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We perform a numerical study of the X Y  and Heisenberg models with the finite size real 
space renormalisation group method. We confirm the Berezinskii-Kosterlitz-Thouless picture for 
the X Y  model and provide strong evidence against a standard algebraic divergence of the 
correlation length. We also obtain the most accurate determination of the magnetic exponent. For 
the Heisenberg model, we find that the scaling law predicted by the asymptotic freedom property 
of the theory around zero bare coupling is fulfilled, indicating the absence of phase transitions at a 
non-zero temperature. 

1. Introduction 

The X Y  and the Heisenberg models in two dimensions are characterised by a 
phase transition with an exponential divergence of the correlation length at the 
critical temperature which is expected to be finite in the former case and zero in the 
latter one. The first model is relevant to several two dimensional physical systems 
and in particular it is expected to describe the critical properties of thin films of 
superfluid helium. In this paper we want to analyse the critical properties of these 
models within a real space renormalisation group technique. The purpose is twofold: 
we provide more accurate results for some of their critical indices than previous 
numerical studies with strong evidence against a conventional algebraic type singu- 
larity for the X Y  model and we demonstrate the effectiveness of our technique in 
phase transitions with an essential singularity of the correlation length. This may 
turn out to be useful for the study of four dimensional non-abelian gauge theories 
which have the same property near their continuum limit. Sects. 2 and 3 contain the 
presentation of the method and the results for the X Y  model while sect. 4 reports 
the results for the 0(3) model. Brief conclusions are contained in sect. 5. 
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2. The X Y  model: the method 

2.1. GENERALITIES 

The two dimensional XY model has recently been the subject of new numerical 
and analytic studies. According to the analysis of Berezinski, Kosterlitz and Thouless 
[1], this model has a phase transition at finite temperature characterised by the 
absence of a spontaneous magnetisation and by an essential singularity for the 
correlation length. This behaviour is much harder to study by numerical methods 
than the standard one, as the Ising model, where the singularity is only algebraic. 
Indeed, a direct fit of the exponential increase of the correlation length near the 
critical temperature needs very large lattice sizes in order to avoid finite size effects 
and the use of special algorithms to beat the consequent critical slowing down [2]. In 
practice, even using optimised techniques and a sizeable computer time, one has 
always to rely on fitting procedures of data obtained rather far from the critical 
temperature: this leads to inaccurate estimates of the magnetic exponent. 

Other analyses have been using the finite scaling method [3]: in this case some 
better results are obtained, but the exponential character of the singularity cannot 
be unambiguously distinguished from a standard algebraic singularity. Some recent 
studies have in fact challenged the nature of the transition and presented some 
evidence for a conventional behaviour [4]. An analysis of the high temperature 
expansion seems to conclude in favour of the original BKT picture on the basis of 
the stability of the Pad6 coefficient of the high temperature series [5], which, under 
the hypothesis of an algebraic singularity, leads to an unstable value for the 
exponent v increasing with the order of the approximant used. 

We have performed a numerical simulation with the finite size real space 
renormalisation group method. The basic idea is to study the behaviour of block 
variables defined at a scale which is a fixed fraction of the total lattice size (L)  as a 
function of the original coupling and for different values of L. The method is a 
combination of the Monte Carlo renormalisation group [ 6 ] -  we introduce block 
variables - and of the finite size scaling ideas - we study their dependence upon the 
infrared cutoff given by the lattice size [8]. In particular cases, it fully reduces to one 
of the two latter techniques. If, for example, the block variable is defined as the 
total energy contained in a block, with a normalisation suitable to the linear 
blocking, the method becomes a finite size scaling analysis of the specific heat. 
Instead, a linear blocking of the original variables - not of the energies - performed 
on lattices of sizes L and 2L (L even) and defining block variables at a scale equal 
to half of the original lattice size can be seen as the N = L/4 and N + 1 = L/2 
iteration steps of a blocking by a scale factor equal to two of the classical MCRG 
technique developed by Ma, Wilson and Swendsen [6]. In general, for non-linear 
blocking and for generic values of the lattice sizes, the method does not reduce to 
previous techniques. In the case of discrete spin models, like the Ising and the three 



L. Biferale, R. Petronzio / X Y  and Heisenberg models 679 

state Ports model, accurate results were obtained using moderate volumes of the 
order of twenty lattice spacings in each direction [7]. In that case the total volume of 
a square of size L was divided into four squares and for each of them a block 
variable was defined according to the standard majority rule. Given the discrete 
nature of the variables, it was possible to disentangle all the independent couplings 

of the hamiltonian for the resulting two-by-two system. The critical indices were 
obtained by linearising near the fixed point the recursion relation between the block 

couplings of two different lattice sizes. 
In the case of the XY and Heisenberg models the continuous character of the 

variables does not allow us to extract the exact form of the block hamiltonian: 
instead of a finite number of couplings one has to deal with a finite number of 
functions. However, at the fixed point and in the infinite volume limit the whole 
probabil i ty distribution should match and, therefore, any function of the couplings, 
i.e. any correlation of the block variables, can be considered as a "generalised 
coupling". From the experience of the discrete models one learns that, given an 
affordable range of volumes, the best results are obtained from the biggest couplings 
which are the nearest neighbour in the cases quoted above. The determination of the 
smaller ones involves important cancellations which make the result statistically 

unstable, The choice of the generalised couplings in the continuous case should also 
avoid important  cancellations between different regions of the probability distribu- 
tion. We will compare the results obtained at the critical point with different 
definitions of the generalised couplings: they are expected to be identical in the 
infinite volume limit and the discrepancies provide an indication of the systematic 
errors of the method. In general we will find them to be of the same order of our 
statistical errors. 

The XY model is defined by the following hamiltonian: 

/~H= - B ~  (o+oj), (2.1) 
i,j 

where the sum is over all first neighbour pairs and the spins o i have fixed modulus 
and can rotate continuously in a plane. 

In order to reduce to the minimum the number of variables to deal with, we have 
divided the spins of the square into two groups, having L2/2 elements each. The 
first group contains the variables belonging to a rhombus with a side of length L~ ~/2 
and the axes parallel to the square sides, the second contains all the remaining 
variables. The latter are also~C0ntainezl in a rhombus due to the periodic boundary 
conditions. We define the block spins as the normalised average of the original spins 
inside each group: 

Z<i~A, B) oi (2.2) 
SA'B ]2(ieA,B)Oi] 
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The block hamiltonian will be a function of the only non-trivial 0(2) invariant 
quantity S ~  S B = COS(OAB). We have used three independent generalised couplings: 

(i) K 1 = <COS(OAR)), 

( i i )  K 2 - <s in2 (chAB) )  , 

(sin2(q~aB)cos(0A~)) 
(iii) K 3 = 3 (sin4(g,AB)) (2.3) 

The second and the third would be identical if the block hamiltonian had the same 
form of the original one, i.e. a linear function of S A * S B only, and would be equal to 
the value of its single coupling (K). Indeed, in this case one can simply derive the 
following Schwinger-Dyson type equations from the couplings: 

2~ d 
d<Bd~TA8 { s in (<B)exp[K c°s(g'AB)l } - 0, 

2~r d 
f0 &)A B d~BA B { sinB(q)ae)exp[ K c°s(0aB)] } = 0" (2.4) 

The first coupling in the same approximation would also be a function of the 

coupling K: 

I I ( K )  (2.5) 
K 1 = Io (K  ) , 

where 11 and I 0 are Bessel functions. 
The critical behaviour of the theory is determined by a thermal (v) and a 

magnetic (~) exponent. The first, according to the BKT analysis, is related to the 
diverging correlation length by 

~ = A e x p [ B ( T -  Tc) -~] (2.6) 

where A and B are non-universal constants, while the exponent ~ relates the 
magnetic susceptibility to the correlation length: 

X = ~2 ~. (2.7) 

Beyond the critical point there is a line of fixed points which extends to zero 
temperature and where the correlation length stays infinite. 

We have performed simulations with three different volumes: L = 16, L = 24 and 
L = 32. In order to reduce the critical slowing down, we have used an algorithm 
similar to the one of ref. [2] by alternating a number N M of standard Metropolis 
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updates with N~ microcanonical sweeps. These are obtained by replacing the 

direction of each spin in a given point with the one symmetric with respect to the 

direction of the sum of neighbouring spins. By calling ~ the original angle formed 
with a reference axis and a (with its sign) the relative angle between a spin and the 
sum of neighbours, the new angle is q, + 2a  so that the contribution to the total 
energy of the rotated spin is the same as before. We used a sequence with N M = 1 
and N~ = 5 and we define it as our "iteration unit". This choice is similar to the one 
adopted by the authors of ref. [2] to obtain a relaxation exponent close to one. We 
have optimised the choice to obtain a given error with the minimum computer time. 

The error is estimated from a set of cluster measurements, each grouping several 
successive spin configurations. The error from the clusters is obtained in two ways. 
The first is just the standard deviation, the second is with the "jackknife" method. 
This consists of considering new clusters, each grouping all the original ones but 
one. It can be shown that the standard deviation obtained from these N highly 
correlated new clusters should be multip#ed by N in order to get the usual standard 
deviation. We determine the optimal values for the number of clusters and their size 
by requiring the compatibility between the two ,error estimates. This is expected to 
hold only if the original clusters are statistically independent. We observe a stability 
of the results with clusters collecting from 1000 to 8000 iterations. For each point in 
fl we have run a total of 2.5 × 105 iterations including 5 × 104 thermalisation 

sweeps. We have made a few test runs with 4.8 × 106 total iterations and 8 × 105 
thermalisation sweeps for the largest volume. We have observed the expected 

decrease of the statistical error, but the deviations of the average values from the 
ones obtained with the "s tandard"  statistics are well inside the error estimates: we 
have assumed afor t ior i  the same stability for the smaller volumes. 

The location of the critical point can be estimated by the matching of the 
generalised couplings: figs. l a  and lb  show the ratios of the coupling K 1 at 
the volume L = 24 over the corresponding value at the volume L = 16 and for the 
volumes L -- 32 and L = 24 as a function of the original coupling fi respectively. 
Figs. 2a and 2b show the same quantities for the coupling K 2. Beyond values of fl of 
the order of 1.110 the couplings do match and keep matching also at higher values 
(lower temperatures), as expected. The critical temperature depends upon the 

volume and tends to the correct asymptotic value from above. 
In the case of an algebraic divergence of the correlation length, the thermal 

critical index YT was obtained by linearising the recursion relations between the 
couplings obtained from two different sizes: 

l n ( O K , ( L t ) / O K ; ( L 2 )  ) 
YT = l n ( L , / L 2  ) , ( 2 . 8 )  

where Ki(L ) indicates a generic coupling " i "  normalised at the scale L. The 
derivatives OK i(L 1)/oKi(L2) are obtained as a ratio of the derivatives with respect 
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Fig.  1. (a) The ratio of the generalised block coupling K t at the scale L = 24 over the corresponding one 
at the scale L = 16 as a function of the original coupling/~. (b) The  s ame  quantity of (a) for the volumes 

L = 3 2 a n d  L = 2 4 .  

to the original coupling /3 which can be evaluated as the connected correlation of 
the generalised couplings with the total energy of the original system. This way of 
calculating derivatives of block couplings was introduced for the standard multistep 
Monte Carlo renormalisation group by Swendsen [6]. We now explain eq. (2.8) more 
in detail. 

2.2. R E N O R M A L I S A T I O N  A N D  F I N I T E  S IZE  S C A L I N G  

Define ~o~(L) the correlation length on an infinite lattice at a scale L, i.e. 
measured in units of L times the original lattice spacing. Naive dimensional analysis 
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Fig. 2. (a) The  same  as in fig. l a  for the coupling K2. (b) The same as in fig. l b  for the coupling K 2. 

relates the correlation length measured with two different units: 

~ ( L )  = ~ ( 1 ) / L .  (2.9) 

Following the finite size scaling ansatz [8], on a finite volume of size L the 
correlation length can be written as 

~L(1) = L F  [ ~ ( 1 ) / L ] ,  (2.10) 
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where F is a scaling function with F[x]x  ~ o = x and with a maximum at some value 

v o of its argument. 
The second property implies that the apparent critical temperature, i.e. the value 

of the original coupling fi where the correlation length has a maximum, shifts to the 
correct value defined by ~ = oo only when the volume goes to infinity. The 
deviation from the asymptotic value dies as an inverse power of the volume in 
the algebraic case and as an inverse power of the logarithm of the volume in the 
exponential case. In the following we will neglect violations of the scaling ansatz 
and some of our formulas should be read under this assumption. 

By combining eqs. (2.9) and (2.10) one obtains the behaviour of the correlation 

length on a finite volume L measured with a length unit L': 

~L(L ' )  = -£7F[  ( L / L ' )  ' (2.11) 

where L / L '  is the available volume L measured in the units L'. 
Imagine that we perform a simulation with two different volumes, say L 1 and /'2, 

and define generalised couplings at a scale which is a fixed fraction of the total size 
in both cases so that the ratio L 1 / L '  1 is equal to L R / L '  2. The matching of the 
generalised couplings is obtained for the same fl only at the critical point tic- Below 
tic it occurs for different values depending upon the volume, called fl(L1) and 
/~(L2). The matching indicates that the physics is the same on the two volumes, i.e. 
that they see the same correlation length ~L(L'). It follows the equation 

(2.12) 

There is a solution to the equation obtained by substituting eq. (2.11) into eq. 
(2.12) which is independent from the explicit form of the function F, provided that 
this is a monotonic function in the matching region. This excludes regions in fl 
which lie between the critical value for the volume L 1 and the one for the volume 

L 2. The solution is simply given by 

(2.13) 

The above relation can be used to fix the thermal exponent. 
The general idea of interpreting the ratio of different lattice sizes as renormalisa- 

tion group scaling factor was developed by Nightingale and called phenomenologi- 
cal renormalisation group. In this approach the test quantities are the specific heat 
or the susceptibility of the original system and not renormalised quantities like in 
the method discussed in this paper. It was applied to the study of the X Y  model by 
Roomany and Wyld [8] who obtained accurate results for the thermal exponent. 
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2.3. THE THERMAL EXPONENT 

In the algebraic case correlation length diverges at the critical point as 

and eq. (2.13) reads 

~ ( 1 ) = A ( T -  Tc) ~ 

[ f i ( L t )  - t i c ]  ~ [ f l ( L 2 ) - / } c ]  ~ 
= 

L1 L 2 

685 

(2.14) 

(2.15) 

where we have used eq. (2.14) by replacing the difference of the temperatures with 
that of their inverse, i.e. of the couplings B's. The two expressions differ by a 
smooth function of T / T  c which does not alter the exponent for T near To. In 
general we will write expressions containing the couplings instead of the tempera- 
tures. 

The value of Pc to be used is the one of the infinite volume. A possible 
phenomenological way of reabsorbing some of the finite size corrections to the 
scaling formula in eq. (2.13) is to use instead the relative Be for the two volumes L 1 
and L 2 which lies below the asymptotic one and between the critical values of each 
individual volume. We have not done it and we have used a common value of Bc for 
the three volumes. The exponent u, equal to the inverse of the thermal exponent YT, 
can be obtained from a fit to eq. (2.15). A more straightforward result is obtained 
by considering the limit of the same equation at the critical point. To perform such 
a limit it is convenient to express the shift of the value of a generalised coupling 
from its fixed point value (AK)  in terms of the shift of the original fi from its 
critical value (Aft): these are simply proportional close enough to the fixed point: 

OK 
AK = k/~ PO~- ' (2.16) 

where the derivative is taken at the fixed point. By substituting this expression into 
eq. (2.15) and remembering that the values of /~(L1) and fl(L2) were chosen by 
requiring the corresponding AK to be equal, one obtains the relation (2.8). 

Eq. (2.13) represents a scaling law for the A/~ shifts. A similar equation can be 
derived for the AK ones. We extend the Kadanoff ansatz for block couplings [9] to 
our generalised couplings; indeed, close enough to the fixed point a shift in the 
generalised coupling is linear in the shift of the true underlying block couplings. We 
therefore assume that the correlation length at the scale L has the same form as the 
one at the original scale when expressed in terms of the generalised couplings at the 
scale L. 
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If the original dependence is according to eq. (2.14), we write 

Using eq. (2.9), we get 

~ . ( L )  = A ' [ K ( L ) - K ~ ] - ~  

A'[K(L)- K¢] L 

(2.17) 

(2.18) 

By intersecting horizontally, i.e. for a given value of K, the curves of the 
generalised couplings for different volumes as a function of fl one obtains the 
3 f l ( L )  which can be used for the Aft scaling law of eq. (2.15). The AK scaling is 
obtained by intersecting the same curves vertically, i.e. for a given value of ft. There 
one has the same ~ ( 1 )  for both volumes and the AK(L),  defined as the difference 
between the value of K intersected, for a volume L, by the vertical curve and its 
fixed point value, should scale from eqs. (2.14) and (2.9) according to 

(2.19) 

The difference with the Aft scaling law eq. (2.15) is just the exchange of the 
volumes. By taking the limit to the fixed point one recovers again eq. (2.8). 

With an essential singularity one has two parameters to determine (B and u). In 
this case, the Aft scaling law of eq. (2.15) is replaced by 

exp( B { [Aft(L1) l - ~ -  [Aft(g2) ] -~'} ) = LI/L2, (2.20) 

where Aft(L) = f i (L)  - tic and the 3 K  scaling law by 

exp(B'{  [AK(L1)  ] ~ -  [AK(L2)  ] - "} )  = n2/Cl. (2.21) 

Notice that in the latter case one has in general a new parameter (B') depending 
upon the generalised coupling replacing the parameter B. 

The index p can be formally obtained by using two pairs of volumes and by 
eliminating B' from the corresponding equations. The result is 

[AK(L1)]  ~ - [ A K ( L 2 ) ] - ~  I n ( L 1 / L 2  ) 

[ a K ( L 1 )  ] " - [ A K ( L 3 )  ] ~ I n ( L 1 / L 3  ) " 
(2.22) 

Contrary to the algebraic case, the limit of this equation at the fixed point leads 
to a trivial result: indeed, by replacing A/~ with AK times the appropriate derivative 
one obtains 

1 -- 021 ~ l n ( L 1 / L 2 )  
- -  - (2.23) 
1 - D f  ~ l n ( L 1 / L 3 )  ' 
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where quantities Di i are the derivatives of the generalised coupling at the volume Li 
with respect to the corresponding coupling at the volume Lj. In the limit of small 
A/3 they all go to one, independently from the volume. This is a consequence of the 
following AK scaling ansatz from which eq. (2.22) has been derived: 

e x p [ B ' ( A K ) - ~ ]  = C exp[B(A'8)  ~] 
L ' (2.24) 

where C is some constant. This equation leads to 

lira 
J f l~O 

(Afi)~ln (2.25) = 1  ~ 

The expression in eq. (2.23) reduces in the limit Aft -~ 0 to a trivial identity and 
cannot be used to extract the value of u. 

3. The X Y  model: the results 

3.1. THE THERMAL EXPONENT 

In the case of the X Y  model we have performed runs at L = 16, 24 and 32. The 
critical temperature is estimated to be 

T c = 0.899 + 0.002, (3.1) 

in agreement with the results of refs. [2, 3], and the critical values of K couplings: 

Kf  = 0.9485 _+ 0.0015, K~ = 10.1 + 0.1, K~ = 10.1 + 0.1, (3.2) 

where the error comes both from the volume dependence of the critical temperature 
and from the statistical accuracy of our results. 

Although we have not attempted an exhaustive analysis to determine the exact 
form of the fixed point finite volume hamiltonian, we know from our result that it is 
dominated by the simple first neighbour interaction like in the original hamiltonian. 
In fig. 3 we plot the values of K 1 - K I ( K 2 )  and of K 1 - K I ( K 3 )  as a function of fl, 
where K~(K) is the value that K~ would have if there were a single first neighbour 
coupling K in the hamiltonian. Both differences are very small and go to zero at the 
fixed point, demonstrating the first neighbour coupling dominance. In the following 
we will restrict to the results for the coupling K 1 and K 2 only. 

The values of p are obtained from a X 2 fit to the Aft and to the AK scaling laws 
of eqs. (2.20) and (2.21). We have found that a fit with the temperatures, i.e. 
obtained by replacing fi and K with their inverse in the quoted equations, leads to a 
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better  X 2. Our  final results are quoted from such a fit. Tables 1 and 2 report  the 

values of  the generalised couplings K~ and K 2 at different values of /3 and for 

different volumes which formed the basis of  our fits. Fig. 4 shows the data for K 2 

for fl a round  tic. The result of the fit to the A K  scaling law are 

and  

u = 0.52 + 0.04 from the coupling K 1 , (3.3) 

v = 0.49 _+ 0.04 from the coupling K 2 , (3.4) 

with a X 2 per degrees of freedom of 0.5 and 0.4, respectively. The quality of the fit 

is shown in fig. 5 where it is superimposed to the data points. 
The  error estimates includes both  the statistical accuracy and the uncertainty in 

the value of  the critical coupling. The latter dependence is shown in fig. 6 for the 

c o u p l i n g  K 2. 

We have also checked the stability of our results for K 2 to  the region of fl values 

used for the fit. In the regions 1.07 >//~ > 1.01 and 1.01 >/B >/0.97 we get v = 0.50 
and v = 0.49 respectively, i.e. a difference in the results within our final error. 

The  fit to the Aft scaling law is more unstable, mainly because, as can be seen 
f rom fig. 4, the higher the volume, the closer one gets to the critical value of  B- In 
the case of  the Z~K scaling things go the other way round. The simultaneous fit to 

bo th  B and v gives 

B = 1.9 + 0.3,  v = 0.46 + 0.04,  (3.5) 
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TABLE 1 
The values of the generalised coupling K l for different volumes and as a function of fl 
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fl K,(16) /(1(24 ) /(1(32) 

0.90 0.806(1) 0.697(2) 0.586(2) 
0.91 0,827(1) 0.730(2) 0.629(2) 
0.92 0.844(1) 0,760(2) 0,674(2) 
0.93 0.860(1) 0.795(1) 0.716(2) 
0.94 0.8742(9) 0.819(1) 0.753(2) 
0.95 0.8848(8) 0.844(1) 0.793(2) 
0.96 0.8947(7) 0.864(1) 0.824(2) 
0.97 0,9034(7) 0.877(1) 0.848(1) 
0.98 0.9103(6) 0.8932(9) 0.870(1) 
0.99 0.9164(6) 0,9031(7) 0.886(1) 
1,00 0, 9225(5 ) 0, 9129(6) 0.9013 (9) 
1,01 0,9267(5) 0.9196(5) 0,9119(7) 
1.02 0.9301(4) 0.9260(4) 0,9199(5) 
1.03 0.9332(4) 0.9306(3) 0.9257(5) 
1.04 0.9362(4) 0.9332(4) 0.9310(4) 
1.05 0.9381(4) 0,9365(3) 0,9345(4) 
1.06 0.9409(3) 0.9394(3) 0.9381(2) 
1.07 0,9428(4) 0.9418(3) 0.9408(2) 
1,08 0.9446(3) 0.9440(2) 0.9430(2) 
1.09 0.9460(3) 0.9457(2) 0.9452(2) 
1,10 0.9474(2) 0.9471(1) 0.9469(1) 
1.11 0.9486(4) 0,9487(1) 0.9484(2) 
1,12 0.9501(2) 0.9499(2) 0,9499(2) 
1.15 0.9528(3) 0.9533(1) 0.9532(2) 
1.18 0,9555(3) 0,9559(1) 0.9559(1) 

while, by imposing the value of v obtained from the A K  fit, we get for B 

B = 1.65 _+ 0.2.  (3.6) 

We consider this our best estimate of the parameter B. The analysis of Kosterlitz 
and Thouless and later studies based on analytic renormalisation group recursion 
relations give v = 0.5 exactly and a value for the non-universal parameter B around 
1.6. Our results confirm their estimates within the errors. They are more precise than 
those of  ref. [2] and are obtained using sizes typically smaller by a factor four to ten. 
The results of  ref. [3] appear to be much more precise than ours but their error 
estimates are not explicitly explained. 

Some of the past analyses have tried to argue in favour of a conventional 
algebraic type singularity at the fixed point. Already the matching of the couplings 
K beyond the critical temperature is a confirmation of the BKT picture. If we make 



690 L. Biferale, R. Petronzio / X Y  and Heisenberg models 

TABLE 2 
The values of the generalised coupling K 2 for different volumes and as a function of/3 

/3 K2(16) K2(24) K2(32) 

0.90 3.43(2) 2.28(1) 1.61(1) 
0.91 3.76(2) 2.56(2) 1.84(1) 
0.92 4.09(2) 2.86(2) 2.12(1) 
0.93 4.43(2) 3.28(2) 2.44(2) 
0.94 4.84(3) 3.64(2) 2.79(2) 
0.95 5.19(3) 4.09(2) 3.23(2) 
0.96 5.55(3) 4.56(2) 3.72(2) 
0.97 5.93(3) 4.93(3) 4.17(3) 
0.98 6.29(3) 5.49(3) 4.75(3) 
0.99 6.63(3) 5.90(3) 5.21(3) 
1.00 7.03(4) 6.42(3) 5.82(3) 
1.01 7.40(4) 6.81(3) 6.35(3) 
1.02 7.66(4) 7.28(3) 6.82(3) 
1.03 7.95(4) 7.66(3) 7.25(3) 
1.04 8.30(4) 7.96(3) 7.69(3) 
1.05 8.51(5) 8.29(3) 8.05(4) 
1.06 8.82(5) 8.61(3) 8.44(2) 
1.07 9.09(7) 8.94(4) 8.79(3) 
1.08 9.34(4) 9.23(3) 9.09(3) 
1.09 9.58(5) 9.51(3) 9.41(4) 
1.10 9.81(4) 9.75(3) 9.70(2) 
1.11 10.02(7) 10.01(2) 9.99(4) 
1.12 10.30(5) 10.26(3) 10.26(3) 
1.15 10.85(7) 10.96(3) 10.95(3) 
1.18 11.50(8) 11.58(3) 11.60(3) 

a fit to our data using a behaviour like in eq. (2.15), we get the following result: 

Palgebraic = 1.35 __+ 0.35, (3.7) 

with a X 2 per degrees of freedom of . . .10!  This clearly shows the inadequacy of 
such an interpretation. 

Fig. 7 reports the value of /~algebraic estimated from different regions of /3: the 
steady increase with increasing B is inconsistent with a constant value of a 
conventional algebraic type singularity. The increasing v is the way the data indicate 
a singularity stronger than algebraic. This behaviour was never clearly seen in 
previous numerical analyses and agrees with the recent analytic estimates based on a 
high temperature expansion and discussed in ref. [5]. 

3.2. THE MAGNETIC EXPONENT 

The exponent ~ relates the correlation length ( with the magnetic susceptibility X 
according to eq. (2.7) and is connected to the magnetic exponent YH governing the 
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Fig. 5. The A K shift superimposed to the data for K 2 at L = 16 as a function of ]~: the statistical errors 
have a size of the order of the data points. 

b e h a v i o u r  of  the free energy F in the presence of an external  magnet ic  field h in the 

sca l ing  region:  

where  ~ = 1 / y  H. The relat ion be tween ~ and YH is 

~ = 2 + d -  2 y  H = 4 -  2 y  H. (3.9) 
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Eq. (3.8) fixes the dynamic dimensions of the magnetic field h in correlation 
length units and states that in the limit ( --+ 0¢ and h ~ 0, i.e. close to the phase 
transition at zero magnetic field, the physics stays the same along the lines of 
constant ~/h ~. This remains true also if both the correlation length and the 
magnetic field are defined at a scale length L: 

l n [~ (L) ]  = - f f l n [ h ( L ) ]  + constant.  (3.10) 

Using eq. (2.9) relating the correlation length at two different scales for a fixed 
value of B, one obtains a simple scaling law for the magnetic field at the scales L 1 
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and L2: 

(3.11) 

Since the critical value for h is zero, one can interpret h(L) as 3h(L), i.e. the 
difference between the coupling and their fixed point values and replace the ratio in 
eq. (3.11) with the corresponding derivative taken at the critical value of fl and at h, 
the original magnetic field at scale 1, set equal to 0. We obtain the equation fixing 

YH: 

In ~ YH Oh(L2) Oh( L2)/Oh h=0 
(3.12) 

One can replace the block magnetic fields with any correlation which is odd 
under the operation of spin reflection: we have chosen the most straightforward, the 
total block magnetisation defined as 

 t(L)=SA(L) + SB(L). (3.13) 

The derivative of the block magnetisation with respect to the original magnetic field 
h taken at h = 0 of eq. (3.12) is just the connected part of its scalar product with the 
original total magnetisation (not averaged over the spins) at zero magnetic field and 
at the critical ft. This quantity is even under spin reflection and does not vanish at 
zero magnetic field. 

The results for ~ are reported in fig. 8 for T near T c and in fig. 9 for T around 
zero, where they successfully compare with the expected linear decrease with the 
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Fig. 8. The exponent ~ around the critical temperature. 
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temperature [1] 
T 

~ r ~ 0 -  2~r (3.14) 

At the critical temperature we get 

~/= 0.243 _+ 0.007. (3.15) 

These results are in perfect agreement with the BKT prediction and with the 
experimental results obtained from thin films of superfluid helium [10]. They are far 
better than those of refs. [2, 3]. 

4. The Heisenberg model 

With the same method we have analysed the Heisenberg model in two dimensions 
defined by the hamiltonian in eq. (2.1) where, however, the spins lie on a sphere 
instead of a circle. The divergence of the correlation length is expected to be of the 
same type as for the X Y  model, but the fixed point is at zero temperature. 
Borrowing the terminology of gauge theories, the model is asymptotically free and 
one can calculate the values of B and v appropriate to this case from a weak 
coupling expansion. The result is [11] 

B=2~r  and v = l .  (4.1) 

Two loop calculations also allow us to determine the next to leading contribution to 
the asymptotic scaling law for the correlation length [11], which reads 

exp(2rrfl) 
~ ( B ) = const. (4.2) 

1 +  2~r/3 
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Fol lowing the same procedure adopted for the X Y  model, we define block spins 

S A and Se which are the generalisation to the 0(3)  case of eq. (2.2). The generalised 

couplings J1 and J2 are the analog of K 1 and K 2 and are defined by 

(cos 0AB) 
J1 = (cos 0AB ) , J2 = 2 (sin 2 0As) , (4.3)  

where OAR is the relative angle between the two block spins. If  the effective 

hamil tonian  had the same form as the original one, J2 would be its coupling, as can 

be seen f rom the following Schwinger -Dyson  equation: 

1 d [sin2 0ABexp(J2cos OAB)] = 0 (4.4) - d cos 0AR d cos 0AB 

We have performed runs between/3 = 1.6 and /3  = 2.3 on squares with L = 20, 26 

and 32 using also in this case an algorithm obtained by alternating one s tandard 

Metropol is  sweep with five microcanonical  sweeps where, in the plane identified by 

a given spin and the resultant of its first neighbours, one performs the same 

opera t ion  already defined for the X Y  model. We have used statistics similar to those 
for the X Y  model, by performing a total of 3.6 × 10 5 iterations including 10 5 

thermalisat ion sweeps (TS) for the volume L = 20, of 4 X 10 5 iterations with 2 × 10 5 

TS for L = 26 and of 4.4 × 10 5 iterations with 2 x 10 5 TS for L = 32. We get a 

relative statistical error on the generalised block couplings of the order of 10 4 for 

J1 and of  10 3 for J2- The error analysis has been done as in the previous case. 

TABLE 3 
The values of the generalised coupling J1 for different volumes and as a function of/3 

fi ./1(20) J~(26) Ja(32) 

1.600 0.8788(3) 
1.646 
1.682 
1.800 0.9198(2) 
1.845 
1.881 
2.000 0.937I(2) 
2.045 
2.080 
2.100 0.9425(2) 
2.145 
2.180 
2.200 0.9475(1) 
2.245 
2.280 

0.8796(3) 

0.9200(2) 

0.9373(2) 

0.9429(1) 

0.9475(1) 

0.8803(3) 

0.9205(2) 

0.9373(2) 

0.9432(1) 

0.9479(1) 
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TABLE 4 
The values of the generalised coupling -/2 for different volumes and as a function of fl 

fl J2 (20) ,/2 (26) -/2 (32) 

1.600 2.101(5) 
1.646 2.109(5) 
1.682 2.118(5) 
1.800 3.123(7) 
1.845 3.127(7) 
1.881 3.146(7) 
2.000 3.98(1) 
2.045 4.00(1) 
2.080 3.99(1) 
2.100 4.36(1) 
2.145 4.37(1) 
2.180 4.39(1) 
2.200 4.76(1) 
2.245 4.77(1) 
2.280 4.79(1) 

The fixed point is expected at infinite ft. We have identified the onset of the 
scaling region between fl = 1.6 and fl = 1.8. The effective hamiltonian tends to 
the simple first neighbour form of the original hamiltonian as one moves closer to 
the fixed point. Fig. 10 shows the quantity J1 - J l ( J 2 )  as a function of fl, where 
Jl(J2) is the value of -/1 if -/2 was the sole coupling and is given by 

"/1 ( J2  = c o t a n h ( , / 2 )  - - -  
1 

(4.5) 
J2 
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Fig. 10. The same as in fig. 3 for the J block couplings of the Heisenberg model. 

2.6 
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Like in the X Y  case, the relevance of extra couplings vanishes with/3 approaching 
/3c. Using the results of refs. [2,11], one can see that, in the region of fl that we have 
explored, the typical infinite volume correlation length for this model is of the same 
order as the one we have been dealing with in the region of/3 near tic that we have 
analysed for the X Y  model, i.e. of about 600 lattice units. 

From the behaviour of J1 and "/2 between /3 = 1.6 and /3 = 2.3 on the volumes 
L = 20, 26 and 32 we could determine the values of B and u using the assumptions 
already discussed for the X Y  model. The A/3 scaling from two different volumes L 1 
and L 2 leads to the equation 

2 ~ r [ / 3 ( L 1 ) - / 3 ( L z ) ] = l n  l+21r/3(L2 ) + l n  , (4.6) 

which essentially predicts a constant shift in /3 for the curves referring to couplings 
normalised at two different scales. 

The AJ  scaling (what we called before the AK scaling), neglecting the two loops 
corrections, leads to 

c o a s t  

and varies with the choice of the generalised where the constant is unknown 
coupling. 

Fig. 11 shows that the predicted constant shift in A/3 and A J  is indeed realised in 
the scaling region. We have therefore decided to compare directly in figs. 12a and 

[ ]  • [ ]  

[ ]  • U 

[ ]  • [ ]  

[ ]  • [ ]  

[] J2(L=20) 
,e, J2(L=26) 
[] J2(L=32) 

[ ]  • [ ]  

n u 9 1.7 1. 2.1 2 3  
I'J 

Fig. 11. The  behaviour  of  -/2 for different  volumes  as a funct ion  of ft. 
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Fig. 12. (a) The Aft shift  is compared with the theoretical asymptotic scaling law (full line) for the 
volumes L = 20 and L = 26 and the coupling J2. (b) The Aft shift is compared with the theoretical 

asymptotic scaling law (full line) for the volumes L = 26 and L = 32 and the coupling J2- 

12b the Aft obtained by imposing the matching of J2 between the L = 20 and 
L = 26 and between L = 26 and L = 32 respectively with the prediction of eq. (4.6). 
With three volumes one can eliminate the constant in eq. (4.7) and check the AJ 
shift for J2 at the same fi: this is shown in fig. 13. The choice of the fl points at 
different volumes has been made according to the A B shift expected theoretically: 
when used for the test of  the A J shift these points need interpolations which 
increase the size of the final error. The figures for the coupling 3"1 are of similar 
quality: the data for both couplings are collected in tables 3 and 4. The z3fl tends to 
be smaller than expected at small B because of a peak in the specific heat [12] 
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around /~ = 1.5 which, on volumes smaller than the ones we have used, produces 

even a fictitious matching of the block couplings, i.e. ,A/~ = 0. The decrease of Aft at 
the highest values of/~ can be justified with a shift of the critical temperature from 
zero to a finite value which is expected to occur on finite volumes. 

The results we have obtained exhibit the scaling behaviour predicted by the 
asymptot ic  freedom of the theory which implies the existence of a fixed point only 

at / ~ = ~ .  

5. Conclusions 

The X Y  and the Heisenberg model in two dimensions are both characterised by 
an essential singularity in the correlation length at the critical temperature. We have 
investigated their properties with the real space finite size renormalisation group 
method. The results confirm for the X Y  model the BKT analysis and in particular 
we obtain accurate determinations of the exponents u and 7. The possibility of a 
conventional algebraic transition turns out to be inconsistent and is excluded from 
our analysis. For the Heisenberg model the validity of the scaling law predicted by a 
weak coupling renormalisation group improved expansion is established, ruling out 
the existence of a phase transition at finite temperature. The results have been 
obtained on lattices by one- two order of magnitude smaller than those needed in 
previous analyses for reaching a comparable accuracy: actually, in the case of the 
exponent  for the X Y  model, our results are the most precise. The renormalisation 
group study of a finite size hamiltonian has proven an efficient and economical way 
of investigating the critical properties of theories with logarithmic scaling violations. 
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T h e  n u m e r i c a l  ca lcu la t ions  desc r ibed  in this p a p e r  a m o u n t  to a b o u t  one  h u n d r e d  

C P U  h o u r s  o f  the  C R A Y  X M P / 4 8  at C E R N .  W e  are  g ra te fu l  to the  C E R N  theo ry  

a n d  c o m p u t e r  d iv i s ions  for  the  t ime  a l loca t ed  to us and  in pa r t i cu l a r  to Eric  

M c I n t o s h  fo r  its ass is tance.  O n e  of  us (R.P.)  thanks  the  C E R N  theo ry  d iv i s ion  for  

t he  h o s p i t a l i t y  e x t e n d e d  to h i m  w h e n  this w o r k  was s tar ted .  
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