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Multiscale Velocity Correlations in Turbulence
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Multiscale correlation functions in high Reynolds number experimental turbulence and synthetic
signals are investigated. Fusion rule predictions as they arise from multiplicative, almost uncorrelated,
random processes for the energy cascade are tested. Leading and subleading contributions, in both the
inertial and viscous ranges, are well captured by assuming a simple multiplicative random process for
the energy transfer mechanisms. [S0031-9007(98)05773-1]

PACS numbers: 47.27.Eq

In stationary turbulent flows, a net flux of energy es-with r; < r < R < L. When the smallest among the
tablishes in the inertial range, i.e., from forced scales, two scalesr goes beyond the dissipative scales, new
down to the dissipative scale;. Energy is transferred properties of the correlation functions (2) may arise due to
through a statistically scaling-invariant process, which ighe nontrivial physics of the dissipative cutoff. From now
characterized by a strongly non-Gaussian (intermittentpn, we will mostly concentrate on correlation functions
activity. Understanding the statistical properties of inter-with both » and R in the inertial range. Moreover, in
mittency is one of the most challenging open problems irorder to simplify our discussion, we will confine our
three-dimensional fully developed turbulence. analysis for the case of longitudinal velocity differences.

Intermittency in the inertial range is usually analyzed Stochastic cascade processes are simple and well
by means of the statistical properties of velocity differ-known useful tools to describe the leading phenomenol-
ences,§,u(x) = u(x) — u(x + r). In particular, in the ogy of the intermittent energy transfer in the inertial
last twenty years [1], overwhelming experimental andrange. Both anomalous scaling exponents and viscous
theoretical works focused on structure functiois(r) =  effects [1,5] can be reproduced by choosing a suitable
{8,u(x)]’). A wide agreement exists on the fact thatrandom process for the multiplieW (r, R), which con-
structure functions show a scaling behavior in the limitnects velocity fluctuations at two different scal@s> r.
of very high Reynolds numbers, i.e., in the presence of The main finding of this Letter is that experimental
a large separation between integral and dissipative scalesultiscale correlations (2) are iquantitativeagreement,

L/rg — oo for any separation of scale/R, with the prediction
one obtains by using a pure uncorrelated multiplicative
r\¢» process for the energy cascade.
Sp(r) ~ <Z> : (1) The main idea turns around the hypothesis that small

scale statistics is fully determined by a cascade process
The velocity fluctuations are anomalous in the sense thatonditioned to some large scale configuration:
{(p) exponents do not follow the celebrated dimensional
prediction made by Kolmogoro(p) = p/3. In fact, 8,u(x) = W(r, R)6zu(x), A3)
{(p) are observed to be a nonlinear functionpgfwhich
is the most important signature of the intermittent transfer - .
' where, requiring homogeneity along the cascade process,
of fluctuations from large to small scales. : ;
: .__the random functior’W’ should depend only on the ratio
In order to better characterize the transfer mechanism : X .
- i - '#/R. Structure functions are then described in terms of
it is natural to look also at correlations among velocity

. _ p =
fluctuations at different scales. Multiscale correlationtn® W Process:S,(r) = C,{(W(r/L)"), where C,

. . [8Lu(x)]?) if the stochastic multiplier may be considered
functions should play in turbulence the same role playe ; o
. : L - almost uncorrelated with the large-scale velocity field.
by correlation functions in critical statistical phenomena.

Recently, some theoretical work [2.3] and an eX_Pure power laws arise in the high Reynolds regime: in
y, sor . e : this limit we must have((W(%)]?) ~ (%)), In the

ploratory experimental investigation [4] have been de_same framework, it is strai ht?orward tg ive the leadin

voted to the behavior of multiscale velocity correlations: ! 9 9 9

prediction for the multiscale correlation functions (2):
Fpq(r,R) = (ulx + r) = ux)u(x + R) = u(x)])

= ([8,u(e) [5ru(x)}) @) Fratr = (W) [W(F)] ) @
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which becomes in the hypothesis of negligible correla-may always write down “Ward identities” (WI):
tions amongmultipliers: SR — r) = Qulx + B) — ux)]

Fyo(riR) = c<[w(5)}><[w(§)}> p “ux 4 ) - w0l @

Sp(r) b(k _\k
~ 2 ,P) (=) Fip—k(r,R), (8)
Sp(R) SpralR). ®) kzzo,p ’

This expression was for the first time proposed in [6,7]whereb(k, p) = p!/[k!(p — k)!].
and later extensively studied in [2]. In the latter paper the For example, fop = 2 we have
expression (5) was considered to rigorously express the _ B B
leading behavior of (2) when/R — 0 as long as some 2F11(r, R) = 82(r) + $2(R) = S2(R = 7)
weak hypothesis of scaling invariance and of universality _ [(L>§(z) N 0(1)}5 (R) )
of scaling exponents in Navier-Stokes equations hold. Let R) 7

R

us notice that, besides any rigorous claim, expressiofhere the latter expression has been obtained by expand-
(5) is also the zeroth order prediction starting froming s,(R — r)in the limitr/R — 0. Forp = 3 we have
any multiplicative uncorrelated random cascade satisfying
W) = S,(r)/S,(R). S3(R — r) = S3(R) — S53(r) + 3F21(r,R)

In this Letter we address three main issues: (i) whether — 3F15(r,R).
the prediction (5) gives the correct leading behavior in the , . i
limit of large separation of scalesR ~ 0, (i) if this is The Ward identities will turn out to be useful for
the case, what one can say about subleading behavior sypderstanding subleading predictions to th_e multlpl|cat|\_/e
separations/R ~ O(1), and (iii) what happens to those cascadg process. One may argue t_hat in a geomet'rlcal
observable for which the “muitiplicative prediction” (5) setup different from the one specified in (2) the same kind

is incorrect because of symmetry reasons. Indeed, let R constraint will appear with eventually different weights

notice that for a correlation like among different terms. o ,
The main result presented in this Letter is that all
Fi4(r,R) = ((8,u) (5gu)?), (6)  multiscale correlation functions are well reproduced in
the multiplicative prediction gives their leading term,z — 0, by a simple uncorrelated
random cascade (5) and that their subleading contribution,
Fi,(r,R) = 51(r) Si14(R). % ~ 0(1), is fully captured by the geometrical constraint
’ S1(R) previously discussed, namely, the Ward identities.

Such a prediction is wrong because, if homogeneity can The recipe for calculating multiscale correlations will
be assumed$;(r) = 0 for all scalesr. In this case be the following: first, apply the multiplicative guess
prediction (5) does not represent the leading contributionfor the leading contribution and look for geometrical
In this Letter we propose a systematic investigation ofconstraints in order to find out subleading terms. Second,
(2) in high Reynolds number experiments and synthetién all cases where the leading multiplicative contribution
signals. The main purpose consists in probing whethevanishes because of underlying symmetries, look directly
multiscale correlation functions may show new dynamicafor the geometrical constraints and find out what is the
properties (if any) which are not taken into account byleading contribution applying the multiplicative random
the standard simple multiplicative models for the energyapproximation to all, nonvanishing, terms in the WI.
transfer. Let us check the strong fusion rules prediction
Experimental data have been obtained in a wind tun{5) for moments withp > 1,4 > 1. In Fig. 1 we
nel (Modane) with Rg = 2000. The integral scale is have checked the large scale dependency by plotting
L ~20m and the dissipative scale is; = 0.31 mm.  F,,(r,R)/S,+,(R)S,(R) as a function ofR at fixed r,
Synthetic signals are built in terms of wavelet decom-for different values o, g.
position with coefficients defined by a pure uncorrelated The expression (5) predicts the existence of a plateau
random multiplicative process [8]. Such a signal shouldindependent ofR) at all scalesR where the leading
therefore show the strong fusion rules prediction (5) andnultiplicative description is correct.
it will turn out to be a useful tool for testing how many  From Fig. 2 one can see that, in the limit of large sepa-
deviations from (5), observed in experiments or numeritationR — L at fixedr, F, ,(r,R)/S,+4(R)S,(R) shows
cal simulations, are due to important dynamical effects oa tendency toward a plateau. On the other hand, there are
only to unavoidable geometrical corrections. clear deviations forr/R ~ O(1). Such deviations show
First of all, let us notice that for any one-dimensionala very slow decay as a function of the scale separation.
string of numbers (such as the typical outcome of labora- In order to understand the physical meaning of the
tory experiments in turbulence) the multiscale correlation®bserved deviations to the fusion rules (5), we compare,
(2) feel strong geometrical constraints. In particular wein Fig. 1, the experimental data against the equivalent
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0.20 - - - - This superposition of power laws is responsible for the
slowly decaying correlations in Fig. 1. The result so far
obtained, i.e., that both the experimental data and the
synthetic signal show the same quantitative behavior, is
a strong indication that multiscale correlation functions, at
least forp > 1,4 > 1, are in good agreement with the
random multiplicative model for the energy transfer.

For multiscale correlations where the direct applica-
tion of the random-cascade prediction is useless, like
Fi4(r,R), we use the WI plus the multiplicative predic-
tion applied to all terms, except tifg ,. One obtains the
expansion

AR P\ P\ \E
' - - - Fri0 = o(Z) "+ o)+ o[7)

2.0 5.0 8.0 11.0
F\¢atn)
+ ...+ 0| = S R), 10
FIG. 1. Experimental and numericAl, ,(r,R)/Sp+4(R)S,(r) <R> } q+1( ) (10)

log(R/ry)
at fixed » and changing the large scake Circles correspond \which coincides wherny = 1 with the exact result (9)
to p =24 =2 and diamonds top =4, =2 for the usingZ(3) = 1
experimental data. Squares correspondpte= 2,9 = 2 and In Eig. 2 Wé show the experimentally measurég
triangles top = 4, g = 2 for the synthetic signal. Small scale g. p y 2

r is fixed to r = 16 in units of the Kolmogorov scale. The and the fit that we obtain by keeping only the first two
data forp = 4,¢ = 2 have been shifted along the vertical axis terms of the expansion in (10). The fit has been per-
for the sake of presentation. formed by imposing the value for the scaling exponents
£(2), £(3) measured on the structure functions, i.e., only
the coefficients in front of the power laws have been fit-
quantities measured by using the synthetic signal. Weed. As one can notice, the fit works perfectly in the iner-
notice an almost perfect superposition of the two dataial range. Let us remark that the correlation changes sign
sets, indicating that the deviations observed in real datg the middle of the inertial range, which is a clear indi-

0.10

0.00

can hardly be considered a “dynamical effect.” cation that a single power-law fit (neglecting subleading
Using the WI plus our multiplicative recipe fof = 4 terms) would completely miss the correct behavior.

we quickly read that the leading contribution 16, Next we consider the WI fop = 3. Because of the

is O(r¢@)0(R¢W~¢2), while subleading terms scale as fact thatS;(r) ~ r in the inertial range, one can easily

0(r¢®), and asO (r¢®)O(REW~¢B), show that the WI forces";, ~ F,;. Therefore we can

safely state that also correlation functions of the form
F,, feel nontrivial dependency from the large sc&le
- - - - at variance with the prediction given in [3] using isotropic
arguments.

Let us summarize what the framework is that we have

o | found up to now. Whenever the simple scaling ansatz
© o based on the uncorrelated multiplicative process is not
prevented by symmetry arguments, the multiscale corre-
0.02 | 1 lations are in good asymptotic agreement with the fusion
rules prediction even if strong corrections due to sublead-
ing terms are seen for small-scale separatioR ~ O(1).

° Subleading terms are strongly connected to the WI previ-
o 1 ously discussed, i.e., to geometrical constraints. In the

other cases [i.e£ ,(r, R)] the geometry fully determines

0 both leading and subleading scaling.

All these findings led us to the conclusion that mul-
tiscale correlations functions measured in turbulence are
fully consistent with a multiplicative, almost uncorrelated,
FIG. 2. ExperimentalFi»(r,R) at fixed r = 16r, and at process.

varying R. The integral scald ~ 1 X 10*r;. Let us remark i iscinati ioti
that the observed change of sign in the correlation implies the Also the analysis of the energy dissipation statistics

presence of at least two power laws. The continuous line ignaylshow important correlations due to unayoidable geo-
the fit in the region < R < L obtained by using only the first Metrical overlaps between observable at different scales
two terms in (10). [9]. In [5] it has been discussed in detail whether the
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refined Kolmogorov hypothesis (RKH) for the energy dynamics may be more complex than summarized here.
dissipation is consistent with a random multiplicative For example, one cannot exclude that also subleading
process for the velocity increments. It has been showijwith respect to the multiplicative ansatz) dynamical
that, at least on the synthetic signal, RKH is satisfied.  processes are acting in the energy transfer from large to

The strong and slowly decaying subleading correctionsmall scales. This dynamical correction must be either
to the naive multiplicative fusion rule predictions are par-negligible with respect to the geometrical constraints or,
ticularly annoying for any attempts to attack analytically at the best, of the same order.
the equation of motion for structure functions; in that case, A possible further investigation of such an issue would
multiscale correlations at almost coinciding scales are cembe to perform a wavelet analysis of experimental turbulent
tainly the dominant contributions in the nonlinear part ofdata. From this analysis one may hope to minimize
the equations [3]. Indeed, as shown in an analytical calgeometrical constraints focusing only on the dynamical
culation for a dynamical toy model of random passive-transfer properties.
scalar advection [10], fusion rules are violated at small Other possible candidates to investigate the above prob-
scale separation and the violations are relevant for colem are shell models for turbulence, where geometrical
rectly evaluating the exact behavior of structure functionconstraints do not affect the energy cascade mechanism.
at all scales. Work in both directions is in progress.

When the smallest distance is inside the viscous We acknowledge useful discussions with A. L. Fairhall,
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Su(ry)\2 Y. Gagne for having allowed us access to the experimen-
u\r,
D14(R) ~ <(5Ru)q< d ) > (11) tal data. L.B. and F.T. have been supported by INFM
ra (PRA TURBO).

wherer, is the dissipative scale. In the multifractal in-
terpretation we say,,u = (rs/R)"8gu with probability
_ 3-D( i
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