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Helicity transfer in turbulent models
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Helicity transfer in a shell model of turbulence is investigated. We show that a Reynolds-independent
helicity flux is present in the model when the large scale forcing breaks inversion symmetry. The equivalent in
shell models of the ‘‘2/15 law,’’ obtained from helicity conservation in Navier-Stokes equations, is derived and
tested. The odd part of the helicity flux statistics is found to be dominated by a few very intense events. In a
particular model, we calculate analytically leading and subleading contributions to the scaling of triple velocity
correlation.@S1063-651X~98!50603-4#
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One of the most intriguing problems in three-dimensio
~3D! fully developed turbulence~FDT! is related to the ap-
pearance of anomalous scaling laws at high Reynolds n
bers, i.e., in the limit when Navier-Stokes dynamics is dom
nated by the nonlinear interactions.

The celebrated 1941 Kolmogorov theory~K41! was able
to capture the main phenomenological ideas by perform
dimensional analysis based on the energy transfer me
nism. Kolmogorov postulated that the energy cascade sh
follow a self-similar and homogeneous process entirely
pendent on the energy transfer rate,e. This idea, plus the
assumption of local isotropy and universality at small sca
led to a precise prediction of the statistical properties of
increments of turbulent velocity fields:dv( l );uv(x1 l )
2v(x)u;@ l e( l )#1/3. The scaling of moments ofdv( l ), the
structure functions, can be determined in terms of the sta
tics of e( l ), i.e.,

Sp~ l ![^@dv~ l !#p&5Cp^@e~ l !#p/3& l p/3, ~1!

whereCp are constants and the scalel is supposed to be in
the inertial range, i.e., much smaller than the integral sc
and much larger than the viscous dissipation cutoff.
Sp( l ); l z(p) and ^ep( l )&; l t(p), then

z~p!5p/31t~p/3!. ~2!

In the K41 thee( l ) statistic is assumed to bel indepen-
dent, or t(p)50, implying z(p)5 p/3 ,;p. On the other
hand, there are many experimental and numerical res
@1,2# telling us that the K41 scenario for homogeneous a
isotropic turbulence is quantitatively wrong. Strong interm
tent bursts in the energy transfer have been observed
nontrivial t(p) set of exponents are measured. Moreover,
problem of investigating scaling properties of observab
with the same physical dimensions but with different ten
rial structures has only recently been addressed@3,4#.

Many different authors have focused their attention on
possible role played by helicity, the second global invari
571063-651X/98/57~3!/2515~4!/$15.00
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of 3D Navier-Stokes equations@5–8#, to determine leading
or subleading scaling properties of correlation functions
the inertial range. Recently@4,9#, an exact scaling equatio
for the third-order velocity correlations entering into the h
licity flux definition has been derived using two hypothes
~i! there exists a nonvanishing helicity flux, and~ii ! the flux
becomes Reynolds independent in the limit of FDT. Th
relation predicts anr 2 scaling for a particular third-orde
velocity correlation. The new relation has been called
‘‘2/15 law’’ because of the coefficient appearing in front
the r 2 in analogy with the ‘‘4/5 law’’ derived by Kolmog-
orov for the third-order structure functions entering into t
expression of energy flux. In the 4/5 law, the scaling o
different third-order velocity correlation is found to be line
in r .

This simple fact tells us that a different velocity correl
tion with the same physical dimension but with differe
tensorial structure may have very different scaling propert
Moreover, even if overwhelming evidence indicates that
main physics is driven by the energy transfer, there can
some subleading new intermittent statistics hidden in the
licity flux properties.

Homogeneous and isotropic turbulence always has,
definition, a vanishing mean helical flux. Nevertheless, b
fluctuations about the zero mean in isotropic cases and/o
nonzero fluxes in cases where inversion symmetry is exp
itly broken can be of some interest in the understanding
fully developed turbulence. In this paper, we analyze
helical transfer mechanism in dynamical models of turb
lence@10,8,11#, built so as to explicitly consider helicity con
servation in the inviscid limit. We give strong numerical ev
dence that a Reynolds-independent helicity flux is presen
cases where the forcing mechanism explicitly breaks inv
sion symmetry. We confirm that in all cases where tw
fluxes can coexist in the inertial range, velocity correlatio
with the same physical dimension but with different transf
mation properties under inversion symmetry can sh
strongly different scaling behavior.
R2515 © 1998 The American Physical Society
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In the following, we briefly summarize the main motiva
tion behind the introduction of shell models for turbulenc
We present the equivalent derivation of the 2/15 law for
helicity flux in our shell model language and we conclu
with our numerical results about the Reynolds independe
of helicity flux and about its statistical intermittent prope
ties.

Shell models have been shown to be very useful for
understanding of many properties connected to turbu
flows @12–18#. The most popular shell model, the Gledze
Ohkitani-Yamada~GOY! model ~@12–18#!, has been shown
to predict scaling properties forz(p) ~for a suitable choice of
the free parameters! similar to that which is found experi
mentally. The GOY model can be seen as a severe trunca
of the Navier-Stokes equations: it retains only one comp
modeun as a representative of all Fourier modes in the sh
of wave numbersk betweenkn5k02n andkn11 .

It has been pointed out that GOY model conserves in
inviscid, unforced limit two quadratic quantities. The fir
quantity is theenergy, while the second is the equivalent o
helicity in 3D turbulence@17#. In two recent works@8,11# the
GOY model has been generalized in terms of shell varia
un

1 ,un
2 , transporting positive and negative helicity, respe

tively. It is easy to understand that only four independ
classes of models can be derived that preserve the sam
lical structure of Navier-Stokes equations@7#. All these mod-
els have at least one inviscid invariant nonpositively defin
that is similar to the 3D Navier-Stokes helicity. In the fo
lowing, we will focus on the intermittent properties of a mi
ture of two such models. The mixture is a linear combinat
of the old GOY model~extended to includeu1,u2! plus
another model that has a different helical interaction and
already been extensively investigated@11,19#. We focus only
on two of the four possible models because they are the
two classes of models which show a clear forward ene
cascade~see@11# for more details!. The time evolution for
positive-helicity shells reads@11#

u̇n
15 ikn~An@u,u#1xBn@u,u# !* 2nkn

2un
11dn,n0

f 1, ~3!

with the equivalent equations, but with all helicity signs r
versed, foru̇2. In Eq. ~3!, x defines the relative weights o
the two models in the mixture,n is the molecular viscosity
f 1, f 2 are the large scale forcing, andA@u,u# and B@u,u#
refer to the nonlinear terms of the two models. Namely,

An@u,u#[un12
2 un11

1 1b3un11
2 un21

1 1c3un21
2 un22

2 , ~4!

Bn@u,u#[un12
1 un11

2 1b1un11
2 un21

2 1c1un21
2 un22

1 . ~5!

It is easy to verify that for the choiceb3525/12, c35
21/24, b1521/4, c1521/8 there are only two global in
viscid invariants@11#: the energy,E5( i 51

N (uui
1u21uui

2u2),
and helicity,H5( i 51

N ki(uui
1u22uui

2u2).
The equations for the fluxes throughout shell numben

are

d

dt (
i 51,n

Ei5kn^~uuu!n
E&2nkn

2 (
i 51,n

Ei1Ein , ~6!
.
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i 51,n

Hi5kn
2^~uuu!n

H&2nkn
2 (

i 51,n
Hi1Hin , ~7!

whereEi andHi are the energy and helicity of thenth shell,
respectively: Ei5^uui

1u21uui
2u2&, Hi5ki^uui

1u22uui
2u2&.

Ein andHin are the energy and helicity input due to forcin
effects, Ein5Re(̂ f1(u1

1)* 1 f 2(u1
2)* &), Hin5Re(k1^ f 1

(u1
1)* 2 f 2(u1

2)* &). In Eqs.~6! and~7! we have introduced
the triple correlation

^~uuu!n
E&5~Dn11

1 1Dn11
2 !1~b311/2!~Dn

11Dn
2!

1x@~Gn11
1 1Gn11

2 !1~b111/2!~Gn
11Gn

2!#,

~8!

^~uuu!n
H&5~Dn11

1 2Dn11
2 !1~b311/4!~Dn

12Dn
2!

1x@~Gn11
1 2Gn11

2 !1~b111/4!~Gn
12Gn

2!#,

~9!

and

Dn
15^Im~un11

1 un
2un21

1 !&, Gn
15^Im~un12

2 un11
1 un

1!&.
~10!

Assuming that there exists a stationary state, we h
(d/dt) Pn

E5( d/dt )Pn
H50, where Pn

E5kn^(uuu)n
E& and

Pn
H5kn

2^(uuu)n
H&. Moreover, in the inertial range we ca

neglect the viscous contribution in Eqs.~6! and~7!, obtaining

^~uuu!n
E&5kn

21Ein , ^~uuu!n
H&5kn

22Hin . ~11!

Supposing that there exist the energy and helicity flu
Ein5e, Hin5h ~the latter different from zero only iff 1

Þ f 2! and supposing that both are Reynolds independent
have in the inertial range

^~uuu!n
E&;kn

21 , ^~uuu!n
H&;kn

22 . ~12!

Relation ~11! is the equivalent of that found for helica
Navier-Stokes turbulence in@4,9#!.

Figure 1 reports results for the helicity flux in numeric
simulations done with two different Reynolds numbers,
;105, Re;109 for a choice of mixture parameterx50.1 and
additional numerical input as follows:N516 and 26,n
51025 and 231029. A nonzero helical flux was obtaine
using a forcing-term-breaking inversion symmetry:f 155
31023(11 i ), f 25 f 1/10. Time marching was obtained b
using a slaved Adams-Bashforth algorithm for a number
iterations equal to several thousands of the typical eddy tu
over time. A clear inertial range with a nonvanishing helic
flux is detected. The extension of the range where helic
flux is roughly constant scales with the Reynolds numb
Moreover, the flux intensity is roughly constant at changi
Reynolds number, giving the first evidence that the mo
can simultaneously support both energy and helicity trans
and that both of them are Reynolds independent.

Let us remark that this is only possible due to the no
positiveness of helicity; in 2D turbulence, for example, sim
lar results, concerning enstrophy and energy cascade
clearly a priori forbidden.
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As for the statistics of helicity transfer, we measured
scaling exponents of the moments of energy and heli
fluxes:

SE
~p![^@~uuu!n

E#~p/3!&;kn
2z~p! , ~13!

SH
~p![^@~uuu!n

H#~p/3!&;kn
2c~p! . ~14!

As one can see in Fig. 2, we have that the even parts of
two statistics coincide, i.e.,z(2p)5c(2p). On the other
hand, the scaling exponents of odd moments are differe

The difference in odd moments is the signature of stro
cancellation effects in the statistics connecting fluctuation
different scales. The picture we have in mind is that the m
effect driving turbulent fluctuations is due to the energy c
cade process, with its intermittent fluctuations measured
the z(p) exponents. Superimposed on the energy trans
there are ‘‘topological’’ fluctuations introduced by the asym
metric forcing and measured by the odd part of the helic
turbulent transfer.

FIG. 1. Helicity-flux @kn
2^(uuu)n

H&# vs lg(kn /k0) for N516, n
51025 ~dashed line! and N526, n5231029 ~continuous line!.
Inertial ranges coincide with the regions where the fluxes are c
stants. Helicity is expressed in dimensionless units.

FIG. 2. Anomalous exponents for the helicity fluxcp ~circles!
and for the energy fluxzp ~squares!, obtained forN526 andn
5231029.
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Note that helicity flux fluctuations are much larger th
the average helicity flux. This clearly distinguishes the he
ity transfer mechanism from the energy transfer mechani
In the former, the strong intermittent behavior shown by o
moments tells us that the odd part of the statistics is do
nated by a few very singular structures. In the case of
mixture (x50), one can also exactly calculate subleadi
scaling for the triple correlationdn

1[kn(Dn
11Dn

2), dn
2[kn

2

(Dn
12Dn

2). Indeed, from expression~8! one obtains, after
some simple algebra,

dn
152e

12yn11

12y
, dn

254h
12zn11

12z
, ~15!

wherey522(b311/2) andz524(b311/4). Since bothy
and z have a modulus of less then one, we recover
asymptotic scaling~12! and one can also control subleadin
correction to it:

Dn
15kn

21S e
12yn11

12y D1kn
22S 2h

12zn11

12z D
and

Dn
25kn

21S e
12yn11

12y D2kn
22S 2h

12zn11

12z D .

In conclusion, we have studied a helical shell model
turbulence with a forcing that explicitly breaks inversio
symmetry at large scales. For a symmetric forcing the he
ity flux is zero, while with the choice of forcing adopted i
our numerical simulation the value of the helicity flux is a
order of magnitude less than the value of the energy flux.
have verified that a Reynolds-independent helicity flux
established in the system, giving evidence of very differ
scaling for triple correlations entering into the energy fl
and helicity flux definitions. Contrary to other shell mode
such as the GOY model@17#, helicity flux and energy flux in
our model are not correlated; therefore, one can have c
where the importance of the two fluxes may be very diff
ent. The odd part of the helicity flux statistics is found to
strongly intermittent.

For a particular class of models we can also calcul
explicitly subleading corrections to pure scaling behavior
typical triple correlation functions. The existence of sublea
ing terms explicitly tell us that scaling laws in turbule
flows must be studied in correlation functions that have
pure projection, i.e., which fell energy or helicity flux only
on the relevant physical quantities. There is no reason w
similar effects should not be present also in true Navi
Stokes equations. For example, spurious intermittent cor
tions can be detected in cases where isotropy is globally
locally violated~as in boundary layers!.

We may summarize our findings as follows. General v
locity correlation functions can serve to probe both the
ergy and helicity flux mechanisms, leading to the predict
that the typical behavior will be given by a superposition
power laws, the leading one connected to the energy flux,
subleading one connected to the helicity flux. Depending
the relative weights of the two fluxes, the subleading pow

n-
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laws may or may not have a detectable effect. For a subs
all possible correlation functions, the class of functions t
depends only on the helicity flux, the leading term connec
to the energy transfer is absent and therefore one may d
li

-

-

. E
of
t
d
ect

a new scaling regime connected only to the physics of
helicity transfer.
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