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Analytic Calculation of Anomalous Scaling in Random Shell Models for a Passive Scala
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An exact nonperturbative calculation of the fourth-order anomalous correction to the scaling behavior
of a random shell model for passive scalars is presented. Importance of ultraviolet (UV) and infrared
(IR) boundary conditions on the inertial scaling properties are determined. We find that anomalous
behavior is given by the null space of the inertial operator and we prove strong UV and IR independence
of the anomalous exponent. A limiting case where diffusive behavior can influence inertial properties
is also presented. [S0031-9007(97)03479-0]
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Recently, there has been growing evidence, both
merically and experimentally, that fully developed turb
lence is characterized by anomalous scaling of the velo
structure functionsFp ; kjysx 1 rd 2 ysxdjpl. In par-
ticular, it has been shown that, within the inertial ran
(i.e., h ø r ø L, h being the Kolmogorov dissipatio
scale andL the outer length of external forcing)Fpsrd ,
rzp , wherezp is a nonlinear function ofp which do not
follow dimensional counting, i.e.,zp fi

p
q zq. One of the

most challenging scientific issues is to develop a the
which allows a systematic computation ofzp by using the
equation of motions.

Recently [1–5] this issue has been addressed by st
ing a highly nontrivial “toy model” introduced by Kraich
nan, namely, the advection of a passive scalar by a rand
Gaussian velocity field, white in time, and whose tw
point velocity correlation function is given bykyisx, td 3

yjsx0, t0dl  dst 2 t0dDijsjx 2 x0jd, with Dijsxd 
Dijs0d 2 D̂ijsxd. Here,D̂ is thed-dimensional velocity-
field structure function: D̂ijsxd  D0jxjjfsd 2 1 1

jddij 2 jxixjjxj22g where the scaling exponent of th
second-order velocity structure function,j (0 ø j , 2),
is a free parameter. Higher order velocity-field correlat
functions are fixed by the Gaussian assumption.

Although such a choice is far from being realistic, ma
interesting analytical and phenomenological results h
been obtained for this toy model. Because of the delta
relation in time, moment equations to all orders are clos
In [1,6], for the first time Kraichnan gave the closed e
pression forS̃2srd, where

S̃psrd ; kjusxd 2 usx 1 rdjpl , rzp , (1)

usxd being the scalar field transported by the turbul
velocity field. In the inertial rangẽSpsrd , rzp and the set
of scaling exponentszp fully characterizes intermittency
In [1] a theory for all structure functions is proposed a
an explicit formula forzp is derived. The main physica
outcome is that all structure functions of order greater t
26 0031-9007y97y78(26)y4926(4)$10.00
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two have intermittent corrections and that intermitten
should be connected to some nontrivial matching betwe
advective and diffusive properties of the model.

In [2,3] it has been shown that intermittency of th
scalar structure functions is connected to the properties
the null space of the linear operator appearing in the eq
tion of multipoint passive scalar moments. Moreover,
[2,3] a perturbative expression of intermittency correctio
as a function of the parameterj and of the system di-
mensionality has been derived. Both in [1] and in [2,3
matching conditions at infrared (IR) and ultraviolet (UV
scales should be taken into account. The same prob
for the case of passive vectors was addressed in [7].
nally, in all cases, universality in the scaling exponents
supposed to be preserved.

In [8] two of us have worked out an even simpler to
model which displays connections to the physics of a p
sive scalar advected by a random velocity field, bei
at the same time more tractable both analytically a
numerically. In [8] the intermittent properties of a she
model for a passive scalar advected by a delta-correla
random velocity field have been investigated. The ma
results presented in [8] were that (i) the second-ord
structure function has no anomalous scaling, i.e.,z2 
2 2 j; (ii) all structure functions of order larger than tw
have anomalous corrections; and (iii) anomalous behav
tends to vanish when approaching the laminar regim
j  2. For all three points the model agrees with th
Kraichnan model.

The importance of UV and IR boundaries for th
anomalous scaling was left unanswered in [8]. In pa
ticular, numerical simulations were unable to distingui
among contribution coming from the inertial null spac
and possible singular behavior introduced by the bou
ary conditions.

In this Letter we show how to compute exactly an
nonperturbatively the inertial scaling behavior of th
fourth-order structure functions. The main result is th
the scaling properties are completely dominated by
© 1997 The American Physical Society
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null space of the inertial linear operator and strongly un
versal. The signature of UV and IR cutoffs is due to th
presence of subdominant terms which weakly perturb
pure-scaling behavior of the inertial operator. Anomalo
scaling is calculated for anyj . 0. We also present
some results which support the strong singular nature
the limit j ! 0, In this limit, due to the nonlocal nature
of interactions, it is not possible to neglect UV effects
the diffusive scale,kd, is taken fixed.

We first introduce a simplified version of the she
model discussed in Ref. [8]. The model is defined
terms of a shell discretization of the Fourier space in
set of wave numbers defined on a geometric progress
kn  ln, with l . 1. Passive increments at scalern 
k21

n are described by a complex variableunstd. The
time evolution is obtained according to the followin
criteria: (i) The linear term is a purely diffusive term give
by 2kk2

nun, (ii) the advection term is a combination o
the form knun0un00 , (iii) interacting shells are restricted to
nearest neighbors ofn, and (iv) in the absence of forcing
and damping the model preserves the volume in the ph
space and the passive energyE 

P
n junj2. Properties

(i), (ii), and (iv) are valid also for the original equation o
a passive scalar advected by a Navier-Stokes velocity fi
in the Fourier space, while property (iii) is an assumptio
of locality of interactions among modes. This assumpti
is rather well founded as long as0 ø j ø 2. The model
t
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is defined by the following equations (m  1, 2, . . .)∑
d
dt

1 kk2
m

∏
umstd  ifcmup

m11stdup
mstd

1 bmup
m21stdup

m21stdg 1 d1mfstd ,
(2)

where the star denotes complex conjugation andbm 
2km, cm  km11 for imposing energy conservation in the
zero diffusivity limit. Boundary conditions are defined
asu0  u0  0. The forcing term is Gaussian and delt
correlated: k fstdfst0dl  F1dst 2 t0d acts only on the
first shell. In numerical implementations, the model
truncated to a finite number of shellsN with the additional
boundary conditionsuN11  0.

Following Kraichnan [6] we assumed that the velocit
variablesumstd and the forcing termfstd are independent
complex Gaussian and white in time, with scaling law
kumstdup

nst0dl  dst 2 t0ddnmdm, dm  k2j
m . Because of

the delta correlation in time, we can close the equations
motion for all structure functions. Numerical simulation
show that the model has the same qualitative intermitten
of the model studied in [8].

In this Letter we concentrate on the nonperturbativ
analytic calculation of the fourth-order structure functio
Pmm  ksumup

md2l ~ k2z4
m (the lowest order with nontriv-

ial anomalous scaling). The closed equation satisfied
Pmq  ksumup

md suqup
qdl is
ÙPmq  sd1,mEm 1 d1,qEqdF1 2 ksk2
m 1 k2

qdPmq

1 f2Pmqc2
mdmssss1 1 dq,m11d 1 lj22s1 1 dq,m21dddd 1 Pm11,qc2

mdms1 1 dq,md
1 Pm21,qb2

mdm21s1 1 dq,md 1 sq $ mdg , (3)
g

to
is

ial

ns

e

where En  kunup
nl. We can symbolically represen

Eq. (3) as

ÙPmq  Imq,lpPlp 1 kDmq,lpPlp 1 Fmq , (4)

whereI andD are the inertial and the diffusive fourth
order tensor andF is the forcing term.

Our main result is derived by using the followin
ansatz: thesymmetricmatrix Pmq, which fully determines
the scaling properties for any fourth-order quantity in t
model, can be described as

Pn,n1l  ClPn,n sl $ 0d, Pn,n2l  DlPn,n sl $ 0d .
(5)

The independency ofCl and Dl from n is equivalent
to demand absence of strong boundary effects, i.e.,
matrix is formally infinite dimensional. Clearly this mus
be verifieda posteriori showing that the solution we ar
going to present is UV and IR stable.

Using (5) we obtain

Cl11

ClC1


Dl11

DlD1
,

e

the
t

which is equivalent to writePn1l,n1l  k
2z4

l Pn,n, where
ClyDl  k

2z4

l and z4  2s2 2 jd 2 r4. As usual we
indicate by r4 the anomalous correction to the scalin
exponent.

Let us notice that (5) does not force the solution
have global scaling invariance: only the diagonal part
requested to have pure scaling.

Let us proceed by analyzing (3) restricted to the inert
operator and for the diagonal (m  q) and subdiagonal
terms (q  m 2 1):

ÙPm,m  2Pm,mc2
mdmf21 2 x 1 2sC1 1 D1xdg , (6)

ÙPm,m21  2Pm,m21c2
mdm

3

√
21 2 4x 2 x2 1

x
D1

1
x 1 C2 1

x2C2

R

C1

!
,

(7)

where we have posedx  lj22 and R  C1yD1. By
plugging the scaling (5) in (7) one obtains two equatio
in three unknowns which can be taken to beC1 and the
ratiosC2yC1 andR. Numerical investigation suggests th
4927
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following “scaling ansatz”:

Pn,n1l  ClPn,n, with Cl  C1k
j22
l21 (8)

and

Pn,n2l  DlPn,n, with Dl  D1k
2sj22d2r4

l21 , (9)

where anomalous correction is felt only in the IR part
the matrix. By plugging this scaling in (7) we end u
with two equations in two unknowns and we can calc
late r4. Let us anticipate that this (wrong) assumptio
gives results in very good agreement with the numeric
simulations, indicating that the true solution is not ve
far from having pure scaling behavior. In order to solv
the full problem, without imposing any “pure scaling
behavior, we analyze the other entry of the matrixPn,q

with q fi n andq fi n 2 1. Let us putgl  Dl11yDl ,
dl  Cl11yCl .

It is then possible to show that forl . 1 by plugging
the scaling (5) in the inertial part of (3) and studying th
equation forÙPn,n6l we obtain two recursion equations:

2s1 1 xd s1 1 xld 1 glsR 1 xl11d 1

1
gl21

µ
xl 1

x
R

∂
 0 , (10)

s1 1 xd s1 1 xld 2 lz4 dlsR 1 xl11d 2

l2z4

dl21

µ
xl 1

x
R

∂
 0 . (11)

These two relations can indeed be seen as two maps c
necting successive values ofgl anddl, respectively. By
iterating forward (backward) the map (10) we move fro
the diagonal (IR boundary) to the IR boundary (diag
nal) along a row of the matrixPl,n. By iterating forward
(backward) the map (11) we move from the diagonal (U
boundary) to the UV boundary (diagonal) along a row
the matrixPl,n.

Let us first note that the two maps are not indepe
dent; i.e., they satisfy our scaling ansatzdl  Rgl and
therefore we are going to consider only one of the two
what follows. In order to test stability under weak pe
turbation of boundary conditions in the map (10) we a
interested in the behavior by backward iterations, i.e., it
ating froml  ` to l  0. In the limit l ! ` andj fi 2
the map (10) has only two fixed points corresponding
g

p
1  xyR and g

p
2  1yR. It turns out thatgp

1 is stable
for back iterations, i.e., iterating from the IR boundar
(l ¿ 1) to the diagonal (l  0). The global solution can
now be obtained by a self-consistent method. First, let
take as initial value forR the value that one would have
guessed from imposing pure scaling as discussed pr
ously, then we can iterate (10) from the boundary towa
the diagonal and find the value forC2yC1. This value
can be used to close (7) exactly. Next, with the improv
value for R, one can restart the full procedure getting
new improved value ofR and so on up to the momen
when the new value ofR reaches its fixed point.
4928
f

-
n
al
y
e

e

on-

-

V
f

n-

in
-
e
r-

to

y

us

vi-
rd

d
a

In Fig. 1 we show the computation ofr4 obtained by
numerical integration of Eq. (2) as a function ofj. In the
same figure we plot ther4 as a function ofj obtained
by the analytical solution previously discussed. As on
can see, the agreement is perfect. Let us notice that i
impossible to go by numerical simulations to values ofj

very near zero because of strong diffusive effects whi
completely destroy scaling behavior.

Let us notice that it is the strong stability under UV
and IR perturbations that allows us to iterate consisten
the procedure. We have therefore proved that anomal
scaling comes only from the inertial operator and that
shows a very strong degree of universality as a functi
of the forcing and dissipative mechanisms, at least
far as the situation withj  const. 0 and molecular
diffusivity k ! 0 is considered.

Some new and interesting phenomena happen when
are in the other possible asymptotic limit (j ! 0) and fixed
molecular diffusivity. A simple dimensional argumen
tells us that the following relation holds:

k  const3 k
2j
d , (12)

where withkd we mean a preassigned diffusive scale su
that all the inertial dynamics is atk ø kd . One can show
that in such a situation the diffusive operatorD in (4) gives
a contribution of the form

ÙPn,n  2const3 sknykddjk22j
n Pn,n . (13)

Therefore, the diffusive perturbation is absolutely neg
gible in the case whenj fi 0 is fixed andkd ! ` while it
becomes a singular perturbation whenkd is kept fixed and
j ! 0. A detailed analysis of relations (7) shows that i
the singular limitj ! 0 there appear an infinitesimal in-
terval of values ofj , 0, wherer4 ! 0; i.e., the anoma-
lous correction tends to vanish with a particular sha
which depends on the constants appearing in relation (1

As for the limit j ! 2, where nonlocal effects should
also be expected, we interpret the realistic behavior

FIG. 1. Analytical ansatz (continuous line) and numeric
results (squares) forr4 are plotted for various values ofj.
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our model in terms of the strong constraints imposed
conservation of energy. As in the Kraichnan model, t
energy contained in each shell shows a regular scal
En , kj22

n . Therefore forj ! 2 the inertial scales are
forced to be at equipartition, i.e., the most singular sta
allowed by the statistics. Hence, equipartition for all oth
structure functions follows.

Let us remark that the perfect agreement of our in
tial null-space solution with the numerical simulation pe
formed with finite diffusivity and in the presence of forcin
is the clear demonstration that the scaling behavior is co
pletely dominated by the inertial operator. For any fin
system, IR and UV effects weakly perturb the pure scal
solution. Our result shows that the inertial operator is p
fectly suitable for picking all anomalous aspects but in t
case where strong nonlocal interactions (dynamically p
duced) completely destroy inertial properties introduci
diffusive effects at all scales (j ! 0 andkd fixed).
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