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Mimicking a turbulent signal: Sequential multiaffine processes
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An efficient method for the construction of a multiaffine process, with prescribed scaling exponents, is
presented. At variance with the previous proposals, this method is sequential and therefore it is the natural
candidate in numerical computations involving synthetic turbulence. The application to the realization of a
realistic turbulentlike signal is discussed in detail. The method represents a first step towards the realization of
a realistic spatiotemporal turbulent field.@S1063-651X~98!50506-5#
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In recent years the relevance of multifractal measures
multiaffine processes in many fields~mainly fully developed
turbulence! has been well understood@1–4#. In different con-
texts, for instance numerical simulations and comparison
theoretical models with experimental data, a rather nat
problem is the construction of artificial signals mimickin
real phenomena~e.g., turbulence!. In particular, it is impor-
tant to have efficient numerical techniques for the constr
tion of a multiaffine fieldf(x) whose structure function
scale as

^uf~x1r !2f~x!uq&;r zq, ~1!

where^ & indicates a spatial~or temporal! average,r varies
in an appropriate scaling range, and the exponentszq are
given. The most interesting case, and the most physic
relevant, is whenzq is a nonlinear function ofq, that is, a
strictly multiaffine field.

Let us first notice that the generation of a multiaffi
function is much more difficult than the generation of a m
tifractal measure, which can be obtained with a simple m
tiplicative process generalizing the two scales Cantor se

Up to now, there have existed well established meth
for the construction of multiaffine fields@5–8#; see@8# for a
short review. All of these methods share the common ch
acteristic of not being sequential: the process is built a
whole in an interval~in space or time! of fixed length. To
extend the interval one has to rebuild the process from
beginning. This is an evident limitation if one is interested
constructing a temporal signal mimicking, for example, tho
obtained by an anemometer measurement. Furthermore,
sequential algorithms always require a huge amount
stored data.
571063-651X/98/57~6!/6261~4!/$15.00
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In this paper we introduce a simple and efficient sequ
tial method for the construction of a multiaffine function
time u(t) with prescribed statistical properties. The guideli
of our approach will be the reproduction of a turbulentli
temporal signal. Though the basic idea on the constructio
the multiaffine process comes from fully developed turb
lence, nevertheless the method is general and can be ap
to any signal.

A typical anemometer measurement gives a o
dimensional string of data representing the one-point tur
lent velocity u(t) along the direction of the mean flowU.
According to the Taylor hypothesis@9#, for small turbulence
intensitiesu!U, the time variations ofu can be assumed to
be due to the advection~with velocity U) of a frozen turbu-
lent field past the measurement point, so that

du~t!5u~x,t1t!2u~x,t !

5u~x2Ut,t !2u~x,t !5du~ l !, ~2!

wherel 5Ut. Therefore, once the spatial scaling~1! is given,
we have

Sq~t!5^uu~ t1t!2u~ t !uq&;tzq. ~3!

The frozen field is the result of the superposition of turbule
patterns~eddies! of many different sizesl , whose contribu-
tion to the time variation of the velocity decays with a typic
correlation timetsweep; l /U. For the sake of simplicity, in
the following, we shall introduce a set of reference sca
l n522n at which scaling properties will be tested. With th
picture in mind, we represent the signalu(t) by a superpo-
R6261 © 1998 The American Physical Society
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sition of functions with different characteristic times, repr
senting eddies of various sizes

u~ t !5 (
n51

N

vn~ t !. ~4!

The functionsvn(t) are defined via a multiplicative proces

vn~ t !5gn~ t !x1~ t !x2~ t !•••xn~ t !, ~5!

where thegn(t) are independent stationary random pr
cesses, whose correlation times are the sweeping time s
tn5 l n /U522n ~assumingU51) and ^gn

2&5 l n
2h , whereh

is the scaling exponent. For fully developed turbulenceh
51/3. Scaling will show up for all time delay larger than th
UV cutoff tN and smaller than the IR cutofft1. Thexj (t) are

FIG. 1. Time seriesvN
2 (t) normalized to the average for th

model withN515 octaves andb50.9.
-

-
les

independent, positive defined, identical distributed rand
processes whose time correlation decays with character
time t j . The probability distribution ofxj determines the
intermittency of the process.

The origin of Eq.~5! is fairly clear in the context of fully
developed turbulence. Indeed according to the refined s
larity hypothesis of Kolmogorov@10,11#, we can identifyvn
with the velocity difference at scalel n and xj with
(« j /« j 21)1/3, where« j is the energy dissipation at scalel j .

It is easy to show, with a simple argument, that the p
cess constructed according to Eqs.~4! and~5! is multiaffine.
Because of the fast decrease of the correlation timest j
522 j , the characteristic time ofvn(t) is of the order of the
shortest one, i.e.,tn522n. Therefore, the leading contribu
tion to the structure functionSq(t) with t;tn will stem
from thenth term in Eq.~4!. This can be understood nothin
that in the sumu(t1t)2u(t)5(k51

N @vk(t1t)2vk(t)# the
terms withk<n are negligible becausevk(t1t).vk(t) and
the terms withk>n are subleading. Thus one has

Sq~tn!;^uvnuq&;^ugnuq&^xq&n;tn
hq2 log2^xq& ~6!

and therefore for the scaling exponents~3!,

zq5hq2 log2^x
q&. ~7!

The limit of an affine function can be obtained when all t
xj are equal to 1.

The above results can be proved in a rigorous way c
sidering, as a first step, the second order structure func
S2(t). Using the definitions~4! and ~5! and stochastic inde
pendence one obtains

S2~t!52(
n51

N

@^vn~ t !2&2^vn~ t !vn~ t1t!&#. ~8!
FIG. 2. Numerical~dots! and theoretical~line! structure functionsSq(t) for the model withN520 octaves andb50.9. The exponents
arez150.39,z351, z651.65. The structure functions are shifted by a multiplicative factor for plotting purposes.
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Let us now introduce the normalized correlation functio
for gn(t) andxj (t),

CS s

tn
D5

^gn~ t8!gn~ t !&

^gn
2&

; FS s

t j
D5

^xj~ t8!xj~ t !&

^xj
2&

, ~9!

where we have sett85t1s. Plugging into Eq.~8! the defi-
nition ~5!, one obtains

S2~t!52(
n51

N

^gn
2&^x2&nF12CS t

tn
DFS t

t1
D •••FS t

tn
D G .

~10!

For tN!t!t1 one can neglect the UV and the IR cutoffs,
we have

S2~t!52(
n52

`

^gn
2&^x2&nF12CS t

tn
D )

j 52

n

FS t

t j
D G1OS t

t1
D .

~11!

where we have used the expansionC(t/t1);F(t/t1)51
2O(t/t1). Writing now Eq.~10! for t→2t and by shifting
the summation index,n→n21, one obtains fort!t1

S2~2t!522h^x2&21S2~t!1O~t/t1! ~12!

which leads, as long asz2,1, to the scaling behavior:

S2~t!;tz2 with z252h2 log2^x
2&. ~13!

The key point in the above arguments is that the domin
contribution to the structure functionSq(t) comes from oc-
tavesn such thattn;t, that is, locality.

The constraints for locality can be captured with a sim
argument@12#. At a generict, the UV convergence require
that for tn!t the quantitieŝ uvn(t1t)2vn(t)uq&;^uvnuq&
;22nzq have to be bounded forn→` and thereforezq.0.
Similarly, when tn@t we have that̂ uvn(t1t)2vn(t)uq&
;(t/tn)q/2^uvnuq&;22n(zq2q/2), for stochastic processe

FIG. 3. Probability density functions for the normalized veloc
differencesdu(t)/s, wheres5^du2&1/2, for different t. For large
t510 ~b! the PDF is nearly Gaussian~dashed curve!. For very
small t50.001 ~a! large tails are evident. The parameters areN
515 octaves andb50.9.
s

nt

e

such thatC(x)512O(x) and F(x)512O(x). Therefore,
the IR convergence in the latter case requireszq,q/2. We
observe that the last condition is different from the us
locality conditionzq,q @12#, which holds for differentiable
processes whereC(x)512O(x2) andF(x)512O(x2).

A similar computation can be performed for the high
order structure functions. The genericSq(t) can be ex-
pressed as a linear combination of terms scaling
tzm1•••tzmk with m11•••1mk5q. From the convexity ofzq
@13# it follows that the leading contribution toSq(t) for
small t is given by Sq(t);tzq, with the exponentszq as
defined in Eq.~7!.

Regular behavior for very short time delaysdu(t);t,
physically related to the presence of dissipation, can be s
ply achieved in our model by smoothinggn(t) and xn(t)
over a time interval smaller then the UV cutofftN .

The numerical implementation of the method propos
above is very simple. The stochastic processxj (t) can be
easily generated via the nonlinear Langevin differen
equations:

dxj52
1

t j

dV

dxj
dt1A2

t j
dWj , ~14!

where V(x)5` for x,a (a positive constant! and V(x)
→` for x→`. It is clear that thexj so obtained have the
same probability density function independent oft j .

Similarly for thegn one can use the evolution law

dgn52
1

tn

dY

dgn
dt1snA 2

tn
dWn , ~15!

whereY(g)→` as ugu→` andsn5 l n
h .

Numerical tests have been performed adopting for the
chastic differential equations~14! and~15! the following po-
tentials:

V~x!522 ln x for ~12b!1/3,x,~11b!1/3 ~16!

and V(x)5` otherwise, where 0,b,1. The choice~16!
corresponds to having a uniform distribution forx3 between
12b and 11b. In this way, the momentŝxq& can be easily
computed. In our numerical tests thegn processes have bee
chosen to be defined by the following simple potential:

Y~g!5
1

2
g2. ~17!

For h51/3, these choices insure thatz351 according to the
scaling prescribed by Kolmogorov’s law. The parameterb
tunes the intermittency of the signal: whenb↓0 we recover
an affine process. The choice~17! gives a nonskewed signa
and a Gaussian velocity field in the limitb↓0. In Fig. 1 we
show the quantityvN

2 (t), which can be considered as th
energy density dissipation of the turbulent signal. As one
see, high intermittency is detected.

The theoretical and numerical scaling laws are compa
in Fig. 2. The computed scaling exponents are in perf
agreement with those given by Eq.~7!. Figure 3 shows the
probability density function~PDF! of the velocity differences
du(t)5u(t1t)2u(t) for different t. At large t;1 the
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PDF is nearly Gaussian, whereas at small delays the PD
increasingly peaked around zero with high tails correspo
ing to large fluctuations with respect to their rms value.

For a specific problem with a nonzero skewness, as
turbulence,Y(g) must be chosen as an asymmetric functio
see@8# for a suitable choice according to experimental da

In this paper we have introduced an efficient sequen
algorithm for the generation of multiaffine processes. T
method, at variance with previous proposals, is not based
hierarchical construction, and can be applied to any mu
affine signals with specified scaling laws. Furthermore,
huge amount of memory is required for the numerical imp
mentation.

A possible, relevant, application of such a signal would
to use it for describing the temporal part of a synthetic t
bulent velocity field. The spatial part can be implemented
using any hierarchical constructions previously propos
@5–8# Nevertheless, this way to glue together spatial a
temporal multiaffine fluctuations would not be realistic, d
to the absence of a real sweeping of small scales by la
n
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scales. This is connected to the fact that in our tempo
signal, the Taylor hypothesis is introduced by hands with
any real direct dynamical~stochastic! coupling between large
and small scales.

These difficulties in reproducing an Eulerian spat
temporal field are absent if one considers the velocity sta
tics in quasi-Lagrangian coordinates@14#. In this framework,
a pure temporal signal would correspond to the velocity fi
felt in the moving reference frame attached to a fluid partic
The sweeping effect is thus removed and the character
time scales are the dynamical eddy turnover times. Work
this direction is in progress.

Another possible interesting investigation would be
check whether our signal defines a Markov process for
energy cascade as it seems to be the case for experim
turbulent signals@15#.
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