
Time-reversible dynamical systems for turbulence

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1998 J. Phys. A: Math. Gen. 31 21

(http://iopscience.iop.org/0305-4470/31/1/008)

Download details:

IP Address: 130.89.86.11

The article was downloaded on 01/10/2011 at 10:12

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/31/1
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.31 (1998) 21–32. Printed in the UK PII: S0305-4470(98)85879-4

Time-reversible dynamical systems for turbulence∗

L Biferale†‖, D Pierotti‡¶ and A Vulpiani§+
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Abstract. Dynamical ensemble equivalencebetween hydrodynamic dissipative equations and
suitable time-reversible dynamical systems has been investigated in a class of dynamical systems
for turbulence. The reversible dynamics is obtained from the original dissipative equations by
imposing a global constraint. We find that, by increasing the input energy, the system changes
from an equilibrium state to a non-equilibrium stationary state in which an energy cascade, with
the same statistical properties of the original system, is clearly detected.

1. Introduction

One of the most important open problem in classical physics is understanding the statistical
features of fully developed turbulence (FDT).

A fully developed turbulent flow is a dissipative system described by the Navier–Stokes
(NS) equations in the limit of high Reynolds numbers (Re).

On one hand, direct numerical simulations of turbulent flows are strongly limited due to
the huge amount of excited degrees of freedom: a simple argument due to Landau, shows
that the number of degrees of freedom, which should be taken into account for a correct
description of a turbulent flow, increases asRe9/4.

On the other hand, analytical attempts to derive the multipoints velocity probability
distribution function (PDF) have repeatedly failed due to the strong coupling regime and
due to the highly non-Gaussian PDFs developed at small scales by the velocity field [1].
Phenomenological approaches, or simplified dynamical and deterministic systems, have
therefore often been used for studying the mechanisms generating the turbulent energy
cascade.

From the analytical point of view, the main obstacle to the possibility of performing the
0th step toward a theory of turbulence is certainly connected to the strong dissipative and far-
from-equilibrium character of three-dimensional (3D) turbulent flows. In two-dimensional
(2D) turbulence, where energy is almost not dissipated at all, some analytical tools based
on quasi-equilibrium statistical ansatz have indeed been developed [2].
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Strongly chaotic dynamical systems such as the Anosov systems are the only cases
where, although being still dissipative and chaotic, analytical tools have been developed
with relative success, at least in the case of low dimensions [3].

Recently [4], Gallavotti and Cohen proposed that a chaotic high-dimensional dynamical
system in a stationary state can be regarded as a smooth dynamical system with a transitive
Axiom-A global attractor or, if it is time-reversible, as a smooth transitive Anosov system,
as far as macroscopic properties are concerned. This is the so-calledchaotic hypothesis.

This hypothesis, as the ergodic hypothesis, can be proved only in very particular systems.
Nevertheless, it is interesting to analyse some of its consequences.

Likewise, Gallavotti [5, 6] conjectured adynamical ensemble equivalencebetween some
dissipative systems (in this paper we will refer only to 3D NS equations) and theirnon-
equilibrium but time-reversibleformulation. Here, equivalent means that the averages of
local variables in the two systems, i.e. the original one and its time-reversible formulation,
are the same, in a suitable limit. For hydrodynamic dissipative systems this limit is that of
FDT, i.e.Re→∞.

The reversible dynamics is obtained from the original dissipative equations by imposing
a constraint, such as to keep constant in time those macroscopic observables (as the total
energy) which would have only had stationary averages in the original systems.

Having a time-reversible system and applying the chaotic hypothesis, some large-
deviation properties of the fluctuation of the entropy-production rate in the system can
be proved [6].

In NS equations, the reversible dynamics is achieved by introducing a sort of ‘eddy
viscosity’ which removes the input energy with perfect efficiency. Viscosity becomes non-
positive defined and strongly correlated with the large-scale flow where energy is injected.

As far as we know, the idea of reversible NS equations was introduced for the first
time by She and Jackson [7]. They did not exploit global constraints, but imposed that the
energy contained in each ‘momentum shell’ was constant.

Let us also mention that a constraint of constant energy has been implemented by
using the Kraichnan’s eddy-viscosity parametrization [8] in low-resolution large-eddies
simulations of NS equations in [9]. With such a parametrization of the viscosity one has
very weak fluctuations of the energy (less than 1%) and statistical features very close to
those of high-resolution numerical simulations.

From our point of view, the interest in models with global constraints stems from the
possibility to describe a global macroscopic dissipative and irreversible physics starting from
a deterministic reversible dynamics. The approach can be seen as a bridge from microscopic
reversible dynamics to macroscopic irreversible dynamics and, more interesting, a possible
systematic tool for going with continuity from a pure-equilibrium and conservative systems
to a strong dissipative and far-from-equilibrium time evolution.

In this paper, we investigate these ideas in shell models, i.e. a class of simplified
dynamical systems for turbulence (for a recent review see [10], for a tutorial introduction
see [11]). In particular, we will analyse in details the smooth transition from the equilibrium
system at zero viscosity and zero external forcing to a (formally)-reversible systems which
possess anyway a non-equilibrium flux of energy from large to small scales.

The paper is organized as follows. In section 2 we briefly review the statistical
mechanics of a perfect fluid and the ideas presented by Gallavotti in [4–6] concentrating
only on the case of hydrodynamical systems (NS equations). In section 3 we discuss shell
model philosophy and we describe Gallavotti’s implementation to our case. In section 4 we
present our numerical results. Conclusions follow in section 5.
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2. Equilibrium and non-equilibrium statistical mechanics

In a 3D perfect fluid, i.e. with vanishing external forcingν = 0, the evolution of the velocity
field is given by the Euler equations which conserve two quadratic functionals, the kinetic
energy and the helicity:

E = 1
2〈v2〉 H = 1

2〈v · ω〉 (1)

whereω = ∇ × v is the vorticity. In this case, it is possible to construct a statistical
mechanics as for a gas: by using the conservation laws and the conservation of the volume
in phase space one obtains a Gaussian distribution.

For simplicity let us start by neglecting the helicity conservation. To be explicit, let us
consider an incompressible inviscid fluid in a cube with periodic boundary conditions, so
that the velocity field can be expanded in Fourier series as

vj (x) = L−3/2
∑
k

eik·xvj (k) (2)

with k = 2πn/L andn = (n1, n2, n3), whereni are integers. The variablesvj (k) are not
completely independent, since from the incompressibility condition and the fact thatv(x)
is real, it follows that

k · v(k) = 0 and v(k) = v∗(−k).
In any case, it is straightforward to introduce a new set of independent variablesXa, where
a labels the spatial component and the wavevector. By using an ultraviolet truncation,
v(k) = 0 for k > kmax, and by introducing (2) in the Euler equations one obtains a set of
ordinary differential equations (ODEs) with the structure

dXa
dt
=
∑
b,c

MabcXbXc

whereMabc = Macb andMabc+Mbca+Mcab = 0 with a = 1, . . . , N ∼ k3
max. We stress the

fact that the ultraviolet truncation is necessary in order to avoid the infinite energy problems
of classical field theory.

It is easy to verify that (2) preserves the volume in the phase space as well as the energy,
namely ∑

a

∂

∂Xa

(
dXa
dt

)
= 0 and

dE

dt
= 1

2

d

dt

∑
X2
a = 0.

These conservation laws are sufficient to construct the probability distribution of the
variables{Xa} [12]: using the ergodic hypothesis, one obtains the microcanonical probability
measure

Pm({Xa}) ∼ δ
(

1
2

∑
a

X2
a − E

)
.

It is well known that, in the limitN →∞, this is equivalent to the canonical measure

Pc({Xa}) ∼ exp−
(
β

2

∑
a

X2
a

)
where the Lagrange multiplierβ satisfies the relation

〈X2
a〉 =

2E

N
= β−1.
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In two dimensions, the helicityH ≡ 0 and there exists a second conserved quantity, the
enstrophy

� = 1
2

∫
ω2 d2x

which is the mean-square vorticity. In terms of theX variables, it can be written as

� = 1
2

∑
k2
aX

2
a.

As a consequence, the microcanonical probability measure in 2D is

Pm({Xa}) ∼ δ
(

1
2

∑
a

X2
a − E

)
δ

(
1
2

∑
a

k2
aX

2
a −�

)
and the corresponding canonical measure is

Pc({Xa}) ∼ exp−
(
β1

2

∑
a

X2
a +

β2

2

∑
a

k2
aX

2
a

)
where the Lagrange multipliers satisfy the relation

〈X2
a〉 =

1

β1+ β2k2
a

.

In 3D one can repeat a similar argument, taking into account the helicity conservation. In
this case, being the helicity non-positive defined, one has to assume suitable constraints for
the generalized temperature related to the helicity [13].

The above results are, both in 2D and 3D, well reproduced by numerical simulations
[12].

The limit ν → 0 (equivalent toRe→∞) is singular and cannot be interchanged with
the limitN →∞. Therefore, the statistical mechanics of an inviscid fluid has a quite limited
relevance on the behaviour of the NS equations at high Reynolds number. Recently some
authors proposed the use of conservative statistical mechanics to justify some behaviours of
real fluids, e.g the Jupiter’s red spot and the emergence of organized structures [14–16]. The
applicability of this approach is limited to some particular quasi-equilibrium 2D situations.

On the other hand, both from phenomenological arguments and experimental results, we
know that the statistical mechanics of FDT has peculiarities rather different from the usual
statistical mechanics of conservative systems. In the limit of FDT the energy fluctuates
around its mean value and in addition one has an energy cascade from large to small scales.

The turbulence is described by a dissipative system (essentially a high-dimensional
truncation of the NS equations with|k| < kmax = O(Re3/4) in which the volume in the
phase space is not conserved. Let us stress again that the two limitsν → 0 andkmax→∞
must be take in a suitable way in order to obtain the correct physical result for the turbulence.
If one wants that the mean energy dissipation is O(1) in the limitRe→∞ one has to take
kmax> O(Re3/4).

In order to have a statistical stationary state one needs two basic ingredients: a ‘friction’
mechanism and a coupling with an external forcing or ‘reservoire’. A typical example of
statistical stationary state is given by conductive systems where an external electric field
and a friction mechanism, mimicking the electrical resistivity, leads to a macroscopic steady
current.

Recently time-reversible and conservative systems have been introduced in the issue of
the non-equilibrium statistical mechanics of stationary state. For sake of self-consistency
we recall one of the simplest systems of this class. Let us considerN independent particles
of massm, with coordinates and momentaqi andpi respectively, on a square domain (in
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2D or 3D) with periodic boundary conditions for the variablesqi . Using a suitable external
potentialV (q) we can mimic the elastic scattering with rigid obstacles in order to have
basically a ‘Lorentz gas’. The equations of motion are:

dqi
dt
= 1

m
pi (3)

dpi
dt
= − ∂V

∂qi
. (4)

The system is chaotic and one can expect the usual microcanonical distribution. Of course
there is no net current. In order to have a current in thex-direction it is necessary to add
in equation (4) a termEe1, wheree1 is the versor in thex-direction. At the same time,
if one wants to focus on stationary aspects, some energy-losing mechanism must be added.
Standard phenomenology would suggest the insertion of a viscous irreversible term of the
form −αpi in the equation of motion governing the evolution of momenta. In this way,
one is naturally lead to a stationary state.

Recently, in [17], the idea of mimicking this behaviour by means of an exactly
conservative and reversible physics has been proposed by using instead of a constant
viscous coefficientα, a perfect energy-sink, correlated with all scales and able to reabsorb
instantaneously all excess of energy injected by the forcing term in the system. This ideal
viscosity must acquire an explicit time-dependency and works out as a Lagrange multiplier
such as the total energy is an invariant of motion. Being the forcing mechanism not-positive
defined, also the ideal viscosity will be not-positive defined.

The system now develops a net current and all the phenomenology of a dissipative
physics. The natural question which arises is how much the original dynamics is preserved
by this very-strong perturbation of the equation of motion.

In [17] some numerical simulations of equations (3) and (4) have been performed
showing that some of the main signatures of the original physics are still present in the
modified model with the advantage, in the latter, that some analytical investigations can
also be carried out. In particular the most important consequence of the chaotic hypothesis
is thefluctuation theoremthat is an exact parameterless prediction. This theorem concerns
the PDF of the contraction rate of the attractor surface element (for a detailed discussion
see [6]). Let us note that is very difficult, save for very particular systems, to test this
prediction as the attracting sets usually are unknown.

In the next section we will investigate a similar problematic in a class of dynamical
systems for turbulent flows, called shell models. In particular, we want to understand how
much freedom is allowed in the choice of a viscous-modelization without perturbing the
main physical framework too much, and/or quantifying the aspects of the perturbation,
eventually.

The aim consists of having a reversible dynamics showing in some limit (to be defined)
the same physics of a turbulent dissipative flow.

3. Time-reversible shell models

One of the most intriguing problems in 3D turbulence is related to the understanding of
the nonlinear dynamical mechanism triggering and supporting the energy cascade from
large to small scales. Following the Richardson scenario that energy should be transferred
downwards in scales, Kolmogorov [18] (K41) postulated that the energy cascade should
follow a self-similar and homogeneous process entirely dependent on the energy transfer
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rate,ε. This idea, with the assumption of local isotropy and universality of the small scales,
eventually led to a precise prediction:

Sp(l) ≡ 〈(δv(l))p〉 = Cp〈(ε(l))p/3〉lp/3 (5)

whereCp are constants andε(l) is the coarse-grained energy dissipation over a scalel

supposed to be in the inertial range, i.e. much smaller than the integral scale and much
larger than the viscous dissipation cut-off. IfSp(l) ∼ lζ(p) and〈εp(l)〉 ∼ lτ (p) then

ζ(p) = p/3+ τ(p/3). (6)

In K41 the ε(l) statistic is assumed to bel-independent, orτ(p) = 0, implying
ζ(p) = p/3, ∀p, in particularζ(2) = 2

3 or, equivalently, the energy spectrum going ask−5/3.
On the other hand, there are many experimental and numerical [19–22] results telling us
that the K41 scenario for homogeneous and isotropic turbulence is quantitatively wronged.
Strong intermittent bursts in the energy transfer have been observed and non-trivialτ(p)

set of exponents measured.
Shell models have been demonstrated to be very useful for the understanding of many

properties connected to the nonlinear turbulent energy transfer [23–30]. The most popular
shell model, the Gledzer–Ohkitani–Yamada (GOY) model [23–30], has been shown to
predict scaling properties forζ(p) (for a suitable choice of the parameters) similar to
what is found experimentally. An other dynamical approach to intermittency in terms
of real-space cascade model has been proposed in [31]. For recent comparison with direct
numerical simulation see [32]. The GOY model can be seen as a severe truncation of the
NS equations: it retains only one complex modeun as a representative of all Fourier modes
in the shell of wavenumbersk betweenkn = k02n andkn+1.

Dynamical equations have the same qualitative structure of NS equations, namely:

d

dt
un = Nn[u] − νk2

nun + fn (7)

whereN [u] are the inertial nonlinear terms (see below), whileν is the molecular viscosity
andfn, a suitable forcing term acting only on large scales introduced in order to reach a
(statistical) stationary state.

The choice of the nonlinear term is dictated from the ‘locality assumption’, i.e. only
couplings with the nearest and next nearest shells are kept. In detail the final equations are

d

dt
un = ikn(u

∗
n+1u

∗
n+2+ bu∗n+1u

∗
n−1+ cu∗n−1u

∗
n−2)− νk2

nun + δn,n0f (8)

where the the external forcing acts on a large scalen0 andb, c are two free parameters, but
with the constraint 1+ 2b + 4c = 0, used for changing the ‘dimensionality’ of the system
[28, 30], a popular choice which leads to results close to the 3D turbulent phenomenology
is b = − 1

4, c = − 1
8. Let us stress that this choice of the parameters corresponds to both

energy and helicity conservation for a shell scale ratio equal to 2 and that whenever one
has these two invariants, for any shell ratio, one has anomalous scaling exponents.

At fixed molecular viscosity,ν, the model develops a chaotic energy transfer to the small
scales, with intermittent burst and deviation from K41 in good qualitative and quantitative
agreement with what is observed in true turbulent flow.

The natural question which we would like to analyse in this paper is whether a reversible
system obtained from the original dissipative equation by imposing a global constraint will
allow us to reproduce the standard results and whether one can learn something more about
the strong-dissipative and far-from equilibrium structure of the stationary statistics.
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Therefore, following Gallavotti’s suggestion we introduce a Lagrange multiplierα[u]
such as the equations of motion (8) preserve the total energy for any time, namely:

d

dt
un = Nn[u] − α[u]k2

nun + fn. (9)

In order to have the total energyE = 1
2

∑ |un|2 constant, one has to impose:

α[u] = <(u0f )∑
n k

2
n|un|2

. (10)

Note that the above equations define a formally time-reversible system in the sense that the
equations do not change under the trasformationt → −t andu → −u. Let us comment
that in [5, 6] different versions of reversible-hydrodynamical equations for a flow have been
proposed depending on which macroscopic observables one fixes by means of the Lagrange
multiplier. For example, equations similar to (9) but withα[u] chosen such that the total
energy dissipation is conserved could in principle be used as well. In our view, guided
from the phenomenological behaviour of turbulent flows, we believe that the only realistic
constraint one can safely impose to the equation is on the total energy. Constraining the
total energy dissipation would put too much weight on the small-scales statistics and would
kill one of the most remarkable signatures of turbulent flows: the multifractal nature of
energy dissipation.

The aim of our study is to understand how the system moves away from the stationary
and equilibrium state that one obtain whenfn = 0 as soon as some energy pump and
(perfect) energy sink are switched on(fn > 0).

4. Numerical results

We first performed a benchmark numerical integration of a standard irreversible and
dissipative GOY model with fixed viscosity and forcing. This integration allows us to
fix ‘physical realistic’ values for the observables of the reversible dynamics. Numerical
evolution was given by a fourth-order Runge–Kutta algorithm, for a GOY model with
N = 23 shells and a constant forcing on the first shell,f = 5×10−3(1+ i). The integration
time was several hundreds characteristic eddy turn-over times. We measured the structure
functions and the average energy of the system. Afterwards, we integrated the reversible
dynamical system keeping the total energy fixed to the mean value of the benchmark run.
We kept all the other parameters of the model equal to those of the benchmark run, except
for the value of the forcing which we let vary in order to switch continuously from a
conservative equilibrium dynamics (f = 0) to a conservative non-equilibrium dynamics
(f > 0).

In order to characterize the scaling behaviour is useful to study the properties the energy
flux through thenth shell. The flux8n is defined from the energy balance equation:

d

dt

1

2

n∑
m=0

|um|2 = kn=(unun+1un+2+ 1

4
un−1unun+2)− α[u]

n∑
m=0

k2
m|um|2+<(u0f ) (11)

by looking at the term coming from the inertial part of the equation of motion:

8n = kn=〈unun+1un+2+ 1
4un−1unun+2〉. (12)

It is easy to show that in the inertial range, i.e. in the presence of an energy cascade, the
energy flux must be constant [27], this is the equivalent in shell models of the4

5 law for
the third-order longitudinal structure function in real turbulence. Therefore, it is natural to
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Figure 1. 6n,2 versuskn in log–log scale obtained from an integration of the model with
N = 23, K0 = 6.25× 10−2 and different values of the forcing:f = 5× 10−3(1+ i) (plus),
f = 6× 10−3(1+ i) (squares),f = 8× 10−3(1+ i) (cross). Diamonds represent the results
obtained in the benchmark integration (i.e. the original GOY model).

quantify the statistical properties of the energy transfer by measuring the scaling properties
of different flux moments:

6n,p ≡ 〈8p/3
n /k−p/3n 〉 ' k−ζpn .

One can observe that in the limit with vanishing forcing there is equipartition between
degrees of freedom. In this case the viscous term is very low—the viscosity is proportional
to the value of the forcing—and we have essentially a truncated-Euler system with Gaussian
probability distributions of the shell variablesun. When the forcing is increased there
appears two different scaling ranges. In the first range (smallk’s) is a clearly distinguishable
energy cascade. In the second range (largek’s) the energy is in equipartition among the
degrees of freedom. Likewise the PDFs of shells in equipartition all have the same functional
non-Gaussian form.

The range in which the energy cascade is observed is longer for higher forcing up to
a critical forcing where the cascade range coincides with the inertial range of the original
GOY model.

For even higher forcing the system falls in a stable fixed point in which all the energy
is concentrated in the first shell and all the other shell variables are zero.

We have checked that the cascade range is not due to finite-size effects by performing



Time-reversible dynamical systems for turbulence 29

-25

-20

-15

-10

-5

-18 -16 -14 -12 -10 -8 -6 -4 -2 0

ln(6n, 3(N))

ln(6n, 6(N))

K 41

Figure 2. 6n,6 versus6n,3 in log–log scale obtained for the system with the same parameters
as in figure 1 andf = 8× 10−3(1+ i) (diamonds). The K41 line (broken line) is also shown
for comparison.

a simulation with a larger number of shells (N = 28) and keeping all the other parameters
constant.

The same behaviour has been obtained in a model in which the dissipation term has
been put only in the dissipative range (the last seven shells).

Likewise, we measured the scaling exponents of6n,p in the energy-cascade range,
using the extended self-similarity (ESS) in order to have more accurate fits. In the ESS one
measures the behaviour of the structure functions of orderp versus the structure function
of order 3. In this way the scaling range is longer and measures of scaling exponents are
more precise [20].

In figure 2 we plotted the function of order 6 and in figure 3 we show the behaviour of
the scaling exponents compared with that of the GOY model. There is a clear intermittent
energy cascade.

On heuristic grounds, Gallavotti [6] made the conjecture that a dissipative system and
its time-reversible analogue should be equivalent (in a statistical sense) if the timescale by
which the viscosity reaches its mean value is shorter than the hydrodynamic timescales (i.e.
the eddy turnover times). In this case the viscosity time evolution would be confused with
its average.

Although we did not find a quantitative agreement with the conjecture of Gallavotti the
qualitative behaviour is in the right direction. We defined the characteristic timeτ of α[u]
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Figure 3. ζp versusp for the GOY model (diamonds) and for its reversible analogue. Squares
are obtained forf = 8× 10−3(1+ i) and pluses forf = 5× 10−3(1+ i). The anomalous
exponents have been calculated using the ESS.

as the decaying time of the autocorrelation of its logarithm, that is defined by:

C(τ) = 〈x(t + τ)x(t)〉 − 〈x(t)〉
2

〈x(t)2〉 − 〈x(t)〉2 (13)

where x = log(α). We considered the logarithm of the viscosity function because the
function itself has very large fluctuations (several orders of magnitude larger than its average)
and consequently the time average of its square has very long convergence times. We have
found that in the case with the longer cascade range, i. e. in the system with statistical
properties closer to the original GOY model, this characteristic time is shorter (see figure 4)
and consequently the time by which the viscosity reaches its average is shorter. Moreover
let us stress that in this caseα[u] has a smaller mean-square value, i.e. smaller fluctuations.

5. Conclusions

The statistical mechanics of FDT has features which are very different from those of the usual
equilibrium statistical mechanics of Hamiltonian systems. Recently, Gallavotti proposed a
dynamical ensemble equivalence between hydrodynamical dissipative system, e.g. the NS
equations, and time-reversible systems.

In this paper, we introduce and study a time-reversible dynamical system obtained, from
a shell model for turbulence, changing the viscous terms such as the energy is conserved.
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Figure 4. C(τ) versusτ for two different values of the forcing:f = 5× 10−3(1+ i) (full
curve) andf = 8× 10−3(1+ i) (broken curve).

At small forcing values the system has statistical behaviours very close to those of a gas,
i.e. energy equipartition and Gaussian statistics. On increasing the forcing one has a non-
equilibrium statistical stationary state with an energy cascade and anomalous scaling laws
similar to those observed in turbulence.

The dynamical ensemble equivalence seems to be satisfied at least for the typical
observables measurable in turbulent flows.

A relevant open problem remains for defining precisely the class of constraints allowed
for the dynamical ensemble equivalencehypothesis to hold.
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