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Self-scaling properties of velocity circulation in shear flows
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We investigate the scaling properties of the velocity circulation of a turbulent shear flow. We evaluate, using
extended self-similarity, the circulation scaling exponents both at maximum and minimum shear regions. We
show that the anomalous component of the velocity circulation and the anomalous component of the velocity
structure functions are equas1063-651X97)11202-9

PACS numbg(s): 47.27—i, 05.45+b

Fluctuations of the energy dissipation and intermittencyargue, for example, that in cases with strong anisotropic ef-
of the velocity-field inertial-range statistics are two of the fects, observables with different rotational properties would
most important features of fully developed turbulent flows. Ahave different scaling exponerits].
guantitative measure of intermittency is usually given by the In this paper we examine circulation scaling properties by
set of scaling exponents, of then-order structure functions, using numerical data from @D) shear flow simulatiof6].
namely, The presence of a shear in the flow allows us to also address

questions concerning the not universal character of scaling
Fa(r)=(] 8" ~rn. (1) laws for anisotropic turbulence. We show that velocity dif-
ference and circulation structure functions scaling exponents
According to the original Kolmogorov theoryK4l) [1]  have the same anomalous contribution, even if @gjis not
{,=n/3, while deviations from this law are due to intermit- ygjid.
tency corrections. First we briefly summarize some details of our simulation,

It has been argued that vortex filaments are the basic gegnd we present our data analysis. In order to measure the
metrical objects for describing possible dominant and subscaling properties of the circulation structure functions we
dominant contributions to the K41 power laws. In this frame-sha” use extended Se|f-simi|ari(ESS as recenﬂy proposed
work, multifractal deviations to K41 have also been[7-9.
phenomenologically explained in terms of scaling properties  Qur data set comes from a simulatifé] of a 3D turbu-
of vortex filamentg2]. lent shear flow, in a volume of =160 (with our choice of

In this paper we investigate a possible bridge between thgarameters, one lattice spacing is about one Kolmogorov

velocity-differences intermittency, measured by the scalingcale 5, and R, ~40). The flow is forced such that the un-
exponents of structure functions, and the scaling propertiestaple static solution of thN-S equations is

of velocity circulations around a conto@, namely:

. . U,~sin(k,z) U,=0 U,=0, 4
I'(C)= i v-d|=Lw-da, ?) g

with k,=87/L being the wave vector corresponding to the
wherew is the vorticity field andS is any surface, lying on integral scales. In this way the shear has a spatial dependence
the contourC. It has been emphasized that circulation is theS(2) ~c0sk.2).
ideal observable, able to highlight both velocity and vorticity =~ Some analysis of velocity statistics for the same data set
scaling properties, and eventually linking the two statisticshave already been publishftb—12. It has been shown that
[3]. According to dimensional arguments, the most naturathe scaling exponents of the velocity structure function are

ansat4], is that circulation structure function,,(r), scale  strongly dependent on the presence of shear. We have evalu-
as atedI'(r) according to definitior§2) for all squared contours

with a fixed areaA=r?, with r extending from the dissipa-
Gn(r)={|T(r)|™~Fn(r)r", (3) tive range to the integral scales, at two differentevels
corresponding to a maximum and a minimum shear level,
wherel’(r) means the circulation evaluated around a contourespectively. As recently pointed out ], we find that the
of radiusr. We investigate the validity of Ed3) which has  probability distribution function of'(r) depends only on the
been recently observed not to be satisfigdl]. areaA enclosed by the contou€, independently of the
It is of primary interest to determine whether guantitiesshape of the contour itself.
with the same physical dimension, but different tensorial The scaling exponents @& ,(r) are defined, in the inertial
structure, have the same scaling properties. It is natural tcange, as
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Let us first mention that, similarly to what happens for the ~ s
structure functionsF,(r), due to the moderate Reynolds & ol &
number of our simulation we are unable to detect a scaling = )
law of G,(r) with respect to the scale[see Fig. 1, where o
the log-log plots ofG,(r) versusr, for n=2,4,6 are showh sk 7 J
It is therefore useful to use ESS in order to improve the s
quality and the extension of the scaling regime. In the fol- ,
lowing we introduce the exponenis, defined as -20 ' ' ' t ! . '
12 10 8 6 -4 -2 0 2 4
(b) In Gy(r)
Gp(r)~[Gs(r)]™. (6)

FIG. 2. (a) G5 vs Gg, in the minimum shear zongb) Gg vs

G3, in the maximum shear zone. The straight lines correspond to
In Fig. 2@ we plot G5 versusG; in the minimum shear the best fit done in the inertial range, the slopes-aye 1.60 in(a)
zone. As one can see, a good scaling range is detected. Thad ys=1.56 in(b).
best fit done in the inertial range has a sloge=1.60, while
the best fit done in the dissipative range has the slop
v5=5/3, as expected in the laminar zone from standard di
mensional analysis.

In Ref. [4] there has been a first attempt to understand
whether Eq(7) is verified or not. Here we show that there is
a relationship betweef, and y,, although this relation is

Similar results have been obtained also for other structur8°t 9/Ven by Eq_.(7) ' .
functions. The corresponding scaling exponents are shown in V& cannot directly check Eq7) because neitheG,(r)
Table I. These values are different from the dimensional preP©" Fn(r) show a clear scaling range with respect i¢iow-
diction v, = n/3, giving the first positive evidence for anoma- €Ver, according to Eq(3), the quantityH,=G,/F, must
lous scaling ofG,(r). In Fig. 2b) we plot Gy versusG; at ~ S"OW a dimensional scaling, namely,
the maximum shear. At variance with the analogous analysis H,(r)~H,(r)"m @)
performed on the velocity structure functiofeee[6] for a
detailed discussionthe circulation exhibits a wide scaling Let us remark that Eq8) is a condition weaker than E¢B)
region, allowing us to give an estimate for the scaling expo-or Eq. (7), namely, Eq.(8) is satisfied for any functional
nent. They, for the maximum shear case are also reported irrelation of the form
Table I. Comparing Figs. (8 and 2b), we can see that
whereas at the minimum shear level the scaling region b
gins at few Kolmogorov scales, namelyypb, the scaling
region at the maximum shear level is smaller, beginning a
about 9, (see[6] for a discussion on this point

Using Eq.(3), in the inertial range we obtain

_ TABLE |. Scaling exponentsy,: at the minimum sheaffirst
qine), and at the maximum shedsecond ling The error in the
?stimates of the exponents is 2%.

Y1 Y2 Y4 Vs Ve

min sh 0.35 0.68 1.30 1.60 1.89
max sh 0.36 0.69 1.29 1.56 1.81

Xn={ntN. (7
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FIG. 3. Log-log plot of relatior(8) for n=6, m=3 at the maxi- 45 ' ! ' ! 7 !
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In Fig. 3, we plotHg versusH ; for the minimum and maxi- &l
mum shear. As one can see, there is a wide scaling region %5 ¥ ¥
extending from the smallest to the integral scale of motion. 0 . ! L ! . !
The corresponding scaling exponents have been found to sat- 0 1 2 3 4 5 6 7
isfy the simple dimensional scalir@) [d(6,3)=1.98 for the  ®) n

minimum shear andl(6,3)=1.97 for the maximum shehr
We have found that Eq8) is satisfied(within 2%) for all
n,me[1,6]. This is our main result.

According to Eq.(9) and to the results so far obtained,
one may argue that in the inertial range the function
F(vln,;) behaves as“s. It follows that in the inertial range,
Eq. (9) becomes

FIG. 4. (a) Plot of INGx(r)/Fs(r)] vs Inr. The two straight lines
correspond to the best fit in the dissipative range and to the best fit
in the inertial range.(b) Plot of a(p) vs p for the maximum
(squaresand minimum(circles shear. The best fitdlashed lines
have the following slopesa;=0.68 for the minimum shear and
as=0.54 for the maximum shear.

~ypan) o .
Ha(r)~r ™, (10 much clearer. Within numerical error we do not see any

strong differences between scaling properties of circulation

with a(n)=agn. Surprisingly enough, scalinglO) holds  strycture functions at minimum and maximum shear.
rather clearly in our simulation. From Fig. 4b) we conclude that the anomalous scaling of

In Fig. 4@ we show, in a log-log plot, the ratibls(r)  velocity circulation is equal to the anomalous scaling of ve-
versusr for n=5. We can easily recognize two scaling re- |ocity structure functions, in the sense that
gions: the first one is in the dissipative region, where the best
fit has a slope close to 5, the second one is in the inertial
range, with a slope 3.20. In Fig(®) we plot the exponents
a(n) vs n, for the minimum and maximum shear. In both
casesa(n) falls on a straight linex(n) = a4, with a5 de-  Figure 4b) shows thatag is a nonuniversal quantity, its
pending on the shear. The best fits in the figure correspond tealue may depend on geometrical constraints. One may ar-
as=0.68 for the minimum shear ane,=0.54 for the maxi- gue, that such dependency is due to the stretching and fold-
mum shear. We have no clear explanation for the depering of vorticity structures induced by the shear. Nevertheless,
dency ofag on the shear strength. because the nonlinear dependencygfrom n is always the

In this paper we have mainly investigated the self-scalingsame, one may argue that the analysis of intermittency, in
properties of the velocity circulation. Indeed at the maximumterms of the scaling exponents of the velocity circulation,
shear, the velocity-field structure functions has a poomoes not need different physical interpretations with respect
scaling behaviof6], whereas the scaling @,(r) vs G; is  to those already proposed for the velocity structure function.

Xn— {n=agn. (11
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