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A class of dynamical models of turbulence living on a one-dimensional dyadic-tree structure is
introduced and studied. The models are obtained as a natural generalization of the popular GOY
shell model of turbulence. These models are found to be chaotic and intermittent. They represent the
first example of ~111!-dimensional dynamical systems possessing non trivial multifractal
properties. The dyadic structure allows us to study spatial and temporal fluctuations. Energy
dissipation statistics and its scaling properties are studied. The refined Kolmogorov hypothesis is
found to hold. ©1997 American Institute of Physics.@S1070-6631~97!00708-3#
s
w
o
h
r
dd
o
rt

-

o-
ac

u

s
ar
n
ity

cs
ul
a
rs

ge
n:

es

ts
:

it is

he
the
to-
f

gies
d to
stri-
the

m

n

I. INTRODUCTION

Spatio-temporal intermittency is the most intriguing a
pect of a fully developed three-dimensional turbulent flo
Turbulent structures are thought to be generated by cha
intermittent energy transfer from large to small scales. T
cascade is pictorially described by the Richardson scena
large scale eddies destabilize and generate small scale e
with shorter eddy turnover times. In this way, a hierarchy
fluctuations on smaller and smaller scales and with sho
and shorter characteristic times is produced.

Kolmogorov 1941 theory1 describes the statistics of ve
locity differences,d rv, at scaler in terms of the averaged
energy dissipation«, neglecting completely possible spati
temporal fluctuations. The velocity field statistics is char
terized, among others, by the scaling exponents,z(p), of
structure functionsSp(r ), in the inertial range:

Sp~r ![^uv~x1r !2v~x!up&[^ud rvup&;r z~p!. ~1!

In the Kolmogorov description, a simple dimensional arg
ment leads to the predictions

^ud rvup&;«p/3r p/3; z~p!5p/3.

On the other hand, experiments show2 that scaling exponent
deviate from the linear behavior. This departure from line
ity is the main signature of intermittency and implies no
Gaussian probability distribution functions for the veloc
differences in the inertial range.

Intermittency also affects energy dissipation statisti
Experiments3 show that the energy dissipation defines a m
tifractal measure on the fluid volume. The multifractal me
sure is characterized by the scaling properties of the coa
grained energy dissipation,« r , namely,

a!On leave on absence from the Dipartimento di Fisica, Universita` di Tor
Vergata.
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p&[K S 1

r 3
E

L~r !
d3x«~x!D pL ;r t~p!, ~2!

where^•& means averaging over all boxesL(r ) of sizer in
which the volume occupied by the fluid is partitioned.

The celebrated refined Kolmogorov hypothesis~RKH!4

links the statistics of velocity differences in the inertial ran
with the statistics of the coarse-grained energy dissipatio

~d rv !3

r
;« r , ~3!

where the symbol; means that quantities on both sid
have the same scaling properties.

Using ~3!, it is easy to relate the scaling exponen
z(p) with the scaling exponents of the energy dissipation

z~p!5t~p/3!1p/3. ~4!

This relation is the natural consequence of the RKH and
quite well satisfied experimentally.5 On the other hand, no
satisfactory theoretical arguments which predict~4! have
ever been found.

The simplest way to explain phenomenologically t
presence of intermittent deviations consists in describing
energy transfer mechanism in terms of fragmentation s
chastic processes. In these models,3,6,7one introduces a set o
eddies leaving on a dyadic structure.

Random fragmentation models state that the ener
contained in eddies at successive scales are connecte
each other by independent stochastic variables with a di
bution that does not depend on the scale. For example, in
random-b-model we have«n5b«n11, where«n denotes the
energy transfer due to a typical eddy of sizer n522nr 0. In
the random-b-model also the active volume,Vn , occupied
by eddies of sizer n , is supposed to change randomly fro
scale to scale:Vn115bVn . From the definition~2! we have
t(p)52 log2^b

p21& and the corresponding expressio
z(p)5p/32 log2^b

p/321& must be valid if the RKH holds.
2355/$10.00 © 1997 American Institute of Physics
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Due to the freedom in the choice of theb distribution all
these models are able to fit with good accuracy experime
values. On the other hand, they lack any direct linking w
the original Navier–Stokes~NS! equations.

In this paper, we investigate a class of dynamical mod
which fill the gap between purely stochastic fragmentat
models and the original NS dynamics. In particular, we
fine and study a dynamical model on a~111!-dimensional
~that is, having space and time dimensions! dyadic tree. We
decompose the original velocity field in terms of fluctuatio
localized both in Fourier and real spaces. One can loo
this model as an approximation of the original NS equatio
in a wavelet basis~see the next section!.

Previous ~111!-dimensional models studied in th
past8,9 did not seem to develop nontrivial dynamics. Mo
recently, ~113!-dimensional dynamical tree models ha
been investigated by Grossmann and coworkers,10,11 in the
same spirit of our work. These models have been obtai
directly from NS equations, using a spatially resolv
Fourier–Weierstrass decomposition, and have been show
possess multifractal properties.

At a difference from the models studied in Refs. 10 a
11, we do not impose all the original geometrical constrai
of the NS equations. For example, we do not have nei
divergenceless velocity fields nor three-dimensional str
tures of the real space. In this way we can embed the m
in a one-dimensional real space and simplify enormously
structure of the nonlinear terms.

The most important advantage is that we can incre
the total number of resolved scales~and therefore we can
reach high Reynolds numbers!, paying the price of having a
model which is not exactly derivable from the original N
equations.

The main result of this paper is to present for the fi
time a one-dimensional dynamical system sharing some
the most important properties with a real three-dimensio
turbulent flow. In particular, we analyze structure functi
intermittency and the energy dissipation spatial distributi
RKH is found to be remarkably well satisfied. These mod
are the natural ground where testing new development
large-dimensional dynamical-system theory and new
proaches to turbulent~i.e., multi-scale systems! flows. As we
discuss in the following, numerical simulations need sta
of-the-art multi-processor computers.

The paper is organized as follows. In Sec. II, we disc
how to jump from zero-dimensional shell models to on
dimensional spatially resolved tree models; the tree mode
introduced in Sec. III; in Sec. IV, numerical results on stru
ture functions intermittency, viscous scales dynamics and
ergy dissipation field statistics are presented; conclusions
low in Sec. V.

II. FROM CHAINS TO TREES

In order to understand turbulent energy transfer dyna
ics and related intermittent effects, dynamical determinis
models have been proposed. Among these models,
models have recently attracted the interests of many
searchers~see Ref. 12 for a popular introduction!. The basic
idea in such models is to retain only a few variables as r
2356 Phys. Fluids, Vol. 9, No. 8, August 1997
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resentative of an entireshellof Fourier amplitudes. The non
linear structure of NS equations is preserved, but all thr
dimensional properties of the original embedding space
lost.

The most popular shell model is the Gledzer–Ohkitan
Yamada~GOY! model ~Refs. 13–18!. The GOY model can
be seen as a severe truncation of the NS equations. Dyn
cal variables are described by a single complex modeun for
each shell of wave numbersk such askn,k,kn11, with
kn5ln and l being an arbitrary scale parameter (l.1),
usually taken equal to 2. In the equations, only quasi-lo
couplings between nearest and next to nearest neig
shells are kept.

Recently, a new class of shell models based upon
helical decomposition of NS equations19 has been
suggested20 and studied.21 In this way, it is possible to obtain
a second non positive defined invariant closer to the NS
licity. The models, which have now two complex variabl
per shell (un

1 and un
2 , transporting positive and negativ

helicity, respectively! are simple generalizations of the GO
model. From now on we will concentrate only on one
them~see below!, which has been previously shown to sha
many properties with true turbulent three-dimension
flows.21

In particular, in Ref. 21 it has been shown that th
model has thesamedegree of intermittency found exper
mentally in fully developed turbulence, if the set of free p
rameters is chosen in order to conserve energy and helici
the inviscid and unforced limit.

Shell models can be thought of as field problems in z
spacial dimension: Their obvious limitation consists in tre
ing all degrees of freedom in a Fourier shell at once;
physical object they describe are coherent planar waves,
ing the whole volume of the fluid.

Real turbulence consists of localized eddies of all si
that interact, merge and subdivide locally: The physical p
ture is that of a large eddy which decays into smaller edd
The number of degrees of freedom in such a field problem
d dimensions grows with the wave number asN(k);kd

(d50 in shell models!.
The first step in reproducing this kind of hierarchic

structure is to transform achainmodel into atreemodel with
d51. This is achieved by letting grow the number of degre
of freedom with the shell indexn as 2n.

As in the original shell models, this tree model must
in some sense reminiscent of the NS equations. It can
regarded as describing the evolution of the coefficients o
orthonormal wavelets expansion of a one-dimensional p
jection of the velocity fieldv(x,t):

v~x,t !5(
n, j

v̂n, j~ t !cn, j~x!. ~5!

Here cn, j (x) are a complete orthonormal set of wavele
generated from an analyzing waveletc0,0(x) by discrete
translations and dilations:

cn, j~x!52n/2c0,0~2
nx2 j !. ~6!

In principle, it is possible to plug the three-dimensional ge
eralization of~6! in the NS equations and deriving an exa
Benzi et al.
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dynamical evolution for the wavelet coefficients.22 For the
sake of simplicity, we will be interested in approximate
one-dimensional truncation of the wavelet resolved dyna
ics. In particular, we can construct dynamical equations
the type of shell models for our tree variables, viewed as
analogues of the expansion coefficientsv̂n, j . Similar wavelet
decomposition, but with purely stochastic coefficientsv̂n, j
have been used for defining synthetic multi-affine signals23

In Fig. 1, we pictorially show our tree structure, coverin
the one-dimensional interval@0,LT#. Each dynamical vari-
able v̂n, j is represented by a box of lengthl n522n, occupy-
ing the regionL j (n) ranging from (j21)l n to j l n . At each

FIG. 2. Pictorial representation of nonlinear interactions of Eq.~9!.

FIG. 1. A picture of the hierarchical system, covering the one-dimensio
interval @0,LT#.
Phys. Fluids, Vol. 9, No. 8, August 1997
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scale n there are 2n21 boxes, covering a total length
LT52n21l n51/2.

For the sake of convenience we define the tree mode
terms ofdensityvariables,un, j ~depicted as balls in Figs. 2
and 3, which would correspond toûn, j52n/2v̂n, j in a wavelet
expansion. In this notation,uun, j u2 represents the energy den
sity in a flow structure of lengthl n522n and spatially la-
beled by the indexj .

III. THE TREE MODEL

We have chosen the helical shell model studied in R
21 as the starting point for the construction of our hierarc
cal structure. The dynamical equations of this shell mo
are the following:

u̇n
15 ikn~aun11

1 un12
2 1bun21

1 un11
2 1cun22

2 un21
2 1 !*

2nkn
2un

11dn,n0F
1, ~7!

and the same holds, with all helicities reversed, foru̇n
2 .

Here,n51, . . . ,N, whereN is the total number of shells,n
is the viscosity,F1 the external forcing acting on a large
scale shelln0 anda,b,c are three parameters, which are d
termined by imposing conservation of energy and helicity
the inviscid and unforced limit:

dE

dt
5

d

dtS (n ~ uun
1u21uun

2u2! D 50,

~8!
dH

dt
5

d

dtS (n kn~ uun
1u22uun

2u2! D 50.

al

FIG. 3. Pictorial representation of nonlinear interactions of Eq.~11!.
2357Benzi et al.
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The statistical properties of this model have been studie
Ref. 21: the system turned out to have an intermittent ene
transfer very similar to what one can find in the original N
equations.

Hereafter we will fix the intershell separationl52. For
this particular ~and standard! choice, we must fixa51,
b525/12 andc521/24.

We introduce a spatial degree of freedom in the sys
by using the notationun, j

6 to indicate the complex helica
variable on scalen and spatial position labeled by the inde
j . For a given shelln, the index j can vary from 1 to
2n21.

In this tree structure, each variableun, j continues to in-
teract with the nearest and next nearest levels, as in Eq.~7!;
however, a variety of possibilities is now opened by the pr
ence of many horizontal degrees of freedom localized
each shell. The simplest choice is depicted in Fig. 2, whe
portion of the tree structure is shown and the evolving
time variable,un, j , is represented by a black ball. In th
figure, solid lines connect interacting balls~variables!.

The dynamical tree equations are as follows:

u̇n, j
1 5 ikn$a/4@un11,2j21

1 ~un12,4j23
2 1un12,4j22

2 !

1un11,2j
1 ~un12,4j21

2 1un12,4j
2 !#

1b/2@u
n21, ̄

1
~un11,2j21

2 1un11,2j
2 !#

1c@u
n22, %
2

u
n21, ̄

2
#%*2nkn

2un, j
1 1dn,n0F

1, ~9!

where, in the indices,% is the integer part of ((j13)/4) and

̄ is the integer part of ((j11)/2).
The interaction terms with coefficientsa/4, b/2 andc are

depicted in Figs. 2~a!, 2~b!, and 2~c!, respectively.
The same equation holds, with all helicities reversed,

u̇n, j
2 . The numerical values ofa, b andc are the same as th
original helical shell. In the unforced and inviscid limit ou
system conserves the total energy and helicity, namely,
o
e
e

2358 Phys. Fluids, Vol. 9, No. 8, August 1997
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dE

dt
5

d

dtS (n, j 22nuun, j
1 u21uun, j

2 u2D 50,

~10!

dH

dt
5

d

dtS (n, j 22nknuun, j
1 u22uun, j

2 u2D 50.

Let us be reminded that our tree variables can be roug
viewed as the one-dimensional model counterparts of
amplitudes,ûn j52n/2v̂n j , in a wavelet expansion of the ve
locity field @see Eq.~6!#.

This analogy must be carried only on qualitativ
grounds, in particular if one considers that, in the wave
basis, the Laplacian of the viscous term is not diagonal
that we have drastically reduced the possible interacti
among variables. However, in a wavelet expansion, we
pect the nonlinear and dissipation terms to be large onl
the involved scales are of similar sizes: This correspond
the physical property that eddies in a fluid mainly trans
energy to eddies of similar scale. Also interaction among
position indices can be expected to be localized, with
precise degree of localization depending on the details of
wavelet basis.

Besides the simple implementation~9!, one can build up
more complex equations, simply turning on new interactio
among variables~always conserving energy and helicity!.
The guideline in restricting the possible choices can be p
nomenologically motivated by requiring a certain degree
locality, both in Fourier and real spaces.

As an example, an enlarged set of interactions is
picted in Fig. 3: in particular two contributes reminiscent
the Desnyansky–Novikov~DN! shell model24 have been
added@see Figs. 3~d! and 3~e!#. Structurally new interactions
are those depicted in Fig. 3~f!, where only horizontal cou-
plings are considered.

By putting them all together we have
u̇n, j
1 5 ikn$a/4@~un11,2j21

1 1un11,2j
1 !~un12,4j23

2 1un12,4j22
2 1un12,4j21

2 1un12,4j
2 !#1b/2@u

n21, ̄

1
~un11,2j21

2

1un11,2j
2 1u

n11,2̃21

2
1u

n11,2̃

2
!#1c@u

n22 ,%
2

~u
n21,2%21

2
1u

n21,2%
2

!#

1d@2un11,2j21
2 un11,2j

1 2un11,2j21
1 un11,2j

2 1e1un, ̃
2

u
n21, ̄

1

1e2un, ̃
2
u
n21, ̄

2
#1 f @un, j11

1 un, j12
2 2un, j21

1 un, j11
2 2un, j21

2 un, j11
1 1un, j22

2 un, j21
1 #%*2nkn

2un, j
1 1dn,n0F

1, ~11!
ple
where, in the indices% is the integer part of ((j13)/4), ̄ is

the integer part of ((j11/2)) and ̃ stays for the index
( j21) if j is even and for the index (j11) if j is odd.

The interaction terms with coefficientsa/4, b/2, c, d and
f are depicted in Figs. 3~a!, 3~b!, 3~c!, 3~d!–~e! and 3~f!,
respectively. In considering the horizontal interactions
Fig. 3~f!, the tree must be viewed as leaving on the surfac
a cone, with the last positionj on each level connected to th
first one on the same level.
f
of

All coefficients in the nonlinear terms of~11! are chosen
in order to conserve the total energy and helicity~10! of the
system. Each of the three interactions types~GOY, DN and
horizontal! conserves separatelyE andH: this leaves some
freedom only in the choice of the two relative weightsd and
f in ~11!. We fixedd5 f51; while the coefficientsa,b,c are
the same as before ande153/4 ande251/4.

In our simulations we have considered both the sim
version of the hierarchical system described by~9! and by
Benzi et al.
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Fig. 2, which we will call version A, and the more comple
description by~11! and by Fig. 3, denoted hereafter as ve
sion B.

IV. NUMERICAL RESULTS

A. Numerical implementation

In our simulations we have considered a total numbe
levelsN516. The total number of sites forming the tree
thenNT52N21565535, each one described in terms of tw
complex variables.

When dealing with this tree structure, the computer
fort needed for numerical simulations increases enormo
with respect to the original chain model: in order to colle
reliable statistics a computing time ofO(104) longer is now
needed.

For this reason, we have implemented our numerical
periments on the APE-100 machine.25

APE-100 is a single instruction multiple data~SIMD!
parallel architecture, based on a three-dimensional cu
mesh of nodes with periodic boundary conditions, each n
being connected to its 6 neighbors. The particular version
used is a 512-node configuration, with a floating point p
formance of 50 Mflops peak speed on a single proces
Each processing node contains a floating point 32 bit
arithmetics processor and a 4 Mbyte local memory.

We used the parallelism of this machine in the simpl
way, its 512 processors integrate simultaneously the s
equations, starting from different initial conditions. A goo
statistics is then obtained by time-averaging on each sin
processor and ensemble-averaging over all processors.

In both cases A and B, we put the following paramet
values into the dynamical equations:

N516,

n52.031025,

F65~5.031023,5.031023!, ~12!

n051,

k056.2531022.

We used the Runge–Kutta fourth-order method in integ
ing the system, with a time step varying from 1023 to
5.031024 time units, depending on case A or B. In bo
cases we integrated the model for a total number of step
the order of 105 on each processor of the parallel machin
considering all processors, we were able to collect a t
statistics of 500 eddy-turnover times, using a few days
computing time.

B. Synchronization

Before considering the statistical properties of the s
tem, let us mention a dynamical effect which emerged
mediately in numerical integrations, that is, synchronizat
on the last~dissipative! levels.

Even starting to integrate from an initial configuratio
having different values on different sites of each tree lev
Phys. Fluids, Vol. 9, No. 8, August 1997
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dynamical variables on nearby locations in the last sh
~i.e., in the dissipative range! synchronize after relatively few
time steps.

The mechanism underlying this phenomenon can be
ily understood if one considers what follows: at the visco
cutoff ~which corresponds in our case tond;11), the ratio
between variables belonging to two successive sc
uunu/uun21u undergoes an abrupt decrease, when pas
from the inertial range (n<nd) to the viscous range
(n.nd). Then, in the dynamical equation forn5nd , inter-
actions involving the upper levels become largely predo
nant with respect to the others: this naturally leads to a si
lar behavior of variables sitting on two close location
whose dynamics turns out to be governed by essentially
same equation. This synchronization is then transmitted
spread out into lower levels, in which nearby variables b
come equal in groups of 4, 8, 16,. . . . , and so on, as theshell
indexn increases.

In both cases A and B, this synchronization does
affect the inertial shells. In the version A of the model th
process starts already fromn*511. In case B the situation
changes: the horizontal interactions are quite effective
breaking the synchronization on two close sites nearby
dissipative cutoff and synchronization effects are thus shif
towards the very last levels (n515 and 16, in our case!.

C. The energy dissipation field

The first step in constructing the energy dissipation fi
of our model is to consider the following function:

hn, j5nkn
2~ uun, j

1 u21uun, j
2 u2!, ~13!

which represents the energy dissipationdensityin the struc-
ture covering the regionL j (n) of length 2

2n, centered in the
spatial site labeled byj . These structures are represented
boxes in Fig. 1.

The total energy dissipation density
e5(1/LT)*LT

e(x)dx, whereLT is the total space length, is
by definition, the sum of all these contributions~sum over
boxes at all scales in Fig. 1!:

e5(
n, j

22nhn, j . ~14!

On the other hand, in order to study the scaling propertie
the energy dissipation field, one has to disentangle ine the
contributions coming from the coarse-grained energy di
pation fielde r , as defined in Sec. I, Eq.~2!. In our formula-
tion, we can then rewrite as follows:

e5
1

LT
E

LT

e~x!dx

5
1

2n21 (j51

2n21 S 1

22nEL j ~n!
e~x!dxD 5

1

2n21 (j51

2n21

en, j ,

~15!

where the last expression is independent ofn and theen, j ’s
are the coarse-grained energy dissipation densities, obta
as averages over spatial regions of length 22n. Note that the
2359Benzi et al.
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average densityen, j over L j (n) does not coincide simply
with the densityhn, j of the structure living inL j (n),
namely,

en, j5hn, j1 (
m,n

hm,k~m!1 (
m.n

^hm,k~m!& I ~m! . ~16!

Here, in the second~third! term of the rhs we take into ac
count density contributions coming from larger~smaller!
scale structures~as an example, all regions contributing
the definition ofen, j are represented as shadowed boxes
Fig. 1!. The indexk(m) in the second term of rhs labels th
location of larger scale structures containing the reg
L j (n) under consideration~shadowed boxes withm,n in
Fig. 1!. In the third term, an average is performed ov
k(m) P I (m), whereI (m) labels the set of structures con
tained inL j (n), for anym.n @in Fig. 1, I (m) labels the two
boxes atn11, the four boxes atn12 and so on#.

The best spatially resolved energy dissipation field is
n5N,

eN, j5 (
m<N

hm,k~m! ; j51, . . . ,2N21. ~17!

In Fig. 4, the instantaneous values assumed byeN, j in
theNT/2532768 locations of the last level are showed. T
chaotic, intermittent character of this spatial signal is e
dent.

D. Scaling laws and the refined Kolmogorov
hypothesis

Performing long-time numerical integrations of Eqs.~9!
and ~11!, we have studied the statistical properties of bo
versions A and B of our tree model. We have investiga
the scaling properties of velocity field structure function
Sp(n), and of coarse-grained energy dissipation mome
Dp(n).

FIG. 4. Instantaneous configuration of the coarse-grained energy dissip
density field,eN, j , over the last level sites~version B!.
2360 Phys. Fluids, Vol. 9, No. 8, August 1997
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These moments have been evaluated by time, space
ensemble-averaging our variables over the total integra
time, the spatial locations and the processors of the A
machine:

Sp~n![ (
m,t, j

1

MT2n
~Auun, j

1 ~ t,m!u21uun, j
2 ~ t,m!u2!p,

~18!

Dp~n![ (
m,t, j

1

MT2n
en, j
p ~ t,m!,

where m is the processor index~varying from 1 to
M5512) andt is the time step index.

These moments are expected to follow, in the iner
range, the scaling laws@see Eqs.~1!, ~2!#:

Sp~n!5kn
2z~p! ,

~19!
Dp~n!5kn

2t~p! ,

with the two scaling exponents related together by the R
relation ~4!, eventually.

In Fig. 5, the log–log plot of the sixth order structu
functionS6(n) againstkn is presented for the two versions
and B: the two different slopes in the inertial range indica
a degree of intermittency strongly dependent on how
variables of the tree interact.

Let us notice that in both versions A and B, the intera
tion range in Fourier space is the same~a typical eddy at
scalen interacts always with the nearest and next nea
scalesn21, n11, n22 andn12); nevertheless, in the two
cases the interaction range in physical space is different
a different number of connections between scales is con
ered. This seems to be of primary importance in determin
the intermittency degree of the system.

In order to obtain a quantitative measure of the struct
functions scaling exponents, we performed a fit over the
ertial range shells, using extended self similarity~ESS!:2 in
Fig. 6, the logarithm of the sixth order momentS6(n) against

ionFIG. 5. Log–log plot of the sixth order velocity field structure functio
S6(n), against the wave numberkn , for versions A~white circles! and B
~black diamonds!.
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the
the logarithm of the third order momentS3(n) is plotted,
again for both versions A and B. The resulting exponen
z(p)/z(3), obtained for all the momentsp51, . . . ,8, are re-
ported in Table I and compared with the K41 nonintermitte
predictionp/3.

We found a similar scaling behavior for the energy d
sipation moments: as an example, we show in Fig. 7
log–log plot ofD2(n) againstkn ; again, the reduced steep
ness in case B indicates a less intermittent behavior, w
t(p) closer to the zero value.

The subsequent step was to test the RKH for our t
model: to improve the fitting procedure, we applied the E
method to the RKH relation:2

Sp~n!5~S3~n!!p/3Dp/3~n!. ~20!

Plotting the lhs of this equation against the rhs in a log–
plot, one can directly test the validity of relation~4! in the
inertial region: in Fig. 8 three cases, withp54, 5, 6, are
reported, for the version A; the same, but for version B,
in Fig. 9. In both versions A and B and for all the momen

FIG. 6. Log–log plot of the sixth order velocity field structure functio
S6(n), against the third order velocity field structure function,S3(n), for
versions A~white circles! and B~black diamonds!. Straight lines correspond
to a linear fit in the inertial range. The corresponding slopes are reporte
Table I.

TABLE I. The scaling exponents ratios,z(p)/z(3) (p51, . . . ,8), resulting
from the ESS fitting procedure. The values obtained for versions A an
are reported in the second and third column, respectively. In the last co
there are the K41 values.

p A B K41

1 0.41 6 0.01 0.3486 0.005 0.333
2 0.74 6 0.01 0.6826 0.005 0.667
3 1 1 1
4 1.21 6 0.01 1.3036 0.006 1.333
5 1.36 6 0.02 1.59 6 0.01 1.667
6 1.48 6 0.03 1.86 6 0.02 2
7 1.55 6 0.05 2.12 6 0.03 2.333
8 1.60 6 0.07 2.35 6 0.03 2.667
Phys. Fluids, Vol. 9, No. 8, August 1997
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considered, our fits confirm that the RKH is well satisfie
being all the slopes in the inertial region equal to 1 within
few percent.

The tree-like structure imposed on the velocity fluctu
tions does not necessarily imply that the energy dissipa
can be described in terms of fragmentation processes. In
der to test the scale-organization of the energy structu
ultrametric-sensitive observables should be studied.

V. CONCLUSIONS

A new class of dynamical models in one spatial dime
sion which shows spatial and temporal chaos~fully devel-
oped turbulence! has been introduced and numerically stu
ied. The model originates from a wavelet-like decomposit

in

B
n

FIG. 7. Log–log plot of the second moment,D2(n), of energy dissipation
density against the wave numberkn , for versions A~white circles! and B
~black diamonds!.

FIG. 8. Log–log plot of the velocity field structure functions,Sp(n)
(p54,5,6), against ((S3(n))

p/3Dp/3(n)) in the inertial range, for version A.
Straight lines correspond to a linear fit: all cases are compatible with
RKH.
2361Benzi et al.
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of a one-dimensional cut of a turbulent velocity field. Main
local interactions in space and in scale are retained.

Structure function scaling, as well as spatial fluctuatio
of the energy dissipation, show the typical multifractal b
havior of a real turbulent flow. Refined Kolmogorov hypot
esis linking the statistics of structure functions to the coar
grained energy dissipation is found to hold within a few p
cent. These kinds of models open the possibility of inve
gating numerically many open questions of turbulen
Among them, work is in progress for detecting possible
trametric structure in the energy cascade mechanism.26

The presence of real space allows us also to test
quantitative way some of the most popular eddy-viscos
models used for simulating small-scale activity in larg
eddy-simulations.

Our results show that intermittency strongly depends
the degree of tree connectiveness. For example, by pas
from version A to version B one observes a decrease in
deviations dz(p)5uz(p)2p/3u from Kolmogorov scaling
~from ;30% in case A to;10% in case B!: This is prob-
ably due to the presence of horizontal couplings in versio
which allow a better efficiency in the energy exchanges.
creasing the number of triad-couplings should enlarge
number of possible downward paths followed by the ene
cascade.

This tendency toward a less intermittent regime, by
creasing the number of triad interactions, may seem in c
trast with the observed intermittency in the original Navie
Stokes equations~which have all possible interaction
switched on!. This contradiction is only apparent: Dive
genceless character of the original NS field, added to c
plicated phase-coherence effects, can very easily introd
different dynamical weights in the possible triad interactio
leading to a situation where only a few of them govern
global dynamical evolution. For example, Grossmann a
coworkers showed, by performing suitable truncation of
equations, that intermittency depends on the typical deg
of locality in Fourier space of the survived triad interaction
very similar results have also been found in shell model

FIG. 9. The same as in Fig. 8, but for version B.
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varying the inter-shell ratiol;27 the question of finding uni-
versal observables in hydrodynamics-like intermittent s
tems remains of primary interest.27–29
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