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Analytic Calculation of Anomalous Scaling in Random Shell Models for a Passive Scalar
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An exact nonperturbative calculation of the fourth-order anomalous correction to the scaling behavior
of a random shell model for passive scalars is presented. Importance of ultraviolet (UV) and infrared
(IR) boundary conditions on the inertial scaling properties are determined. We find that anomalous
behavior is given by the null space of the inertial operator and we prove strong UV and IR independence
of the anomalous exponent. A limiting case where diffusive behavior can influence inertial properties
is also presented. [S0031-9007(97)03479-0]

PACS numbers: 47.27.Gs, 47.27.Jv

Recently, there has been growing evidence, both nuwo have intermittent corrections and that intermittency
merically and experimentally, that fully developed turbu-should be connected to some nontrivial matching between
lence is characterized by anomalous scaling of the velocitgdvective and diffusive properties of the model.
structure functiong, = (lv(x + r) — v(x)[?). In par- In [2,3] it has been shown that intermittency of the
ticular, it has been shown that, within the inertial rangescalar structure functions is connected to the properties of
(i,e., n < r < L, n being the Kolmogorov dissipation the null space of the linear operator appearing in the equa-
scale and. the outer length of external forcing),(r) ~  tion of multipoint passive scalar moments. Moreover, in
r*r, wherez, is a nonlinear function op which do not [2,3] a perturbative expression of intermittency correction,
follow dimensional counting, i.ez, # §zq. One of the as a function of the parametgr and of the system di-
most challenging scientific issues is to develop a theorynensionality has been derived. Both in [1] and in [2,3],
which allows a systematic computationf by using the  matching conditions at infrared (IR) and ultraviolet (UV)
equation of motions. scales should be taken into account. The same problem

Recently [1-5] this issue has been addressed by studyer the case of passive vectors was addressed in [7]. Fi-
ing a highly nontrivial “toy model” introduced by Kraich- nally, in all cases, universality in the scaling exponents is
nan, namely, the advection of a passive scalar by a randoraypposed to be preserved.

Gaussian velocity field, white in time, and whose two- In [8] two of us have worked out an even simpler toy
point velocity correlation function is given bip;(x, 7) X model which displays connections to the physics of a pas-
v;(x/,1')) = 8(r — t')D;j(Ix — x']), with D;;(x) = sive scalar advected by a random velocity field, being
D;;(0) — D,;(x). Here,D is thed-dimensional velocity- at the same time more tractable both analytically and
field structure function: ﬁij(X) = Dolx|¢[(d — 1 + numerically. In [8] the intermittent properties of a shell
5)514]- - fxixj|x|72] where the scaling exponent of the model for a passive scalar advected by a delta-correlated
second-order velocity structure functich(0 < ¢ < 2), random velocity field have been investigated. The main
is a free parameter. Higher order velocity-field correlationresults presented in [8] were that (i) the second-order
functions are fixed by the Gaussian assumption. structure function has no anomalous scaling, ife.=

Although such a choice is far from being realistic, many2 — ¢; (ii) all structure functions of order larger than two
interesting analytical and phenomenological results havBave anomalous corrections; and (jii) anomalous behavior
been obtained for this toy model. Because of the delta cotends to vanish when approaching the laminar regime,
relation in time, moment equations to all orders are closed = 2. For all three points the model agrees with the
In [1,6], for the first time Kraichnan gave the closed ex-Kraichnan model.

pression forS,(r), where The importance of UV and IR boundaries for the
anomalous scaling was left unanswered in [8]. In par-
S,(r) =(0(x) — 0(x + ") ~ rér, (1) ticular, numerical simulations were unable to distinguish

among contribution coming from the inertial null space
0(x) being the scalar field transported by the turbulentand possible singular behavior introduced by the bound-
velocity field. In the inertial rang8,(r) ~ ré and the set ary conditions.
of scaling exponentg, fully characterizes intermittency. In this Letter we show how to compute exactly and
In [1] a theory for all structure functions is proposed andnonperturbatively the inertial scaling behavior of the
an explicit formula forg), is derived. The main physical fourth-order structure functions. The main result is that
outcome is that all structure functions of order greater thathe scaling properties are completely dominated by the
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null space of the inertial linear operator and strongly uni- is defined by the following equations:(= 1,2, ...)

versal. The signature of UV and IR cutoffs is due to the

presence of subdominant terms which weakly perturb the =  ,z2 }gm(t) = i[enb . (D, (1)

pure-scaling behavior of the inertial operator. Anomalous- dt " " "

scaling is calculated for any > 0. We also present + b8 (Oul,_ ()] + S1uf (1),

some results which support the strong singular nature of )

the limit £ — 0, In this limit, due to the nonlocal nature

of interactions, it is not possible to neglect UV effects if where the star denotes complex conjugation apd=

the diffusive scalek,, is taken fixed. —km, cm = kn+1 fOrimposing energy conservation in the
We first introduce a simplified version of the shell zero diffusivity limit. Boundary conditions are defined

model discussed in Ref. [8]. The model is defined inasup = 6y = 0. The forcing term is Gaussian and delta

terms of a shell discretization of the Fourier space in aorrelated:( f(z)f(¢')) = F,6(t — ') acts only on the

set of wave numbers defined on a geometric progressidiirst shell. In numerical implementations, the model is

k, = A", with A > 1. Passive increments at scale = truncated to a finite number of sheNswith the additional

k, ! are described by a complex variabig(r). The boundary conditiongy; = 0.

time evolution is obtained according to the following Following Kraichnan [6] we assumed that the velocity

criteria: (i) The linear term is a purely diffusive term given variablesu,,(r) and the forcing terny(s) are independent

by —«k28,, (ii) the advection term is a combination of complex Gaussian and white in time, with scaling law:

the formk, 0, u,», (iii) interacting shells are restricted to (u,,(1)u;,(t')) = 6(t — t")8pmdm, d = k,¢. Because of

nearest neighbors of, and (iv) in the absence of forcing the delta correlation in time, we can close the equations of

and damping the model preserves the volume in the phageotion for all structure functions. Numerical simulations

space and the passive enery= >, |6,|>. Properties show that the model has the same qualitative intermittency

(i), (i), and (iv) are valid also for the original equation of of the model studied in [8].

a passive scalar advected by a Navier-Stokes velocity field In this Letter we concentrate on the nonperturbative

in the Fourier space, while property (iii) is an assumptionanalytic calculation of the fourth-order structure function

of locality of interactions among modes. This assumptionP,,,, = ((0,,0%)) = k% (the lowest order with nontriv-

is rather well founded as long s« ¢ < 2. The model ial anomalous scaling). The closed equation satisfied by

| Pg = ((010},) (040)) is

qu = (51,mEm + Sl,qEq)Fl - K(k’%1 + k;)qu
+ [_qucidm((l + 6q,m+l) + )\f_z(l + (Sq,m*l)) + Pm+l,qc;%qdm(1 + 6q,m)
+ Pm—l,qbrzndm—l(l + 6q,m) + (61 - m)], (3)

where E, = (6,0;). We can symbolically represenlt which is equivalent to WriteP,, 4, ,+; = k,_QP,m, where

Eqg. (3) as C/Di =k * and & =22 — £€) — ps. As usual we
. indicate by p4 the anomalous correction to the scaling
qu = -Imq,lpPlp + Kqu,lpPlp + .,qu P (4) exponent.

Let us notice that (5) does not force the solution to
have global scaling invariance: only the diagonal part is
requested to have pure scaling.

where I andD are the inertial and the diffusive fourth-
order tensor andf is the forcing term.

Our main result is derived by using the following X . N
. ; ; ; : Let us proceed by analyzing (3) restricted to the inertial
ansatz: thesymmetricmatrix P,,,, which fully determines operator and for the diagonan(= ¢) and subdiagonal

the scaling properties for any fourth-order quantity in the - :
model, can be described as terms ¢ = m — 1).

Pn,n+l = CIPn,n (l = 0)’ Pn,n*l = DIPn,n (l = 0) Pm,m = 2Pm,mc,%1dm[_1 - x + 2(C1 + Dlx)], (6)
(5) Pm,m—l = 2Pm,m—lc,%1dm

The independency o€; and D; from »n is equivalent % (_1 Car 2 Xy
to demand absence of strong boundary effects, i.e., the D, C,
matrix is formally infinite dimensional. Clearly this must 7)
be verifieda posteriorishowing that the solution we are
going to present is UV and IR stable.

Using (5) we obtain

XZCZ

X x+C2+R>

where we have posed = A2 andR = C;/D,. By
plugging the scaling (5) in (7) one obtains two equations
Cit1 _ D+ in three unknowns which can be taken to Ge and the
C,Cy DD’ ratiosC,/C; andR. Numerical investigation suggests the
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following “scaling ansatz”: In Fig. 1 we show the computation @f; obtained by
P, = C/P,,. WithC; = C1k1§:12 (8) numeripal integration of Eq. (2) as aft_mctionghf In_the
| | same figure we plot the, as a function of¢é obtained
_ -2)-ps by the analytical solution previously discusse(_j. As one
Pyy—1 = DiP,,, With D; = Dik;_; , (9) can see, the agreement is perfect. Let us notice that it is
where anomalous correction is felt only in the IR part ofimpossible to go by numerical simulations to valuestof
the matrix. By plugging this scaling in (7) we end up Very near zero becausg of strong diffusive effects which
with two equations in two unknowns and we can calcu-Completely destroy scaling behavior. .
late p,. Let us anticipate that this (wrong) assumption L€t us notice that it is the strong stability under UV
gives results in very good agreement with the numerica®nd IR perturbations that allows us to iterate consistently
simulations, indicating that the true solution is not verythe procedure. We have therefore proved that anomalous
far from having pure scaling behavior. In order to solveScaling comes only from the inertial operator and that it
the full problem, without imposing any “pure scaling” Shows & very strong degree of universality as a function
behavior, we analyze the other entry of the matix, of the forcing and dissipative mechanisms, at least as

and

with ¢ # n andg # n — 1. Letus puty; = D;+,/D;, far as the situation withé = const> 0 and molecular
8 = Ci+1/C. diffusivity k — 0 is considered.
It is then possible to show that fér> 1 by plugging Some new and interesting phenomena happen when we

the scaling (5) in the inertial part of (3) and studying the@r€ in the other possible asymptotic limit > 0) and fixed

equation forP,, ,+; we obtain two recursion equations: molecular diffusivity. ' A simple dimensional argument
T tells us that the following relation holds:

1 I+1 _
(100 +x) + yR A+ X x = constx k¢, (12)
L <xl + ﬁ) =0, (10) where withk; we mean a preassigned diffusive scale such
Yi-1 R that all the inertial dynamics is &t < k;. One can show
, P . that in such a situation the diffusive operafrin (4) gives
(I +x)(1+x")—A%5(R +x'7) — a contribution of the form
—& .
g <x’ + %) -0. (11 Py, = —constX (k,/ka)sks $P,,.  (13)
-1

Therefore, the diffusive perturbation is absolutely negli-

These two relations can indeed be seen as two maps cogible in the case whe&é # 0 is fixed andk; — o while it
necting successive values ¢f and §;, respectively. By becomes a singular perturbation whenis kept fixed and
iterating forward (backward) the map (10) we move fromé — 0. A detailed analysis of relations (7) shows that in
the diagonal (IR boundary) to the IR boundary (diago-the singular limit¢ — 0 there appear an infinitesimal in-
nal) along a row of the matri®,,. By iterating forward terval of values o€ ~ 0, wherep, — 0, i.e., the anoma-
(backward) the map (11) we move from the diagonal (UVlous correction tends to vanish with a particular shape
boundary) to the UV boundary (diagonal) along a row ofwhich depends on the constants appearing in relation (12).
the matrixP; . As for the limit & — 2, where nonlocal effects should

Let us first note that the two maps are not indepenalso be expected, we interpret the realistic behavior of
dent; i.e., they satisfy our scaling ansadtz= Ry, and
therefore we are going to consider only one of the two in .,
what follows. In order to test stability under weak per-
turbation of boundary conditions in the map (10) we are
interested in the behavior by backward iterations, i.e., iter- o040 |
ating from/ = «to! = 0. Inthe limit/ — ©and¢ # 2
the map (10) has only two fixed points corresponding to
¥i = x/R andy> = 1/R. It turns out thaty; is stable
for back iterations, i.e., iterating from the IR boundary «
(I > 1) to the diagonal (= 0). The global solution can
now be obtained by a self-consistent method. First, let us
take as initial value foR the value that one would have
guessed from imposing pure scaling as discussed previ- o0 |
ously, then we can iterate (10) from the boundary toward
the diagonal and find the value far,/C,. This value

0.30 |

0.20

can be used to close (7) exactly. Next, with the improved %5 05 1.0 15 2.0
value for R, one can restart the full procedure getting a §

new improved value ok and so on up to the moment FiG. 1. Analytical ansatz (continuous line) and numerical
when the new value aR reaches its fixed point. results (squares) fqs, are plotted for various values gf
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our model in terms of the strong constraints imposed by Discussions with B. Dubrulle, G. Falkovich, U. Frisch,
conservation of energy. As in the Kraichnan model, thd. Procaccia, and M. Vergassola are kindly acknowledged.
energy contained in each shell shows a regular scaling:
E, ~ kﬁ_z. Therefore foré — 2 the inertial scales are
forced to be at equipatrtition, i.e., the most singular status
allowed by the statistics. Hence, equipartition for all other
structure functions follows. [1] R.H. Kraichnan, Phys. Rev. Leff2, 1016 (1994).
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