined Kolmogorov
hypothesis
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to a linear fit in the inertial range. The corresponding slopes are reported in

Table I.

considered, our fits confirm that the RKH is well satisfied,
being all the slopes in the inertial region equal to 1 within a

the logarithm of the third order momei®;(n) is plotted, few_lr_)ﬁrctent. like struct . d th locity fluct
again for both versions A and B. The resulting exponentst_ de ree-lt € struc ur_fa |_mp(|)sr-ih ?Th € veloci g uc “tf""
£(p)/¢(3), obtained for all the moments=1,...,8, are re- "> d0€S NOt necessarily iMply that e energy dissipation

ported in Table | and compared with the K41 nonintermittent°2" be described in terms of fragmentation processes. In or-

predictionp/3. der to te_st the §f:ale—organization of the energy structures,
We found a similar scaling behavior for the energy diS_ultrametrlc—sen5|t|ve observables should be studied.
sipation moments: as an example, we show in Fig. 7 the
log—log plot of D,(n) againstk,; again, the reduced steep- V. CONCLUSIONS
ness in case B indicates a less intermittent behavior, with
7(p) closer to the zero value.
The subsequent step was to test the RKH for our tre
model: to improve the fitting procedure, we applied the ES
method to the RKH relatiof:

Sp(n)=(S3(n))P°D (). (20

Plotting the Ihs of this equation against the rhs in a log—log
plot, one can directly test the validity of relatidd) in the
inertial region: in Fig. 8 three cases, wigh=4, 5, 6, are
reported, for the version A; the same, but for version B, are -5.0
in Fig. 9. In both versions A and B and for all the moments

A new class of dynamical models in one spatial dimen-
sion which shows spatial and temporal chahsly devel-

%ped turbulencehas been introduced and numerically stud-
qed. The model originates from a wavelet-like decomposition

0.0 T T

o p=4 (slope=0.99+/-0.01)
= p=5 (slope=0.99+/-0.02)
| o p=6 (slope=1.01+/-0.03)

z
v 100 b
TABLE I. The scaling exponents ratio&(p)/{(3) (p=1,. ..,8), resulting ';'5-
from the ESS fitting procedure. The values obtained for versions Aand B 2
are reported in the second and third column, respectively. In the last column
there are the K41 values.
-15.0 J
p A B K41
1 0.41 = 0.01 0.348 = 0.005 0.333
2 0.74 = 0.01 0.682+ 0.005 0.667 -20.0 . .
3 1 1 1 -40.0 -30.0 s -20.0 -10.0
4 1.21 = 0.01 1.303+ 0.006 1.333 log,[(S;(n))""D4(n)]
5 1.36 = 0.02 159 * 0.01 1.667
6 1.48 = 0.03 1.86 = 0.02 2 FIG. 8. Log-log plot of the velocity field structure functionS,(n)
7 155 £ 0.05 212 = 0.03 2.333 (p=4,5,6), against ($3(n))p’3Dp,3(n)) in the inertial range, for version A.
8 1.60 = 0.07 235 *= 0.03 2.667 Straight lines correspond to a linear fit: all cases are compatible with the
RKH.
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' . . varying the inter-shell ratia.;?’ the question of finding uni-
versal observables in hydrodynamics-like intermittent sys-
o p=4 (slope=1.00+/-0.01) / tems remains of primary interest.2°

® p=5 (slope=0.99+/-0.01)
70| © p=6(slope=0.99+/-0.01) ; ACKNOWLEDGMENTS
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