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Abstract

The dependence of intermittent inertial properties on ultraviolet

eddy viscosity closures is examined within the framework of shell-

models of turbulent flows. Inertial intermittent exponents turn out to

be fairly independent on the way energy is dissipated at small scales.

1 Introduction

One of the most challenging open problems in three dimensional fully devel-
oped turbulence is the assessment of the statistical properties of the energy
transfer mechanism. In stationary turbulent flows, a net flux of energy estab-
lishes in the inertial range, i.e. from forced scales, L, down to the dissipative
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scale, rd. Energy is transferred through a statistically scale-invariant process,
characterized by a strongly non-gaussian (intermittent) activity.
Intermittency is usually described by looking at the statistical properties of
longitudinal velocity differences, δrv(x) = v(x) − v(x + r) (vector notation
is relaxed for simplicity). In particular, the last twenty years [1] have wit-
nessed a substantial focus of experimental and theoretical activity on struc-
ture functions: Sp(r) =< (δrv(x))

p >. A wide consensus exists on the fact
that structure functions show a scaling behavior in the limit of very high
Reynolds numbers, i.e. in presence of a large separation between the integral
and dissipative scales, L/rd → ∞:

Sp(r) ∼
(

r

L

)ζ(p)

. (1)

The velocity fluctuations are anomalous in the sense that the ζ(p) exponents
do not follow the celebrated dimensional Kolmogorov’s prediction ζ(p) = p/3.
In fact, ζ(p) is observed to be a nonlinear function of its argument p, which
is interpreted as the most important signature of the intermittent transfer of
fluctuations from large to small scales.
As it is known, the dissipative structure of the Navier-Stokes equations (NS)
is not dictated by compelling constraints on the inertial terms. This raises
the question on whether or not the statistical properties of fully developed
three dimensional turbulent flows exhibit a strong dependency on the energy
dissipation mechanism.

Kolmogorov theory suggests a strong universality assumption: strong in-
dependency of pure inertial range quantities on any dissipative mechanism.
The theoretical implication of such an assumption are obvious. For instance,
some of the most recent analytical attacks to the intermittency of structure
functions assume that the phenomenon is fully captured by looking only at
the nonlinear terms in the NS eqs, at least in the limit of large Reynolds
number [2]. However, because of intermittency, one can question the con-
ceptual framework of the Kolmogorov theory and consequently the strong
universality assumption.
Moreover, numerical investigations of turbulent flows are necessarily restricted
to low (moderate) Reynolds numbers. Therefore, it is of primary impor-
tance to develop some controllable procedure which minimizes viscous effects
(whenever possible).
In the past, hyperviscosity (high powers of the Laplacian) has often been
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employed in order to extend the inertial range as much as possible. Contra-
dictory claims have been reported on the influence of the energy dissipation
mechanism on the inertial range dynamics [3, 4, 5, 6, 7].

An important tool, heavily in use to perform reliable high-Reynolds sim-
ulation, is based on the concept of eddy viscosity [1, 8].
In this paper we investigate robustness of the intermittent inertial proper-
ties in the context of simple dynamical eddy viscosity models. In particular,
we present a detailed numerical investigation of such an issue in a class of
dynamical models of turbulence (shell models) both in the case where the
dynamics is resolved in real and Fourier space (tree model)[9, 10] and in
the case where only the Fourier space is taken into account (standard chain-
models [11, 12, 13, 14, 15]).
In either cases, we found strong independence of the inertial range statistics
from the ultraviolet dynamical closure, indicating that most (eventually not
all) eddy viscosity models do not destroy the quantitative and qualitative
features of the inertial range dynamics.
The paper is organized as follows. In section 2 we introduce the main ideas
behind eddy viscosity models. In section 3 we introduce the dynamical mod-
els we have used in order to test the dependency of intermittency on eddy
viscosities. In section 4 we discuss the numerical results. Conclusions follow
in section 5.

2 Eddy viscosity models

The idea of eddy viscosity was introduced over a century ago by Boussinesq
and later developed further by G. Taylor and L. Prandtl [18] and it builds
upon a direct analogy with the kinetic theory of gas. According to this anal-
ogy, the effect of short ’microscopic’ scales on large ’macroscopic’ scales can
be likened to a sort of diffusion process characterized by an effective viscosity
much larger than the molecular one. Strictly speaking, this is justified only
when a sharp separation between fast and slow modes exists, but it turns
out that the analogy proves useful in practice also in situations where, in
principle, such an assumption would not hold.

By mere dimensional arguments, the effective eddy viscosity at scale r
reads as follows

νE(r) ∼ r · δv(r) (2)
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where δv(r) is the velocity fluctuation across a distance r (vector indices are
relaxed for simplicity).
Equation (2) can be also deduced by using the refined Kolmogorov hypothesis
(RKH) as follows. According to Kolmogorov [1], a simple way to take into
account the intermittent fluctuations in the inertial range is to define a coarse
grained energy dissipation ǫr(x):

ǫr(x) =
1

r3

∫

Λr(x)
ǫ(y) d3y (3)

where Λ(x) denotes a volumlet of fluid centered in x.
In terms of ǫr one can generalize the Kolmogorov ”4/5” equation by as-

suming that (δrv(x))
3 ∼ r ǫr.

Now, let us define ∆ the scale at which we want to compute the eddy viscos-

ity. At such a scale, one expects ǫ∆ = νE(∆)
(

δv(∆)
∆

)2
. By combining these

two expressions (2) is readily obtained.
The eddy viscosity is much larger than the molecular one, which reflects the
enhanced mass and momentum transport observed in turbulent flows.
As it is well known, for most turbulent flows of practical interest, the dissi-
pative scale η is far too short to be resolved by any foreseeable computer. In
fact η scales like L · Re−3/4, L being the outer scale of the flow, and conse-
quently the scale separation L/η can easily span 3 − 6 orders of magnitude
in practical applications.
Given this state of affairs, subgrid models and large-eddy-simulations (LES),
are mandatory. Generally speaking, the common aim of these models is to
incorporate the effects of unresolved scales (r < ∆, ∆ being a typical mesh
size) on the resolved ones, r > ∆.

One of the simplest and most popular sub-grid-model is due to Smagorin-
ski [17], which can be derived by (2).
The idea is to replace r with the mesh size ∆ in the eq. (2) and subsequently
replace δv(∆) ∼ S∆, where (we dispense from tensor indices for the sake of
the argument) S is the strain tensor S ∼ δv/r evaluated at r = ∆.
The result is

νSGS ∼ ∆2S (4)

This expression is less transparent than it looks. In fact, it is based on the
assumption that the velocity field at the scale ∆ is smooth enough to allow
the definition of the space derivative S.
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This flies in the face of the fact that, if ∆ belongs to the inertial range
(as it should for the whole LES procedure to make sense), the velocity field
is known not to be differentiable since δv scales like r1/3. On account of this,
one expects δv(∆)/∆ be much larger than the corresponding ratio evaluated
at r = η (the only scale where this operation is conceptually allowed). This
’inconsistency’ is usually acknowledged by prefactoring the right hand side
of the equation with an empirical coefficient CS smaller than one, typically
CS ∼ 0.12.
Putting all together, and restoring tensorial indices, the full Smagorinski
eddy-viscosity reads as

νSMG(x) = CS ∆2 |S|Sij . (5)

where Sij =
1
2
(∂iuj + ∂jui) is the large-scale stress tensor and |S| = (2SijSij)

1/2.
The Smagorinski model is widely used in practical engineering applications
in spite of its several weaknesses. Among these, worth mentioning are i) the
overdamping of resolved scales, and ii) the, at least partial, assumption of
isotropy of the turbulent flows. The former flaw may seriously behinder the
development of genuine instabilities [19], while the latter casts doubts on the
applicability of the model in the vicinity of walls and solid boundaries where
the dynamics of turbulence is dominated by directional effects.

Another recent development in the area of Smagorinski models is the so-
called structure-function eddy-viscosity by Lesieur [20] and coworkers. The
idea is to account for intermittency by estimating δv(r) with the square root
of the second order local structure function

δv(r) ∼ S2(r, x)
1/2 ≡

〈

δv(r, x)2
〉1/2

(6)

where the local average is computed with the local energy spectrum E(k, x, t)
according to the Batchelor relation

S2(r, x) =
∫

E(k, x)
sin(kr)

r
dk. (7)

The relation (6) implies a certain degree of arbitrariness. Why not choosing

δv ∼ S
1/3
3 or more generically S1/p

p with p any integer? In the absence
of intermittency all p’s are equivalent, but when intermittency is on, every
value of p would provide a different, yet equally acceptable, answer. At this
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stage, the specific choice of p becomes a matter of taste, or, better said, of
how much emphasis is to be placed on the most-singular structures (those
sampled by highest p’s). The correct recipe is probably a weighted average
of all possible p’s, the weighting factor (most likely a space-time dependent
function) being basically unknown.
Another scenario is to assume that intermittency ignores the details of the
dissipation mechanisms, in which case the idea of including intermittency
effects on LES models dissolves on its own.
The discussion of the sophisticated developments of LES modeling is beyond
the scope of this paper, here we shall focus exclusively on the specific question
of the interrelation between dissipation and intermittency. Tackling this
question within the true tree-dimensional Navier-Stokes context is a very
daunting task, in view of the enormous amount of data to be produced and
carefully analyzed.
It makes therefore sense to attack the problem within the context of simplified
dynamical models sharing as much physics as possible with Navier-Stokes
equations while giving away most of its computational complexity.

3 Dynamical models of turbulence

In the recent years, an interesting vehicle for this kind of investigations has
emerged in the form of the so-called “shell models” [11]-[15].
Shell models work on the principle of collapsing the whole set of degrees of
freedom lying in a finite shell kn < k < kn+1, with kn = 2nk0, into a handful
(one, two) of representative modes.
The dynamics of such a low-dimensional representation is subsequently ar-
ranged in such a way as to preserve the non-linear structure of the NS equa-
tions; of course all genuinely three-dimensional effects are lost in the process.
The most popular shell model is the Gledzer-Ohkitani-Yamada (GOY) model
where only one (complex) mode per shell is used. Recently, a new class of
model has been introduced in which, by allowing two complex modes per
shell, a second invariant with a close connection to NS helicity can be de-
fined.
The statistical properties of such a helical shell model have been recently ex-
plored in depth [15, 16], major finding being that it possesses a rich physics
and it exhibits a striking similarity (in a statistical sense) with NS intermit-
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tency. Shell models do nonetheless miss all spatial effects, since they can
be regarded as zero-dimensional field models based on space-filling coherent
planar waves.
The dynamics of our helical shell model is governed by the following evolution
equation:

u̇±n = ikn
(

au±n+1u
∓
n+2 + bu±n−1u

∓
n+1 + cu±n−1u

∓
n−2

)

−D±
n u

±
n + δn,n0

f± (8)

where u±n represent the positive/negative helicity carriers respectively and f±

is a large scale forcing. In the previous equations the term D±
n is a function

which reproduces the effects of viscous damping at scale n. In the usual case
where only molecular viscosity, ν, is acting we have

D±
n = νk2n.

Upon choosing a = 1, b = − 5
12
, c = − 1

24
, the above equations are readily

shown to conserve the following (energy, helicity) invariants

E =
N
∑

n=0

(

|u+n |
2 + |u−n |

2
)

; H =
N
∑

n=0

kn
(

|u+n |
2 − |u−n |

2
)

. (9)

Real turbulence consists of localized eddies of all sizes that interact, merge
and subdivide locally: the physical picture is that of a large eddy which
decays into smaller eddies. The number of degrees of freedom in such a
field problem in d dimensions grows with the wave number as N(k) ∼ kd

(d = 0 in shell models). The first step in reproducing this kind of hierarchical
structure is to transform a chain-model into a tree-model with d = 1 [9]. This
is achieved by letting the number of degrees of freedom grow with the shell
index n as 2n.

As in the original shell models, this tree model must be in some sense rem-
iniscent of the NS equations. It can be regarded as describing the evolution
of the coefficients of an orthonormal wavelets expansion of a one-dimensional
projection of the velocity field v(x, t):

v(x, t) =
∑

n,j

v̂n,j(t)ψn,j(x). (10)

Here ψn,j(x) are a complete orthonormal set of wavelets generated from an
analyzing wavelet ψ0,0(x) by discrete translations and dilatations:

ψn,j(x) = 2n/2ψ0,0(2
nx− j). (11)
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Each dynamical variable v̂n,j describe fluctuations in a box of length ln =
2−n, centered in the interval ranging from (j − 1)ln to jln. At each scale n
there are 2n−1 boxes, covering a total length ΛT = 2n−1ln = 1/2 (see Fig. 1).

For the sake of convenience we define the tree model in terms of density
variables, un,j, which would correspond to ûn,j = 2n/2v̂n,j in a wavelets ex-
pansion.
In this notation, |un,j|

2 represents the energy density in a flow structure of
length ln = 2−n and spatially labeled by the index j.
In this tree structure, each variable un,j continues to interact with the nearest
and next nearest levels, as in equation (8); however, a lot of possibilities are
now opened by the presence of many horizontal degrees of freedom localized
on each shell.
The simplest choice is depicted in Fig. 2, where a portion of the tree struc-
ture is shown and the evolving in time variable, un,j, is represented by a black
ball. In the figure, solid lines connect interacting balls (variables).
The dynamical tree equations are as follows:

u̇+n,j = −D+
n u

+
n,j + δn,n0

F++

+ikn
{

a
4

[

u+n+1,2j−1

(

u−n+2,4j−3 + u−n+2,4j−2

)

+ u+n+1,2j

(

u−n+2,4j−1 + u−n+2,4j

)]

+

+ b
2

[

u+n−1,̄

(

u−n+1,2j−1 + u−n+1,2j

)]

+ c
[

u−n−2,̄̄ u
−
n−1,̄

]}∗

(12)

where, in the indexes, ¯̄ is the integer part of
(

j+3
4

)

and ̄ is the integer part

of
(

j+1
2

)

.

Again, in the standard case with only molecular viscosity we have D±
n = νk2n.

The interaction terms with coefficients a/4, b/2 and c are depicted in Fig. 2a,
2b, 2c, respectively. The same equation holds, with all helicities reversed, for
u̇−n,j. The numerical values of a, b and c are the same of the original helical
shell.

To make contact with the issue of intermittency-dissipation interrelation,
we shall replace the viscous coefficients D±

n of equations (8,12) with an “effec-
tive viscosity” term, D±

n , which now acquires both non-trivial dependencies
from time and shell indexes. It reads for the two cases:

D±
n (t) ≡ νS(δn,N + δn,N−1)

|u±n |

kn
k2n; D±

n,j(t) ≡ νS(δn,N + δn,N−1)

∣

∣

∣u±n,j
∣

∣

∣

kn
k2n (13)

where νS is an empirical constant of order 1. This “sub-grid-scale” term is
clearly patterned after the simplest NS effective viscosity model. The only
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difference is that due to the short range interactions of our shell models,
the sub-grid-modeling is applied only to the last and last-but-one shells kN ,
kN−1.
Our sub-grid closure combines features of the classical Smagorinski Large
Eddy Simulation model and the so-called hyperviscosity models used in the
direct spectral simulation of incompressible turbulence. This is consistent
with the double-locality in real and momentum space of the wavelet basis
functions.

The two methods are quite different in scope and formulation: Smagorin-
ski works in real space as a local, dynamic, effective viscosity responding to
the local stress so as to mimic the effects of unresolved scales on the resolved
ones. Hyperviscosity is local in k-space, static, and does not aim at repre-
senting the effects of unresolved scales, but simply at reducing the size of the
dissipative region so as to take full advantage of the grid resolution.

4 Results

As previously observed, the common aim of any turbulence model or large-
eddy simulation is to capture the effects of unresolved scales on the resolved
ones. In practice, this means that once the subgrid model is appropriately
tuned the resolved scales should be basically unaffected by grid resolution
[21].

This is indeed the case for our sub-grid model. In Figure 3 we show
the energy spectra for the chain model with eddy-viscosity at three different
resolutions N = 16, 20, 24. For the sake of comparison the case with normal
viscosity is also reported for N = 16. As a first remark, we note that the
presence of the eddy-viscosity considerably widens the inertial regime which
extends deep down to the last-but one shell. Moreover, the slope of the
spectrum is basically the same independent of the number of shells used,
which is exactly the property we were looking for.

We note that is not the case with normal viscosity, where in order to
widen the inertial range it is necessary to lower the value of the viscosity so
as to increase the Reynolds number. Of course resolution must be increased
accordingly so as to resolve the dissipative region in order to prevent nu-
merical problems. In order to gain a more quantitative assessment on the
grid-independence of our results, we shall evaluate the scaling exponents ζp
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up to p = 8. In Table 1 we show the scaling exponents for the chain model
with (ζSp ) and without (ζDp ) sub-grid eddy-viscosity (“S” stands for sub-grid
and “D” for direct). The simulation was run with 16 shells for about 105

eddy turn over time of the largest scale.
The first remark is that in both cases a significant departure from Kol-
mogorov K41 law is observed, i.e. the sub-grid model does not destroy
intermittency.
More precisely, ζSp and ζDp coincide within statistical error, which means that
intermittency survives and it is basically insensitive to eddy viscosity. The
scaling exponents reported in Table 1 have been computed as a direct fit on
structure functions in k space. Statistical accuracy is generally good due to
the large number of shells available.
It is nonetheless interesting to note that such an estimate is even more accu-
rate using Extended Self Similarity (ESS), namely by representing the p− th
order structure function versus the third order one. In Figure 4 we show S6

as a function of S3 for the case with and without eddy viscosity. As we see,
the case of normal viscosity displays two distinct slopes in the inertial and
dissipative regimes, whereas with eddy viscosity this slope is everywhere the
’inertial’ one.
This suggests that the combined use of LES models and ESS analysis might
prove useful for the analysis of scaling exponents in more complex simula-
tions.

We now move on to the discussion of the results with the tree model.
Before analyzing the results it is worth to point out that the tree formu-

lation makes more contact with the usual Navier-Stokes Smagorinski eddy
viscosity in that it introduces a spatial dependence in the model. It is there-
fore of interest to investigate how this spatial dependence is going to affect
the physical picture described so far.

The physical picture as it comes from the analysis of intermittency in the
inertial range is pretty much the same as with the chain model: in particu-
lar, intermittency survives and shows no dependency on whether a sub-grid
closure is used or not (see Table 2).
The actual numerical values of the scaling exponents are slightly higher than
in the chain case, and this is hardly surprising since the tree model allows for
spatial redistribution of the energy flow so that spotty events are somehow
smeared out.
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4.1 Refined Kolmogorov Hypothesis (RKH)

In a tree structure we may also test the robustness of the RKH. As previously
discussed, the RKH links statistical properties of the energy dissipations, ǫ(r)
averaged on a box of size r, to the inertial range fluctuations, δv(r):

ǫr(x) =
1

r3

∫

Λr(x)
ǫ(y) d3y ∼

(δv(r))3

r
. (14)

In particular one may therefore write:
〈

ǫr(x)
p/3
〉

∼ Sp(r)/r
p/3. (15)

The first step in constructing the energy dissipation field in any tree
model [9] is to consider the energy dissipation density, ηn,j, in the structure
covering the region Λj(n) of length 2−n, centered in the spatial site labeled
by j. These structures are represented by boxes in Fig.1.

In the case with eddy viscosity we have

ηn,j = D±
n,j

(

∣

∣

∣u+n,j
∣

∣

∣

2
+
∣

∣

∣u−n,j
∣

∣

∣

2
)

. (16)

Let us notice that in the above expression only the last and the last-but-one
shells give non-zero contribution; at difference with the case when a molecular
viscosity acting on all scales is considered (the latter would correspond to the
choice of D instead of D in eq. 16).

The total energy dissipation density, ǫ = (1/ΛT )
∫

ΛT
ǫ(x) dx, where ΛT is

the total space length, is, by definition, the sum of all these contributes (sum
over boxes at all scales in Fig. 1):

ǫ =
∑

n,j

2−nηn,j. (17)

On the other hand, in order to study the scaling properties of the energy
dissipation field, one has to disentangle in ǫ the contributions coming from
the coarse-grained energy dissipation field ǫr.

In our formulation, we can then rewrite:

ǫ =
1

ΛT

∫

ΛT

ǫ(x) dx =
1

2n−1

2n−1

∑

j=1

(

1

2−n

∫

Λj(n)
ǫ(x) dx

)

=
1

2n−1

2n−1

∑

j=1

ǫn,j, (18)
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where the last expression is independent of n and the ǫn,j’s are the coarse-
grained energy dissipation densities, obtained as averages over spatial regions
of length 2−n. Note that the average density ǫn,j over Λj(n) does not coincide
simply with the density ηn,j of the structure living in Λj(n), namely:

ǫn,j = ηn,j +
∑

m<n

ηm,k(m) +
∑

m>n

〈

ηm,k(m)

〉

I(m)
. (19)

Here, in the second (third) term of the RHS we take into account density
contributions coming from larger (smaller) scale structures (as an example,
all regions contributing to the definition of ǫn,j are represented as shadowed
boxes in Fig. 1). The index k(m) in the second term of RHS labels the loca-
tion of larger scale structures containing the region Λj(n) under consideration
(shadowed boxes with m < n in Fig. 1). In the third term, an average is per-
formed over k(m) ∈ I(m), where I(m) labels the set of structures contained
in Λj(n), for any m > n (in Fig. 1, I(m) labels the two boxes at n + 1, the
four boxes at n + 2, and so on).

The best spatially resolved energy dissipation field is for n = N :

ǫN,j =
∑

m≤N

ηm,k(m); j = 1, ..., 2N−1. (20)

In Fig. 5, the instantaneous values assumed by ǫN,j in the NT/2 = 32768
locations of the last level are showed. The chaotic, intermittent character of
this spatial signal is evident.

In Table 3 we show that the RKH is still well verified also in the sub-grid
modeling picture, proving to be a robust and non-trivial property connecting
small scales and inertial range scales in turbulent flows.

5 Conclusions

Summarizing, we have presented a detailed study of dynamical eddy-viscosity
models in chain and tree shell models of fluid turbulence.
The main goal was to check whether or not the inertial range properties are
affected by the way the flow dissipate energy. We found a strong robustness
of inertial range intermittency once the proposed eddy-viscosity model is im-
plemented in our shell models.
The eddy-viscosity closure that we have adopted may also be regarded as
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a multiplicative closure of the small-scales equations of motion, i.e. it is
tantamount to assuming that un+1 ∼ an+1,n · un with an appropriate mul-
tiplicative random coefficient an+1,n. The fact that intermittency is not af-
fected by the details of the eddy-viscosity models indicates that fine-tuning of
the coefficients in front to the eddy-viscosity term is probably not demanded.
Nevertheless, oversimplified eddy-viscosity models based only on dimensional
analysis would probably fail on the same goal, due to their inability to dissi-
pate violent intermittent bursts.
Moreover, the usual phenomenological RKH which links energy dissipation
statistics with inertial range properties is also largely unaffected by this kind
of modeling.
Whether the same universality is present in real Navier-Stokes equations
is still a matter of debate in the scientific community [4, 3, 7]. Certainly,
in order to properly test this question it is always necessary a fine resolu-
tion of the smallest resolved scales and, more important, a detailed study
of the dependence on finite Reynolds effects. Indeed, in many cases, bottle-
necks phenomena close to the sub-grid modeling scales may arise [22]. These
bottleneck effects may introduce a finite-Reynolds bias which could lead to
erroneous conclusions on the dependence of inertial range statistics on eddy
viscosity or hyperviscosity modeling.

We acknowledge the help of E. Trovatore for making some of the figures
and for sharing with us her numerical results.
L.B and F.T have been partially supported by INFM (PRA-TURBO).
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Table Captions

Table 1 Scaling exponents for the chain model with eddy viscosity, ζS(p), for
N = 16, 20, 24 and with normal viscosity, ζD(p), with N = 16.

Table 2 Scaling exponents for the tree model with eddy viscosity ζS(p), and
without eddy viscosity, ζD(p).

Table 3 Slope, χ(p), of the log-log plot of equation (15) for the tree model for
p = 1, . . . , 10. Notice that when χ(p) = 1 the RKH is verified.

Figure Captions

Fig. 1 A picture of the hierarchical system, covering the one-dimensional in-
terval [0,ΛT ].

Fig. 2 Type of interaction (a, b and c) for the tree model.

Fig. 3 Log-log plot of the energy spectra versus the wavenumber for the chain
model with eddy-viscosity at three different resolutionsN = 16 (pluses),
N = 20 (stars), N = 24 (crosses). For the sake of comparison the case
with normal viscosity is also reported for N = 16 (dotted line). The
straight line has slope −1− ζ2.

Fig. 4 Log-log plot of S6 versus S3 for the chain model with N = 16 with eddy
viscosity (pluses) and without eddy-viscosity (crosses). The straight line
has slope ζ6.

Fig. 5 Instantaneous configuration of the coarse-grained energy dissipation
density field, ǫN,j, over the last level sites.
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p ζD(p) ζS(p) ζS(p) ζS(p)
N = 16 N = 16 N = 20 N = 24

1 0.368± 0.007 0.367± 0.002 0.367± 0.002 0.367± 0.001
2 0.700± 0.005 0.699± 0.002 0.699± 0.002 0.699± 0.001
3 1.0± 0.0 1.0± 0.0 1.0± 0.0 1.0± 0.0
4 1.271± 0.007 1.273± 0.004 1.268± 0.007 1.272± 0.003
5 1.52± 0.01 1.522± 0.007 1.50± 0.02 1.518± 0.008
6 1.74± 0.02 1.75± 0.01 1.71± 0.04 1.74± 0.02
7 1.94± 0.04 1.97± 0.01 1.90± 0.07 1.96± 0.02
8 2.12± 0.05 2.17± 0.02 2.08± 0.09 2.16± 0.03
9 2.29± 0.08 2.37± 0.02 2.3± 0.1 2.36± 0.04
10 2.5± 0.1 2.57± 0.03 2.4± 0.1 2.56± 0.04
11 2.6± 0.1 2.76± 0.04 2.6± 0.1 2.76± 0.05
12 2.8± 0.2 2.96± 0.06 2.8± 0.2 2.96± 0.06

Table 1:

p ζD(p) ζS(p)
1 0.348± 0.005 0.347± 0.005
2 0.682± 0.005 0.681± 0.005
3 1.00 1.00
4 1.303± 0.006 1.302± 0.006
5 1.59± 0.01 1.59± 0.01
6 1.86± 0.02 1.85± 0.02
7 2.12± 0.03 2.10± 0.03
8 2.35± 0.03 2.32± 0.03

Table 2:
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p χ(p)
1 1.00± 0.02
2 1.001± 0.008
4 1.000± 0.007
5 1.000± 0.01
6 1.00± 0.02
7 1.01± 0.03
8 1.02± 0.04
9 1.02± 0.06
10 1.02± 0.07

Table 3:
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