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We perform a renormalization group study of the first order phase transition of the two dimensional Z(10) Potts model for
which an ambiguous determination of the critical temperature was claimed. Allowing the system to flip between the two different
phases in the large-volume limit near the critical point one can determine the critical temperature without ambiguity.

Recently renormalization group studies of first or-
der phase transitions have raised a new interest in
connection with the determination of the order of the
deconfinement transition in lattice quantum chro-
modynamics. A great effort has been devoted 1o the
study of the three state three dimensional Potts model
to which the effective hamiltonian of Polyakov loops
of the original four dimensional gauge theory re-
duces. The model has been studied for different val-
ues of the first neighbour and second neighbour cou-
plings and in particular for both ferromagnetic and
antiferromagnetic values of the latter. The results ob-
tained with a renormalization group study agree with
those obtained from finite size scaling analyses and
confirm the first order character of the transition [1].
However, previous renormalization studies of the
Z(10) two dimensional mode! [2] have identified a
“pathology” consisting in an ambiguous determina-
tion of the discontinuous fixed point of a first order
phase transition. According to the renormalization
group analysis of Hasenfratz et al., instead of a single
value for the critical temperature one obtains two
different determinations as a result of the constraint
imposed to the system of approaching the criticality
from one and only one of the two possible phases co-

existing at the transition point. The constraint is im-
plemented by selecting the starting configuration of
the system to be in a given phase and by removing
the tunneling to the other phase by going to volumes
large enough. In these simulations the large-volume
limit is performed before the limit of a large number
of iterations.

In this letter we want to show that by interchanging
the order of the two limits one arrives at a unique
determination of the critical temperature in agree-
ment with the expected value. The model we have
examined is again the Z(10) two dimensional model
[3] with first neighbour interactions governed by a
coupling 8. We have used an update procedure of the
Swendsen-Wang-Wolff [4] type in order to let the
system to explore efficiently the ten different ground
states (colours) of the broken phase. At each Monte
Carlo iteration we have identified a cluster of spins
connected to a starting spin with a given colour cho-
sen at random on the lattice and we have applied to
it the SW algorithm generalised to the case of ten
states spins. We have verified the agreement of the
results with the standard Metropolis algorithm.

Having many flips of the critical system between
the two different phases requires a number of itera-
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tions which grows exponentially with the volume. We
could then only use moderate volumes, L.=8, 12, 16
and 24.

We have implemented the finite size real space re-
normalization group method described in ref. [5]
where one studied the renormalization group flow as
a function of the total lattice size L for the effective
hamiltonian of block variables defined out of site
variables belonging to a region of the original lattice
which is a fixed fraction of L. In previous applica-
tions of the method the fraction used was small, i.e.
the blocks contained a large number of variables. In
the case of strong first order transitions like for the
Z(10) model we have learned that by making big
blocks one loses the sensitivity of the flow of renor-
malized couplings to the critical behaviour. We have
attributed this fact to the small value of the correla-
tion length in the Z(10) model at criticality where it
does not exceed a few lattice spacings: blocks much
bigger than the correlation length become uncorre-
lated and almost insensitive to the underlying critical
behaviour. For L=38, 12 and 16 we have defined a
lattice containing 4 X 4 block variables obtained by
grouping the spin in squares with sides of 2, 3 and 4
lattice spacings respectively. In order to see the vol-
ume dependence, we have also made runs with L=16
and 24 with 8 X 8 block variables each. We have made
a million iterations with two hundred thousand ther-
malisation sweeps for L=8 and 12 and up to four
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million iterations with one million thermalisation
sweeps for L=16 and 24, The probability distribu-
tion of the energy and of block variables is expected
1o be doubly peaked reflecting the coexistence of two
phases at criticality: a standard error analysis based
on the assumption of variables with a gaussian distri-
bution leads to false estimates.

By grouping the iterations into clusters large enough
and defining a single measure as the average over a
given cluster one can ultimately recover a gaussian
distribution. Our errors have been obtained by com-
paring runs with hot or cold starts with the statistics
quoted above.

We use the majority rule to form block variables
out of site variables: we study the flow of the variable
C, (block energy) defined as

C =Y SBSP. (1)
<>
where SB is the block spin and the sum is over first
neighbours only, for various values of L as a function
of the original coupling § with the results reported in
fig. 1: fig. 1a shows the result of renormalizing by a
factor 2, 3and 4 for 1.=8, 12 and 16 respectively and
fig. 1b those of renormalizing by a factor 2 and 3 for
L=16and 24. The crossing of the points for different
volumes locates the critical coupling whose value
converges with increasing L to the expected value: in
particular, from the volumes L=16 and L=24 we
estimate
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Fig. 1. (a) The flow of coupling C, as a function of # obtained by renormalizing by a factor 2, 3 and 4 for L=8, 12 and 16 respectively.

(b) Asin (a) with a renormalization factor 2 and 3 for L=16 and 24.
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B.=1.425(1) ;

we have checked that by using an alternative variable
Ci.nexT, defined as the correlation of next to nearest
neighbour block spin, one obtains similar results.
Through the ratio of the derivatives of the renormal-
1zed couplings at the critical point one obtains the es-
timate of the thermal exponent by the standard
formula

b= JogldCi (L) /dC (Ly) ]
T log(L/L,)

(2)

The ratio of derivatives can be estimated either di-
rectly by making a linear fit to the coupling’s flow near
the fixed point or through the derivatives of the block
coupling with respect to the original one which can
be expressed as the connected correlation of the block
coupling with the energy of the original system. By
combining both procedures we obtain from the runs
at L=16and L =24 our best estimate for the thermal
exponent averaged in the crossing region of 8:

}’T=2.1(2) .

This value is consistent with the one expected for a
first order phase transition [6] and with the results
of the renormalization group study described in ref,
[2].

We have also estimated the magnetic exponent 1,
by calculating connected correlations of the block
magnetisation with the original one. Their ratio for
different values L is equal to the ratio of the deriva-
tives of a magnetic coupling renormalized at differ-
ent scales which is related to the value of y,.

In fig. 2 we report the magnetic exponent as a func-
tion of f: it reaches a value consistent with two at the
transition point, At higher values of £ the exponent
remains the same indicating the persistence of a first
order phase transition in the magnetic field at tem-
peratures lower than the critical one.

We have given evidence that by letting the system
oscillate between the two phases of a first order phase
transition at any given volume one can determine the
transition temperature, without ambiguity, with a re-
normalization group study of the critical behavior.
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Fig. 2. The magnetic exponent as a function of the temperature.
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