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Self-scaling properties of velocity circulation in shear flows
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We investigate the scaling properties of the velocity circulation of a turbulent shear flow. We evaluate, using
extended self-similarity, the circulation scaling exponents both at maximum and minimum shear regions. We
show that the anomalous component of the velocity circulation and the anomalous component of the velocity
structure functions are equal.@S1063-651X~97!11202-8#

PACS number~s!: 47.27.2i, 05.45.1b
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Fluctuations of the energy dissipation and intermitten
of the velocity-field inertial-range statistics are two of t
most important features of fully developed turbulent flows
quantitative measure of intermittency is usually given by
set of scaling exponentszn of then-order structure functions
namely,

Fn~r ![^ud rvun&;r zn. ~1!

According to the original Kolmogorov theory~K41! @1#
zn5n/3, while deviations from this law are due to interm
tency corrections.

It has been argued that vortex filaments are the basic
metrical objects for describing possible dominant and s
dominant contributions to the K41 power laws. In this fram
work, multifractal deviations to K41 have also bee
phenomenologically explained in terms of scaling proper
of vortex filaments@2#.

In this paper we investigate a possible bridge between
velocity-differences intermittency, measured by the scal
exponents of structure functions, and the scaling proper
of velocity circulations around a contourC, namely:

G~C![ R
C
vW •dlW5E

S
vW •dsW , ~2!

wherevW is the vorticity field andS is any surface, lying on
the contourC. It has been emphasized that circulation is t
ideal observable, able to highlight both velocity and vortic
scaling properties, and eventually linking the two statist
@3#. According to dimensional arguments, the most natu
ansatz@4#, is that circulation structure functions,Gn(r ), scale
as

Gn~r !5^uG~r !un&;Fn~r !r n, ~3!

whereG(r ) means the circulation evaluated around a cont
of radiusr . We investigate the validity of Eq.~3! which has
been recently observed not to be satisfied@3,4#.

It is of primary interest to determine whether quantiti
with the same physical dimension, but different tenso
structure, have the same scaling properties. It is natura
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argue, for example, that in cases with strong anisotropic
fects, observables with different rotational properties wo
have different scaling exponents@5#.

In this paper we examine circulation scaling properties
using numerical data from a~3D! shear flow simulation@6#.
The presence of a shear in the flow allows us to also add
questions concerning the not universal character of sca
laws for anisotropic turbulence. We show that velocity d
ference and circulation structure functions scaling expone
have the same anomalous contribution, even if Eq.~3! is not
valid.

First we briefly summarize some details of our simulatio
and we present our data analysis. In order to measure
scaling properties of the circulation structure functions
shall use extended self-similarity~ESS! as recently proposed
@7–9#.

Our data set comes from a simulation@6# of a 3D turbu-
lent shear flow, in a volume ofV51603 ~with our choice of
parameters, one lattice spacing is about one Kolmogo
scalehk andRl;40). The flow is forced such that the un
stable static solution of theN-S equations is

Ux;sin~kzz! Uy50 Uz50, ~4!

with kz58p/L being the wave vector corresponding to t
integral scales. In this way the shear has a spatial depend
S(z);cos(kzz).

Some analysis of velocity statistics for the same data
have already been published@10–12#. It has been shown tha
the scaling exponents of the velocity structure function
strongly dependent on the presence of shear. We have e
atedG(r ) according to definition~2! for all squared contours
with a fixed areaA5r 2, with r extending from the dissipa
tive range to the integral scales, at two differentz levels
corresponding to a maximum and a minimum shear lev
respectively. As recently pointed out in@4#, we find that the
probability distribution function ofG(r ) depends only on the
areaA enclosed by the contourC, independently of the
shape of the contour itself.

The scaling exponents ofGn(r ) are defined, in the inertia
range, as
3739 © 1997 The American Physical Society
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Gn~r !;r xn. ~5!

Let us first mention that, similarly to what happens for t
structure functions,Fn(r ), due to the moderate Reynold
number of our simulation we are unable to detect a sca
law of Gn(r ) with respect to the scaler @see Fig. 1, where
the log-log plots ofGn(r ) versusr , for n52,4,6 are shown#.
It is therefore useful to use ESS in order to improve
quality and the extension of the scaling regime. In the f
lowing we introduce the exponentsgn defined as

Gn~r !;@G3~r !#gn. ~6!

In Fig. 2~a! we plot G5 versusG3 in the minimum shear
zone. As one can see, a good scaling range is detected
best fit done in the inertial range has a slopeg551.60, while
the best fit done in the dissipative range has the sl
g555/3, as expected in the laminar zone from standard
mensional analysis.

Similar results have been obtained also for other struc
functions. The corresponding scaling exponents are show
Table I. These values are different from the dimensional p
dictiongn5n/3, giving the first positive evidence for anom
lous scaling ofGn(r ). In Fig. 2~b! we plotG5 versusG3 at
the maximum shear. At variance with the analogous anal
performed on the velocity structure functions~see@6# for a
detailed discussion!, the circulation exhibits a wide scalin
region, allowing us to give an estimate for the scaling ex
nent. Thegn for the maximum shear case are also reported
Table I. Comparing Figs. 2~a! and 2~b!, we can see tha
whereas at the minimum shear level the scaling region
gins at few Kolmogorov scales, namely, 5hk , the scaling
region at the maximum shear level is smaller, beginning
about 9hk ~see@6# for a discussion on this point!.

Using Eq.~3!, in the inertial range we obtain

xn5zn1n. ~7!

FIG. 1. Log-log plots ofGn(r ) vs r , for n52 ~diamonds!,
n54 ~crosses!, n56 ~squares!.
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In Ref. @4# there has been a first attempt to understa
whether Eq.~7! is verified or not. Here we show that there
a relationship betweenzn and xn , although this relation is
not given by Eq.~7!.

We cannot directly check Eq.~7! because neitherGn(r )
norFn(r ) show a clear scaling range with respect tor . How-
ever, according to Eq.~3!, the quantityHn[Gn /Fn must
show a dimensional scaling, namely,

Hn~r !;Hm~r !n/m ~8!

Let us remark that Eq.~8! is a condition weaker than Eq.~3!
or Eq. ~7!, namely, Eq.~8! is satisfied for any functiona
relation of the form

TABLE I. Scaling exponentsgn : at the minimum shear~first
line!, and at the maximum shear~second line!. The error in the
estimates of the exponents is 2%.

g1 g2 g4 g5 g6

min sh 0.35 0.68 1.30 1.60 1.89
max sh 0.36 0.69 1.29 1.56 1.81

FIG. 2. ~a! G5 vs G3, in the minimum shear zone.~b! G5 vs
G3, in the maximum shear zone. The straight lines correspon
the best fit done in the inertial range, the slopes areg551.60 in ~a!
andg551.56 in ~b!.
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Hn~r !5FS r

hk
D n. ~9!

In Fig. 3, we plotH6 versusH3 for the minimum and maxi-
mum shear. As one can see, there is a wide scaling re
extending from the smallest to the integral scale of moti
The corresponding scaling exponents have been found to
isfy the simple dimensional scaling~8! @d(6,3)51.98 for the
minimum shear andd(6,3)51.97 for the maximum shear#.
We have found that Eq.~8! is satisfied~within 2%! for all
n,mP@1,6#. This is our main result.

According to Eq.~9! and to the results so far obtaine
one may argue that in the inertial range the funct
F(v/h i) behaves asr as. It follows that in the inertial range
Eq. ~9! becomes

Hn~r !;r a~n!, ~10!

with a(n)[asn. Surprisingly enough, scaling~10! holds
rather clearly in our simulation.

In Fig. 4~a! we show, in a log-log plot, the ratioHn(r )
versusr for n55. We can easily recognize two scaling r
gions: the first one is in the dissipative region, where the b
fit has a slope close to 5, the second one is in the ine
range, with a slope 3.20. In Fig. 4~b! we plot the exponents
a(n) vs n, for the minimum and maximum shear. In bo
casesa(n) falls on a straight linea(n)5asn, with as de-
pending on the shear. The best fits in the figure correspon
as50.68 for the minimum shear andas50.54 for the maxi-
mum shear. We have no clear explanation for the dep
dency ofas on the shear strength.

In this paper we have mainly investigated the self-scal
properties of the velocity circulation. Indeed at the maximu
shear, the velocity-field structure functions has a p
scaling behavior@6#, whereas the scaling ofGn(r ) vsG3 is

FIG. 3. Log-log plot of relation~8! for n56,m53 at the maxi-
mum ~crosses! and minimum shear~diamonds!. Data at the maxi-
mum shear have been shifted along they axis of one unity. The
straight lines correspond to the best fit over all scales, the slope
d(6,3)51.97 for the maximum shear andd(6,3)51.98 for the
minimum shear.
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much clearer. Within numerical error we do not see a
strong differences between scaling properties of circulat
structure functions at minimum and maximum shear.

From Fig. 4~b! we conclude that the anomalous scaling
velocity circulation is equal to the anomalous scaling of v
locity structure functions, in the sense that

xn2zn5asn. ~11!

Figure 4~b! shows thatas is a nonuniversal quantity, its
value may depend on geometrical constraints. One may
gue, that such dependency is due to the stretching and f
ing of vorticity structures induced by the shear. Neverthele
because the nonlinear dependency ofxn from n is always the
same, one may argue that the analysis of intermittency
terms of the scaling exponents of the velocity circulatio
does not need different physical interpretations with resp
to those already proposed for the velocity structure functi

re

FIG. 4. ~a! Plot of ln@G5(r)/F5(r)# vs lnr. The two straight lines
correspond to the best fit in the dissipative range and to the be
in the inertial range.~b! Plot of a(p) vs p for the maximum
~squares! and minimum~circles! shear. The best fits~dashed lines!
have the following slopes:as50.68 for the minimum shear and
as50.54 for the maximum shear.
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