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ABSTRACT

The tumbling to tank-treading (TB-TT) transition for red blood cells (RBCs) has been widely
investigated, with a main focus on the effects of the viscosity ratio λ (i.e., the ratio between the
viscosities of the fluids inside and outside the membrane) and the shear rate γ̇ applied to the RBC.
However, the membrane viscosity µm plays a major role in a realistic description of RBC’s dynamics,
and only a few works have systematically focused on its effects on the TB-TT transition. In this
work, we provide a parametric investigation on the effect of membrane viscosity µm on the TB-TT
transition, for a single RBC. It is found that, at fixed viscosity ratios λ, larger values of µm lead
to an increased range of values of capillary number at which the TB-TT transition occurs. We
systematically quantify such an increase by means of mesoscale numerical simulations based on the
lattice Boltzmann models.
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1 Introduction

Red blood cells (RBCs) are highly deformable cells that are immersed in a Newtonian fluid called plasma, and they
constitute the most important part of blood: their concentration, called the hematocrit, ranges between 37% and 50% [1].
Thus, blood can be considered as a dense suspension of highly deformable particles (RBCs) in plasma and their
dynamics is crucial to dissect blood flow phenomena. Due to their deformability, RBCs give rise to different dynamics
as compared to that related to rigid particles. In 1972, Goldsmith & Marlow [2] devised an experiment to study the
dynamics of RBCs at low shear rates. In this regime, they found that erythrocytes “tumble”, with a rigid body-like
behaviour: for this reason, this dynamics is called tumbling motion (TB). On the other hand, at high shear rates, the
RBC membrane rotates while the cell keeps a fixed inclination with respect to the flow direction, providing the so-called
tank-treading motion (TT) [3]. Decreasing the value of the shear rate leads to a reduction in the cell deformation, as well
as in its inclination with respect to the flow: in this configuration, the membrane rotates like in the TT motion, while
the cell inclination fluctuate in time [4]. This dynamics is called swinging motion. Apart from these regimes, RBCs
show several other different dynamics, like the rolling, frisbee motion, trilobe dynamics, etc. (see [5] for a review),
depending on several parameters (the capillary number, the viscosity ratio, the orientation with respect to the shear
plane, among the others). In the present work, we focus on the tumbling (TB) and tank-treading (TT) motions.
A basic model to understand the tumbling-to-tank-treading (TB-TT) transition has been developed by Keller & Skalak [6]
(KS-model); it considers the motion of a pure viscous ellipsoid in simple shear flow, assuming that the particle does not
change shape during its motion. This model addresses the dependency of the TB-TT transition on the viscosity ratio λ,
while it is not capable of predicting two behaviours experimentally observed by Abkarian et al. [4]: the dependency of
the TB-TT transition on the shear rate γ̇, and the swinging motion. To explain the dependency on γ̇, Abkarian et al. [4]
and Skotheim & Secomb [7] introduced an elastic energy contribution in the membrane model: in the presence of shear
rates γ̇, the flow energy is in part dissipated by viscous friction inside the cell and on the membrane (as in KS-model)
and in part stored as elastic energy. When γ̇ is below a critical value γ̇c, the injected energy is insufficient to trigger
tank-treading motion [7], and the cell behaves like a rigid body (i.e., it tumbles). For γ̇ ≥ γ̇c, the membrane starts to
tank-tread and the inclination angle oscillates.
Since energy dissipation assumes a key role in the TB-TT transition, it is crucial to account for the membrane viscosity
in order to give a realistic description of the erythrocyte dynamics. Even though several works explore the RBC TB-TT
transition as related to the shear rate γ̇ and the viscosity ratio λ (see [7, 4, 8, 9] and references therein), only few works
focus on the effect of membrane viscosity µm. This paper aims at taking some steps further to fill this gap. In our
previous work [10], the effect of membrane viscosity during the relaxation after the cessation of a mechanical load
was investigated; here, the quantitative effect of the membrane viscosity on the TB-TT transition is explored, adopting
the same numerical model as in [10]. More specifically, the Skalak model [11] and the Helfrich formulation [12] are
implemented to describe the elastic behaviour, while the Standard Linear Solid model is employed to account for the
membrane viscosity [13]; the fluid is resolved in the framework of the Lattice Boltzmann Method (LBM) [1].

2 Model description

In this work, the RBC membrane is represented by a 3D triangular mesh, and its shape at rest is the typical biconcave
shape described by Evans & Fung [14]:

z(x, y) = ±
√

1− x2 + y2

r2

(
C0 + C1

x2 + y2

r2
+ C2

(
x2 + y2

r2

)2
)
, (1)

with C0 = 0.81× 10−6 m, C1 = 7.83× 10−6 m and C2 = −4.39× 10−6 m; r = 3.91× 10−6 m is the large radius
(details on the conversion between physical and lattice units are provided in [1, 15]).
Since the membrane has a thickness of about 4× 10−9 m [16], the RBC is considered as a 2D viscoelastic membrane
filled with a Newtonian fluid: we adopt the Skalak model to describe the resistance to shear and area deformations [1],
and the Helfrich formulation for the bending resistance [1]. The viscous behaviour is described by the Standard Linear
Solid (SLS) model, in which every element of the mesh can be thought of as characterised by a dashpot and an artificial
spring connected in series that are connected together in parallel with another spring [13]. For each node of the mesh,
we compute the total force that is the sum of each of the above viscoelastic contributions.
In detail, for the elastic contribution, we compute the free energy of the membrane We = WS +WB that corresponds to
the strain and bending energy, respectively. According to Skalak model, we have

WS =
∑
j

w
(j)
S Aj , (2)

2



where Aj is the area of the j−th element of the triangular mesh, and w(j)
S is the area energy density related to the j-th

element, given by:

wS =
kS

8

(
I21 + 2I1 − 2I2

)
+
kα
8
I22 , (3)

where I1 = λ21 + λ22 − 2 and I2 = λ21λ
2
2 − 1 are the strain invariants for the j-th element, while λ1 and λ2 are the

principal stretch ratios [11, 1]. Eq. (3) is made of two terms: the first one describes shear deformations, and the related
elastic modulus is kS; the second one is introduced to describe area dilation, and the corresponding elastic modulus is
kα. Note that the surface elastic shear modulus kS enters in the Capillary number Ca defined as:

Ca =
µoutγ̇r

kS
. (4)

The bending energy can be discretised as follow [1]:

WB =
kB
√

3

2

∑
〈i,j〉

(
θij − θ(0)ij

)2
, (5)

where θij is the angle formed by the normals of the i-th and j-th faces of the triangular mesh (the superscript (0) refers
to the angle at rest); the sum runs over the neighbouring faces i, j; kB is the bending modulus. Once we have computed
the elastic free energy We for all faces, the force on the node i-th can be computed as the derivative of the free energy
We with respect to the position of the node xi:

Fi = −∂We(xi)

∂xi
, (6)

where We(xi) is the sum of the free energy of all faces sharing the node i-th.
Regarding the viscous part, we first compute the 2D viscous stress given by

τττν = µs

(
2Ė− tr(Ė)1

)
+ µdtr(Ė)1 , (7)

where Ė is the strain rate tensor; µs and µd are shear and dilatational viscosities, respectively. In this work, we consider
µs = µd = µm [17]. Note that µm is the viscosity of the 2D membrane, and then it is measured in [m Pa s]. After
having computed the viscous stress tensor τττν , the force acting on the i-th node can be computed as

Fi = τττνFFF−T∇∇∇NiAm , (8)

whereFFF is the gradient deformation tensor which is contracted with the viscous tensor τττν ,∇∇∇Ni is the gradient of the
shape functions and Am is the surface area of the m-th face of the triangular mesh [1, 18]. More details are given
in [13, 10].
In order to simulate the dynamics of a single RBC in simple shear flow, we use the Lattice Boltzmann Method (LBM)
to solve the fluid, and the Immersed Boundary Method (IBM) to describe the interaction between the fluid and the
membrane [15]. The LBM hinges on the Lattice Boltzmann equation [15]:

fi(x + ci∆t, t+ ∆t)− fi(x, t) = −∆t

τ

(
fi(x, t)− f (eq)

i (x, t)
)

+ f
(F )
i , (9)

where fi(x, t) is the probability density function of fluid molecules with discrete velocity ci at position x and at
time t, ∆t is the discrete time interval, τ is the relaxation time, f (eq)

i is the equilibrium distribution function (that is
the analogous of the Maxwell distribution in the Boltzmann equation), and f (F )

i is the force density that has been
implemented according to the Guo scheme [19]. Once the probability density function fi(x, t) has been computed,
one can compute the density and the velocity fields: ρ(x, t) =

∑
i fi(x, t) and u(x, t) =

∑
i cifi(x, t)/ρ(x, t),

respectively [15].
We consider two different viscosities for the two fluids inside and outside the membrane, whose ratio is given by

λ =
µin

µout
. (10)

In order to distinguish which lattice sites lie inside or outside the membrane, we have implemented the (parallel)
Hoshen-Kopelmann algorithm [20].
The IBM first couples the membrane to the fluid via an interpolation of the nodal forces of the 3D triangular mesh on
the lattice sites; then, interpolating the fluid velocity on the mesh nodes we get the coupling between the fluid and
membrane [15]. The interpolation is performed by means of discrete Delta functions (in particular, we use a 4-point
stencil). For more details on the model adopted, we refer to our previous work [10].
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(a) Left: 3D triangular mesh representing the RBC. Right: RBC at rest and in shear flow with intensity γ̇.
In both panels, the little blue sphere is marked to highlight the membrane element chosen to identify the
angle φ.
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(b) We report two examples of tumbling (TB) and tank-treading (TT): on the left, the plots with the time
evolution of θ and φ are reported; on the right, we report three significant snapshots taken at different
times t (values of the angles θ and φ are also reported). The two vectors e(1) (continuous-line arrow) and
eD (dotted-line arrow) used to identify the angles θ and φ, respectively, are also displayed.

Figure 1: Sketch of the 3D numerical simulations performed.

Finally, we compute the angles θ and φ (see Fig. 1) in the following way: θ is the angle that the longest eigenvector e(1)

of the inertia tensor forms with the x−axis, and it is positive if e(1)x e
(1)
z > 0; otherwise, it is negative. To compute φ,

we first select a node in the dimple (the blue sphere in Fig. 1) and then we compute the angle between the vector which
connects the center of mass of the RBC to the node in the dimple eD and the vector e(1); the vector product eD × e(1) is
used to determine whether φ is positive or negative (see Fig. 1). In Fig. 1b we plot the time evolution of the angles θ
and φ for both TB (top) and TT (bottom): the TB is characterised by values of θ (red triangles) ranging in [−90, 90],
while the angle φ (blue circles) oscillates; on the contrary, in the TT simulation, φ ranges in [−90, 90] and θ oscillates.
The highest value of capillary number Ca that corresponds to a pure TB is identified by CaTB, while CaTT represents the
smallest value of Ca where a pure TT is found (see sketch in Fig. 2). Values of Ca such that CaTB < Ca < CaTT identify
the transition region (shaded region in Fig. 2), where the dynamics starts as TB and switches to TT; the width of such
region is defined by

∆Ca = CaTT − CaTB . (11)
In Fig. 3 and Fig. 4, we report only the error bars to identify the width of the transition region, otherwise there would be
the superposition of shaded regions for different values of membrane viscosity µm.

3 Results

To study the dependency of the TB-TT transition on the viscosity ratio λ (see Eq. (10)), the capillary number Ca (see
Eq. (4)) and the membrane viscosity µm, we performed 3D numerical simulations to generate four different phase
diagrams (λ,Ca), each one related to a value of membrane viscosity µm in the range [0, 3.18]× 10−7 m Pa s. For each
value of membrane viscosity µm, and for each value of viscosity ratio λ, we consider the highest value of capillary
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Figure 2: Sketch of phase diagram for the shear plane dynamics. The TB region and the TT region (below and above
the shaded regions, respectively) correspond to the values of capillary number Ca and viscosity ratio λ where we found
a pure TB and TT, respectively. The transition region (shaded) is identified by the highest (CaTB) and lowest (CaTT)
value of Ca at which a pure TB and TT are found, respectively. The error bars represent the width of the transition
region ∆Ca (see Eq. (11)). In Fig. 3 and Fig. 4, since we report results for different values of membrane viscosity µm,
to avoid the superposition of shaded regions we represent them only by error bars. Data reported here are dummy, and
they are used to sketch the plots showed in Fig. 3 and Fig. 4.
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Figure 3: Phase diagram for the shear plane dynamics. Panel a: we report results for four different values of membrane
viscosity µm, from µm = 0 to µm = 3.18× 10−7 m Pa s, at varying viscosity ratio λ. Error bars represent the width of
the transition region ∆Ca (see Eq. (11), and Fig. 2). Numerical results from Cordasco et al. [21] are also reported for
µm = 0 (the black line with no points is the transition line from TB to TT). Panel b: we report results for five different
values of viscosity ratio λ, form λ = 0.01 to λ = 2, at varying viscosity ratio µm.

number Ca which gives a pure TB motion (CaTB) and the lowest value of Ca which corresponds to a pure TT motion
(CaTT): the difference ∆Ca (see Eq. (11)) represents the width of the transition region that is represented via error bars
(see Sec. 2).
In Fig. 3a, the phase diagrams (Ca, λ) at varying values of membrane viscosity µm is reported. First, we benchmarked
our model against Cordasco et al. [21] for µm = 0 (see black line in Fig. 3a), and we found a good match. Even if the
matching is good, it is not perfect: but as Cordasco et al. [21] stated, the line they report to separate the two regions
of TB and TT is approximate; moreover, the elastic modulus kS (see Eq. (3)) we chose according to experimental
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Figure 4: We report the width of the transition region ∆Ca (see Eq. (11), and Fig. 2) as a function of viscosity ratio λ
(panel a) and as a function of membrane viscosity µm (panel b).

data [22] is slightly different from theirs. Then, we found that increasing the membrane viscosity µm, the transition line
rises, i.e., for a fixed value of viscosity ratio λ, the TB-TT transition takes place for a higher value of the capillary
number Ca. In Fig. 3b, we report such capillary number as a function of the membrane viscosity µm, for different
values of viscosity ratio λ. It follows that both membrane viscosity and viscosity ratio have the same qualitative effect
on the TB-TT transition, that is to penalise the TT: the higher the value of membrane viscosity µm (and viscosity ratio
λ), the higher the value of Ca such that the membrane tank-treads. In the limit of µm → ∞ (or λ → ∞), i.e., in the
limit of a rigid body, the membrane does not tank-tread.
It is also interesting to study the dependency of the width of the the transition region ∆Ca as a function of membrane
viscosity µm and viscosity ratio λ (see Fig. 4). In Fig. 4a, we report ∆Ca(λ, µm) as a function of λ for fixed value
of membrane viscosity µm, finding an increasing function for all the different values of µm. Moreover, the rate at
which each curve increases, i.e., ∂

∂λ∆Ca(λ, µm), depends on the value of the membrane viscosity µm. In Fig. 4b,
we report the width of the transition region ∆Ca(λ, µm) at varying viscosity ratio λ: similarly to the previous case,
∆Ca(λ, µm) increases with the membrane viscosity µm, and the rate of increase ∂

∂µm
∆Ca(λ, µm) is proportional to

the viscosity ratio λ. Overall, we can say that the qualitative effect of the viscosity (either via the viscosity ratio λ or
via the membrane viscosity µm) is to increase the width of the transition region; nevertheless, we note that there is a
quantitative difference between the effects of λ and those of the membrane viscosity µm (i.e., the two panels of Fig. 4):
looking at Fig. 4b, we can see that ∆Ca(λ, µm → 0) approaches very small values regardless of the value of viscosity
ratio λ; on the other hand, in Fig. 4a, the width of the transition region ∆Ca does not seem to go to comparably small
values when λ → 0; rather, it depends on the value of membrane viscosity µm: ∆Ca(λ → 0, µm) = ∆Ca0(µm). In
particular, the smaller the membrane viscosity µm, the smaller ∆Ca0(µm). These considerations suggest that the use of
an effective viscosity ratio λ′ to simulate the effect of membrane viscosity µm on the TB-TT transition can only be
qualitatively correct; therefore, a direct implementation of µm is needed for a more quantitative and realistic analysis.

4 Conclusion

In this work, we performed 3D numerical simulations in the framework of the Immersed Boundary - Lattice Boltzmann
method to investigate the dependency of the TB-TT transition on the membrane viscosity µm for a single RBC. We
studied the transition region, i.e., the region in the phase space (Ca, λ) where the dynamics is neither pure TB nor pure
TT: in particular, in this region we found an initially TB dynamics which switches to TT; the contrary, i.e., a TT that
switches to a TB, has never been observed (in agreement to [23, 24]). In particular, Cordasco et al. [21] highlighted that
the intermittent dynamics in the transition region depends on the stress-free configuration of the membrane, and for the
biconcave discocyte shape they did not observe intermittency (while it was observed for a stress-free state close to a
sphere).
We found that the effect of the viscosity (regardless of whether it is fluid or membrane viscosity) is to shift the TB-TT
transition line in the phase space (Ca, λ): in particular, the higher the value of the viscosity ratio λ or the membrane
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viscosity µm, the higher the transition line (see Fig. 3). We also found that the width of the transition region ∆Ca
depends on both the viscosity ratio λ and the membrane viscosity µm. Again, increasing λ or µm qualitatively leads to
an increase of the width ∆Ca; at a more quantitative level, we found that the two viscous effects are not equivalent.
In particular, we found a different behaviour for small values of λ and µm: on one hand, for small values of µm, the
width ∆Ca becomes very small independently of the value of the viscosity ratio λ; on the other hand, for small values
of λ , the width ∆Ca is not small and shows a substantial dependency on µm (see Fig. 4). This suggests that the direct
implementation of membrane viscosity is a required ingredient for a precise and realistic description of RBCs.
On a future perspective, it could be interesting to develop a reduced model to better understand the physics underlying
our observations and explain the functional behaviours that we have unveiled via the numerical simulations.
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