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Multiscale correlation functions in high Reynolds number experimental turbulence and synth
signals are investigated. Fusion rule predictions as they arise from multiplicative, almost uncorrel
random processes for the energy cascade are tested. Leading and subleading contributions, in b
inertial and viscous ranges, are well captured by assuming a simple multiplicative random proces
the energy transfer mechanisms. [S0031-9007(98)05773-1]
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In stationary turbulent flows, a net flux of energy es
tablishes in the inertial range, i.e., from forced scales,L,
down to the dissipative scalerd . Energy is transferred
through a statistically scaling-invariant process, which
characterized by a strongly non-Gaussian (intermitten
activity. Understanding the statistical properties of inte
mittency is one of the most challenging open problems
three-dimensional fully developed turbulence.

Intermittency in the inertial range is usually analyze
by means of the statistical properties of velocity differ
ences,drusxd ­ usxd 2 usx 1 rd. In particular, in the
last twenty years [1], overwhelming experimental an
theoretical works focused on structure functions:Spsrd ­
kfdrusxdgpl. A wide agreement exists on the fact tha
structure functions show a scaling behavior in the lim
of very high Reynolds numbers, i.e., in the presence
a large separation between integral and dissipative sca
Lyrd ! `:

Spsrd ,
µ

r
L

∂z s pd
. (1)

The velocity fluctuations are anomalous in the sense th
z spd exponents do not follow the celebrated dimension
prediction made by Kolmogorov,z spd ­ py3. In fact,
z spd are observed to be a nonlinear function ofp, which
is the most important signature of the intermittent transf
of fluctuations from large to small scales.

In order to better characterize the transfer mechanis
it is natural to look also at correlations among velocit
fluctuations at different scales. Multiscale correlatio
functions should play in turbulence the same role playe
by correlation functions in critical statistical phenomena.

Recently, some theoretical work [2,3] and an ex
ploratory experimental investigation [4] have been de
voted to the behavior of multiscale velocity correlations:

Fp,qsr , Rd ; kfusx 1 rd 2 usxdgpfusx 1 Rd 2 usxdgql

; kfdrusxdgpfdRusxdgql (2)
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with rd , r , R , L. When the smallest among the
two scalesr goes beyond the dissipative scales,rd , new
properties of the correlation functions (2) may arise due
the nontrivial physics of the dissipative cutoff. From no
on, we will mostly concentrate on correlation function
with both r and R in the inertial range. Moreover, in
order to simplify our discussion, we will confine ou
analysis for the case of longitudinal velocity differences

Stochastic cascade processes are simple and
known useful tools to describe the leading phenomen
ogy of the intermittent energy transfer in the inertia
range. Both anomalous scaling exponents and visc
effects [1,5] can be reproduced by choosing a suita
random process for the multiplier,W sr , Rd, which con-
nects velocity fluctuations at two different scales,R . r.

The main finding of this Letter is that experimenta
multiscale correlations (2) are inquantitativeagreement,
for any separation of scaleryR, with the prediction
one obtains by using a pure uncorrelated multiplicati
process for the energy cascade.

The main idea turns around the hypothesis that sm
scale statistics is fully determined by a cascade proc
conditioned to some large scale configuration:

drusxd ­ W sr , RddRusxd , (3)

where, requiring homogeneity along the cascade proce
the random functionW should depend only on the ratio
ryR. Structure functions are then described in terms
the W process:Spsrd ­ CpkfW sryLdgpl, where Cp ­
kfdLusxdgpl if the stochastic multiplier may be considere
almost uncorrelated with the large-scale velocity fiel
Pure power laws arise in the high Reynolds regime:
this limit we must havekfW s r

R dgpl , s r
R dz spd. In the

same framework, it is straightforward to give the leadin
prediction for the multiscale correlation functions (2):

Fp,qsr , Rd ,
ø∑

W

µ
r
R

∂∏p∑
W

µ
R
L

∂∏p1q¿
, (4)
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which becomes in the hypothesis of negligible correla
tions amongmultipliers:

Fp,qsr , Rd ­ Cp,q

ø∑
W

µ
r
R

∂∏p¿ ø∑
W

µ
R
L

∂∏p1q¿
,

Spsrd
SpsRd

Sp1qsRd . (5)

This expression was for the first time proposed in [6,7
and later extensively studied in [2]. In the latter paper th
expression (5) was considered to rigorously express t
leading behavior of (2) whenryR ! 0 as long as some
weak hypothesis of scaling invariance and of universali
of scaling exponents in Navier-Stokes equations hold. L
us notice that, besides any rigorous claim, expressi
(5) is also the zeroth order prediction starting from
any multiplicative uncorrelated random cascade satisfyi
kfW s r

R dgpl ; SpsrdySpsRd.
In this Letter we address three main issues: (i) wheth

the prediction (5) gives the correct leading behavior in th
limit of large separation of scalesryR , 0, (ii) if this is
the case, what one can say about subleading behavior
separationryR , Os1d, and (iii) what happens to those
observable for which the “multiplicative prediction” (5)
is incorrect because of symmetry reasons. Indeed, let
notice that for a correlation like

F1,qsr, Rd ­ ksdrud sdRudql , (6)

the multiplicative prediction gives

F1,qsr , Rd ­
S1srd
S1sRd

S11qsRd .

Such a prediction is wrong because, if homogeneity c
be assumed,S1srd ­ 0 for all scalesr . In this case
prediction (5) does not represent the leading contributio

In this Letter we propose a systematic investigation
(2) in high Reynolds number experiments and synthe
signals. The main purpose consists in probing wheth
multiscale correlation functions may show new dynamic
properties (if any) which are not taken into account b
the standard simple multiplicative models for the energ
transfer.

Experimental data have been obtained in a wind tu
nel (Modane) with Rel ­ 2000. The integral scale is
L , 20 m and the dissipative scale isrd ­ 0.31 mm.
Synthetic signals are built in terms of wavelet decom
position with coefficients defined by a pure uncorrelate
random multiplicative process [8]. Such a signal shou
therefore show the strong fusion rules prediction (5) an
it will turn out to be a useful tool for testing how many
deviations from (5), observed in experiments or nume
cal simulations, are due to important dynamical effects
only to unavoidable geometrical corrections.

First of all, let us notice that for any one-dimensiona
string of numbers (such as the typical outcome of labor
tory experiments in turbulence) the multiscale correlation
(2) feel strong geometrical constraints. In particular w
-
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may always write down “Ward identities” (WI):

SpsR 2 rd ; khfusx 1 Rd 2 usxdg

2 fusx 1 rd 2 usxdgjpl (7)

­
X

k­0,p

bsk, pd s2dkFk,p2ksr , Rd , (8)

wherebsk, pd ­ p!yfk!sp 2 kd!g.
For example, forp ­ 2 we have

2F1,1sr , Rd ; S2srd 1 S2sRd 2 S2sR 2 rd

,
∑µ

r
R

∂z s2d
1 O

µ
r
R

∂∏
S2sRd , (9)

where the latter expression has been obtained by expa
ing S2sR 2 rd in the limit ryR ! 0. Forp ­ 3 we have

S3sR 2 rd ­ S3sRd 2 S3srd 1 3F2,1sr , Rd

2 3F1,2sr , Rd .

The Ward identities will turn out to be useful fo
understanding subleading predictions to the multiplicati
cascade process. One may argue that in a geometr
setup different from the one specified in (2) the same ki
of constraint will appear with eventually different weight
among different terms.

The main result presented in this Letter is that a
multiscale correlation functions are well reproduced
their leading term, r

R ! 0, by a simple uncorrelated
random cascade (5) and that their subleading contributi
r
R , Os1d, is fully captured by the geometrical constrain
previously discussed, namely, the Ward identities.

The recipe for calculating multiscale correlations wi
be the following: first, apply the multiplicative gues
for the leading contribution and look for geometrica
constraints in order to find out subleading terms. Seco
in all cases where the leading multiplicative contributio
vanishes because of underlying symmetries, look direc
for the geometrical constraints and find out what is t
leading contribution applying the multiplicative random
approximation to all, nonvanishing, terms in the WI.

Let us check the strong fusion rules predictio
(5) for moments with p . 1, q . 1. In Fig. 1 we
have checked the large scale dependency by plott
Fp,qsr , RdySp1qsRdSpsRd as a function ofR at fixed r,
for different values ofp, q.

The expression (5) predicts the existence of a plate
(independent ofR) at all scalesR where the leading
multiplicative description is correct.

From Fig. 2 one can see that, in the limit of large sep
rationR ! L at fixedr, Fp,qsr , RdySp1qsRdSpsRd shows
a tendency toward a plateau. On the other hand, there
clear deviations forryR , Os1d. Such deviations show
a very slow decay as a function of the scale separation

In order to understand the physical meaning of t
observed deviations to the fusion rules (5), we compa
in Fig. 1, the experimental data against the equivale
3245
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FIG. 1. Experimental and numericalFp,qsr , RdySp1qsRdSpsrd
at fixed r and changing the large scaleR. Circles correspond
to p ­ 2, q ­ 2 and diamonds top ­ 4, q ­ 2 for the
experimental data. Squares correspond top ­ 2, q ­ 2 and
triangles top ­ 4, q ­ 2 for the synthetic signal. Small scale
r is fixed to r ­ 16 in units of the Kolmogorov scale. The
data forp ­ 4, q ­ 2 have been shifted along the vertical axis
for the sake of presentation.

quantities measured by using the synthetic signal. W
notice an almost perfect superposition of the two da
sets, indicating that the deviations observed in real da
can hardly be considered a “dynamical effect.”

Using the WI plus our multiplicative recipe forp ­ 4
we quickly read that the leading contribution toF2,2

is Osrz s2ddOsRz s4d2z s2dd, while subleading terms scale as
Osrz s4dd, and asOsrz s3ddOsRz s4d2z s3dd.

1 10 100 1000 10000 100000
log(R/rd)

-0.02

-0.01

0.02

0.04

FIG. 2. ExperimentalF1,2sr , Rd at fixed r ­ 16rd and at
varying R. The integral scaleL , 1 3 104rd . Let us remark
that the observed change of sign in the correlation implies t
presence of at least two power laws. The continuous line
the fit in the regionr , R , L obtained by using only the first
two terms in (10).
3246
e
ta
ta

he
is

This superposition of power laws is responsible for th
slowly decaying correlations in Fig. 1. The result so f
obtained, i.e., that both the experimental data and
synthetic signal show the same quantitative behavior,
a strong indication that multiscale correlation functions,
least for p . 1, q . 1, are in good agreement with the
random multiplicative model for the energy transfer.

For multiscale correlations where the direct applic
tion of the random-cascade prediction is useless, l
F1,qsr , Rd, we use the WI plus the multiplicative predic
tion applied to all terms, except theF1,q. One obtains the
expansion

F1,qsr, Rd ,
∑
O

µ
r
R

∂z s2d
1 O

µ
r
R

∂z s3d
1 O

µ
r
R

∂z s4d

1 · · · 1 O

µ
r
R

∂z sq11d∏
Sq11sRd , (10)

which coincides whenq ­ 1 with the exact result (9)
usingz s3d ­ 1.

In Fig. 2 we show the experimentally measuredF1,2

and the fit that we obtain by keeping only the first tw
terms of the expansion in (10). The fit has been pe
formed by imposing the value for the scaling exponen
z s2d, z s3d measured on the structure functions, i.e., on
the coefficients in front of the power laws have been fi
ted. As one can notice, the fit works perfectly in the ine
tial range. Let us remark that the correlation changes s
in the middle of the inertial range, which is a clear ind
cation that a single power-law fit (neglecting subleadin
terms) would completely miss the correct behavior.

Next we consider the WI forp ­ 3. Because of the
fact that S3srd , r in the inertial range, one can easil
show that the WI forcesF12 , F21. Therefore we can
safely state that also correlation functions of the for
Fp,1 feel nontrivial dependency from the large scaleR,
at variance with the prediction given in [3] using isotrop
arguments.

Let us summarize what the framework is that we ha
found up to now. Whenever the simple scaling ansa
based on the uncorrelated multiplicative process is n
prevented by symmetry arguments, the multiscale cor
lations are in good asymptotic agreement with the fusi
rules prediction even if strong corrections due to sublea
ing terms are seen for small-scale separationryR , Os1d.
Subleading terms are strongly connected to the WI pre
ously discussed, i.e., to geometrical constraints. In t
other cases [i.e.,F1,qsr , Rd] the geometry fully determines
both leading and subleading scaling.

All these findings led us to the conclusion that mu
tiscale correlations functions measured in turbulence
fully consistent with a multiplicative, almost uncorrelated
process.

Also the analysis of the energy dissipation statisti
may show important correlations due to unavoidable ge
metrical overlaps between observable at different sca
[9]. In [5] it has been discussed in detail whether th
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refined Kolmogorov hypothesis (RKH) for the energ
dissipation is consistent with a random multiplicativ
process for the velocity increments. It has been show
that, at least on the synthetic signal, RKH is satisfied.

The strong and slowly decaying subleading correctio
to the naive multiplicative fusion rule predictions are pa
ticularly annoying for any attempts to attack analyticall
the equation of motion for structure functions; in that cas
multiscale correlations at almost coinciding scales are c
tainly the dominant contributions in the nonlinear part o
the equations [3]. Indeed, as shown in an analytical ca
culation for a dynamical toy model of random passive
scalar advection [10], fusion rules are violated at sma
scale separation and the violations are relevant for co
rectly evaluating the exact behavior of structure function
at all scales.

When the smallest distancer is inside the viscous
length, one can use the approach of multiplicative pr
cesses with multiscaling viscous cutoff [11]. Namely, fo
the correlationD1,qsRd ­ ks≠xud2sdRudql one obtains

D1,qsRd ,
ø

sdRudq

µ
dusrdd

rd

∂2¿
, (11)

whererd is the dissipative scale. In the multifractal in
terpretation we saydrd

u ­ srdyRdhdRu with probability
Phsrd , Rd ­ srdyRd32Dshd. Following [11] we have

dusrddrd ,
µ

rd

R

∂h

dRurd , n . (12)

Inserting the last expression in the definition ofD1,qsRd,
we finally have

D1,qsRd ,
Z

dmshd sdRudq12R22

3

µ
n

RdRu

∂ 2sh21d132Dshd
11h

,
Sq13sRd

nR
, (13)

where we have used the fact that the multifractal proce
is such thatnks≠xud2l ! Os1d in the limit n ! 0. Ex-
pression (13) coincides with the prediction given in [3
The above computations are easily generalized for a
ks≠xudpsdRudql.

Finally, we remark that the standard multiplicative
process may not be the end of the story, i.e., th
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dynamics may be more complex than summarized her
For example, one cannot exclude that also subleadi
(with respect to the multiplicative ansatz) dynamica
processes are acting in the energy transfer from large
small scales. This dynamical correction must be eithe
negligible with respect to the geometrical constraints o
at the best, of the same order.

A possible further investigation of such an issue woul
be to perform a wavelet analysis of experimental turbule
data. From this analysis one may hope to minimiz
geometrical constraints focusing only on the dynamica
transfer properties.

Other possible candidates to investigate the above pro
lem are shell models for turbulence, where geometric
constraints do not affect the energy cascade mechanis
Work in both directions is in progress.
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