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Coherent structures in random shell models for passive scalar advection
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A study of anomalous scaling in models of passive scalar advection in terms of singular coherent structures
is proposed. The stochastic dynamical system considered is a shell model reformulation of Kraichnan model.
We extend the method introduced by Daumont, Dombre, and Giis@nint archive chao-dyn/99050/Lt the
calculation of self-similar instantons and we show how such objects, being the most singular events, are
appropriate to capture asymptotic scaling properties of the scalar field. Preliminary results concerning the
statistical weight of fluctuations around these optimal configurations are also presented.
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Experimental and numerical investigation of passive scathe scalar field as made of singular scaling fluctuations
lars advected by turbulent flows have shown that passive,8(x)~r"® with a probability to develop ah-fluctuation
scalar structure functiori§,,(r) have an anomalous power at scaler given byP, (h)~r ™ f(h) being the codimension
law behavior:T,,(r)=([ 8(x+r)— 6(x)1?")=([ 8, 6(x)1*") of the fractal set wherk(x) =h. This is the multifractal road
~r¢2M  where for anomalous scaling we mean that the exto anomalous exponenid] that leads to the usual saddle-
ponents {(2n) do not follow the dimensional estimate point estimate for the scaling exponents of structure func-
£(2n)=n¢(2). A great theoretical challenge is to develop ations: {(2n)=min,2nh+f(h)] [5]. In this framework, high-
theory which allows a systematic calculation &fn) from  order structure functions are dominated by the most intense
the Navier-Stokes equations. Receritly, it has been real- events, i.e., fluctuation characterized by an expotgnt:
ized that intermittent power laws are also present in a moddim,_,..Z(n)=nh,;,. The emergence of singular fluctua-
of passive scalar advected by stochastic velocity fields, fotions, at the basis of the multifractal interpretation, naturally
n>1 [2,3]. The model, introduced by Kraichnan, is defined suggests that instantonic calculus can be used to study such

by the standard advection equation special configurations in the system. Recently, instantons
have been successfully applied in the Kraichnan model to
A +u-90=xkA 0+ ¢, (1) estimate the behavior of high-order structure functions when

d(2—-€)>1 [6], and to estimate probability distribution

whereu is a Gaussian, isotropi@-function-correlated sto- function tails foré=2 [7].
chasticd-dimensional field with a scaling second-order struc-  In this Rapid Communcation, we propose an application
ture  function:  ([ui(x+r)—u(X)][u;(x+r)—u;(x)]) of the instantonic approach in random shell models for pas-
=Doré[(d+ £—1)5;; —grirj/rz]. The physical range for sive scalar advection, where explicit calculation of the sin-
the scaling parameter of the velocity field iss@<2, ¢ is  gular coherent structures can be performed. Let us briefly
an external forcing and is the molecular diffusivity. summarize our strategy and our main findings. First, we re-

A huge amount of work has been done in the last years ostrict our hunt for instantons to coupled, self-similar configu-
the Kraichnan model. Due to th&function correlation char- rations of noise and passive scalar, a plausible assumption in
acter of the advecting velocity field, the equation for passiveview of the multifractal picture described above. We develop
correlators of any ordem are linear and closed. This allows a numerically assisted method for computing in an exact way
explicit, perturbative calculations of anomalous exponents irsuch configurations of optimal Gaussian weight for any scal-
terms of zero-mode solutions of the closed equation satisfiethg exponenh. We find thath cannot go below some finite
by n-points correlation function, by means of developmentsthresholdh,,;,(£). We comparen,i,(£¢) at varyingé given
in £€[2] or in 1/ [3], with d the physical space dimension- from the instantonic calculus with those extracted from nu-
ality. merical simulation, showing that the agreement is perfect

The connection between anomalous scaling and zerand therefore supporting the idea that self-similar structures
modes, if fascinating from one side, looks very difficult to be properly capture the intermittent exponents of high-order
useful for the most important problem of Navier-Stokesmoments. Second, assuming that these localized pulselike
equations. In that case, where the problem is nonlinear, thimstantons constitute the elementary bricks of intermittency
hierarchy of equations of motion for velocity correlators isalso for finite-order moments we compute their dressing by
not closed and the zero-mode approach should be pursued guadratic fluctuations. We obtain in this way the first two
a much less handable functional space. terms of the functiorf(h) via a “semiclassical” expansion.

From a phenomenological point of view, a simple way toLet us notice that a rigorous application of the semiclassical
understand the presence of anomalous scaling is to think anhalysis would demand for a small parameter controlling the
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rate of convergence of the expansion, such asatieren is de

the order of the momen®] or 1/, whered is the physical E:M[b] 0. ®)

space dimensiof]. As we do not dispose of such a small

parameter in our problem, the reliability of our results con-The scalar and velocity gradient vectad#sandb, are made

cerning the statistical weight of thie-pulses can only be from the variable®),, andkup,. As far as inertial scaling is

checked from ara posteriori comparison with numerical concerned, we expect that some strong universality proper-

data existing in literature. At the end of this paper, we will ties apply with respect to the large scale forcing. Indeed,

present some preliminary results on such important issudorcing changes only the probability with which a pulse ap-

while much more extensive work will be reported elsewherepears at large scale, but not its inertial range scaling behav-
Shell models are simplified dynamical models that haveor, Pkm(h)Nkr}f(h)- So, as we are interested only in the

demqnstrated in the past to be able to_reproduce many of tr’lé)avalur:ltion off(h), we drop the forcing and dissipation in
most important features of both veloc([y and passive t_urbqu_ (3). The matrixM[b] is linear inb and can be obviously
lent cascade_ﬁ]. The model we are going to use Is deflneql deduced from Eq(2). The stochastic multiplicative equation
as follows. First, a shell-discretization of the Fourier space i 3) must be interpreted in the Stratonovich sense. However
E SfL ofmwavg nu(;nbe:js (_jr(;:]fmed on a geometric progreSS||o ce the Ito-prescription for time discretization is adopted,
m= Ko™ Is Introduced. Then, passive increments at scalgpg gy namics gets Markovian and a path integral formulation

—_1-1 . . .
rm=ky~ are described by a real variabt(t). The time .4, then be easily implemented. This changes(Bginto
evolution is obtained according to the following criter{@:

the linear term is purely diffusive and is given by
— kk2 6, (i) the advection term is a combination of the qi~ BDé+M[b]é, 4
form Kn6n Uy, where u, are random Gaussian and
S-function-correlated shell-velocity fieldgjii) interacting whereD is a diagonal matrixito-drift) D, = kﬁ{f, andB

shells are restrlpted to neares_t—nelghborsmf(w) in the is a positive constant. As we said before, we are looking for
absence of forcing and damping, the model conserves thgoherent structures developing a scaling | k=N as
volume in the phase-space and the enegy== |62 m

Properties(i), (ii), and (iv) are valid also for the original they propagate towards small scales in the presence of a

equation(1) in the Fourier space, while propertiii) is an velocity realization of optimal Gaussian weight. The prob-

. i i ; .. ability to go from one point to another in configuration space
assumption of locality of interactions among modes, which 'S(spanned byd) between times; andt, can be written quite
rather well founded as long as power law spedigk) ! f

K~ has 1< a<3 generally as a path integral over the three fiddd®), andp
. . _ b,(}, _ - t
The simplest model exhibiting inertial-range intermit- Of the exponentiae SIb 0Pl = exp( J{£lb,6,p]dt), where

tency is defined by8]: the LagrangiarC is given by the equation
d 2 1 de
gt T K| Om(t) = Cmm— (1) U(1) L(b,6,p)= 5b- D 'b+p- 4t TBDO-M[b]6|, (5)

FamOm-1(DUn-2 (D + o1m (1), andp is an auxiliary field conjugated t@ which enforces the

(2 equation of motion(4). The minimization of the effective

. . actionS leads to the following coupled equations:
with a,,= —c,,_ 1=K, and where the forcing term acts only g P d

on the first shell. Following Kraichnan, we also assume that de

the forcing terme(t) and the velocity variables,(t) are —=—BD6+M[b]é, (6)
independent Gaussian and-function-correlated random dt

variables, with the following scaling prescription for the ad-

vecting field: (un(t)u,(t’))= 5(t—t’)kr;§6mn. Shell mod- d_p: BDp—'M[b]p @)
els have been proved analytically and nonperturbati{/@]y dt '
to possess anomalous zero modes similar to the original Kra-
ichnan model1). with the self-consistency condition fd,
The role played by fluctuations with local expondafi)
in the original physical space model is replaced here by the b=D ‘N[ d]p, (8)

formation at larger scale of structures propagating self-

similarly towards smaller scales. The existence in the inviswhere the matriXN[ 8] is defined implicitly through the re-
cid unforced problem of such solutions associated with théation N[ #]o=M[b] 6. Notice that our saddle-point approxi-
appearance of finite time singularities is a general feature imation is not based on the largestructure-function proce-
shell modelg9,10]. The analytical resolution of the instan- dure as in6].

tonic problem even in the simplified case of shell models isa We are now able to predict the scaling dependence of
hard task. IM11], a numerical method to select self-similar variablesb,,. For a truly self-similar propagation, the cost in
instantons in the case of a shell model for turbulence, hagction per each step along the cascade must be constant. The
been introduced. In the following, we are going to apply acharacteristic turn-over time required by a pulse localized on
similar method to our case. We rewrite mod2) in a more  the mth shell to move to the next one can be dimensionally
concise form, estimated as 1{(,k,)=b,.*. Recalling the scaling depen-



RAPID COMMUNICATIONS

PRE 60 COHERENT STRUCTURES IN RANDOM SHELL MODESR. .. R6301
dence ofD and the definition of actioif5), we expectAS 0.5
=™ 1Ldt~k,? 9b,,. We can thus deduce thai,
m
~k2*§ it
m g04 |

Let us now discuss how to explicitly find solutions of the ;—
above system of equations. Clearly, there is no hope to ana- o,
lytically find the exact solutions of these deterministic non- Qo3 }
linear coupled equations. Also numerically, the problem is &
quite delicate, because Ed6) and(7) are obviously dual of o
each other and have opposite dynamical stability properties.§ 02¢
This phenomenon can be hardly captured by a direct time £
integration. To overcome this obstacle, [itl] it has been
proposed a general alternative scheme which adopts an iterag %1 |
tive procedure. For a given configuration of the noise, each
step consists in integrating the dynamics of the passive scalal ) . )
(6) forward in time to let the solution of optimal growth 00,0 0.5 1.0 1.5 20
emerge. Conversely, the dual dynamics of the auxiliary field Y
(7) is integrated backward in time, along the direction of
minimal growth in agreement with the prediction deduced F!G. 1. Behavior of the asymptotic slo®, as function of
from Eq. (8): |p|~||6] %. Then the noisé can be recom- y=2—¢: (+), results from the instantonic calculus for the model of
puted by the self-consistency equati@ and the process is Ref'_[lz]_; ). upper bound value fohr, as extracted from nu-
repeated until the convergence is reached. merical integration of the same model.

_ S_elf-similar passive §0Iutions must be triggered by self-po’ andC®, was reached. The scaling exponeént- kr;h for
similar noise configuration,

the passive scalar can be deduced aﬂ;(h)~em”maxT, o)
1 thath=(£—2)o,ax- Note thath is bound to be positive due
by(t)= F(K2E(tr —t1)), (99  tothe conservation of energy. In our algorithm, the norm of
(t*—1t) the gradient velocity fieldC(0) acts as the unique control
parameter in a one to one correspondence tiffihe action
wheret* is the critical time at which a self-similar solution S°(h) is, in multifractal language, nothing but the first esti-
reaches infinitesimally small scales in absence of dissipatiomate of thef(h) curve based only on the contribution of all
To overcome the nonhomogeneity of time evolution seen byyulselike solutions, more precisefyh)=S°(h)/In \.
these accelerating pulses, we introduce a new time variable We now turn to the presentation and discussion of our
7=—log(t* —t). Then, the advecting self similar velocity main result. By varying the control parameter, we obtain a
field (9) can be rewritten under the form(7)=e"C(7),  continuum of exponents in the rangg,in(£)<h=<hn.{&).
where Cp,(7), is still the velocity gradient field, but ex- The simple analysis of thé-spectrum allows predictions
pressed in a different time scale, such tBgf(7)=F(m(2  only for observables that do not depend on fie) curve,

ic
%~

symp

—§)logh—1). i.e., only on the scaling of ,, for n—c, [£(n)~h 0 for
The sought self-similar solutions appear in this represenn large enough, ifi,,# 0].
tation as traveling waves, whose peridg-(2— &)log\ is Unfortunately, high-order exponents are the most difficult

fixed by the scaling consideration reported above. In thiguantities to be extracted from numerical or experimental
way, we can limit the search of solutions on the time intervaldata. However, due to the extreme simplicity of shell mod-
[0—T], and the action at the final timg=mT is deduced els, very accurate numerical simulations have been fib?je
by S(tf) =m¥T). at different values of and in some cases a safe upper bound
Then comes the main point of our algorithm. For a fixedprediction on the asymptotic of(n) exponents could be
noise configuratiorC, the field # must be the eigenvector extracted. To compare our results with the numerical data
associated to the maximéh absolute valueLyapunov ex-  existing in literature, we have analyzed the shell-model ver-
ponento .y of the Floquet evolution operator, sion of passive advection proposed[it2]. In Fig. 1, we

show theh,;, curve obtained at variou$ from instantonic
num

T . . .
U(T:0)=7_,ex _BDe "+M[C dr. (10 calculation, together with thle;,’ values extracted from di-
(T:0) ! pfo{ [C(n)lidr. (10 rect numerical simulation of the quoted modd2] per-

formed at two different values df: the agreement is good.
Here7_, denotes the translation operator by one unit to theDur calculation predicts, within numerical errors, the exis-
left along the lattice. Similarly, the auxiliary field must be tence of a criticalé,~ 1.75 above which the minimal expo-
the eigenvector associated with the Lyapunov exponentnent reaches the lowest bouhg,=0. This goes under the
— 0 may Of the inverse dual operatdt ~1. name of saturation and it is the signature of the presence of

Starting from an initial arbitrary traveling wave shape for discontinuouslike solutions in the physical spag@~r°.

C(7) with period T, we have computed the passive scalarTheoretical[6] and numerica[13] results suggest the exis-
and its conjugate fields at any time between 0 dndy  tence of such effect in the Kraichnan model for any value of
diagonalization of operatdd, recomputed the velocity gra- &, Saturation, in the latter, is due to typical Lagrangian ef-
dient field C(7) from the self-consistency equati¢8), and  fects, and thus it is not surprising if there is not a complete
iterated this procedure until an asymptotic stable stafe, quantitative analogy with the shell-model case.
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10.0 . Naturally, in the absence of any small parameter in the
problem, we cannot take for granted that the next correc-
80 L + 7 | tion(s) would not spoil this rather nice agreement with nu-
+ 7 merical data. But the surprising fact thg§+ S, is strongly
. reduced with respect t8,, even for the most intense events,
6.0 - LT . does not imply by itself a lack of consistency of our compu-
N + tation. In any case, the prediction of the asymptotic slope of
40 1 + i the ¢, curve, based on the value,;, is obviously valid
* o ¢ ° beyond all orders of perturbation. Moreover, for values of
* L ey 2 ? ' &>1, we find that the second-order exponent extracted from
201 4 o« 'y A ] our calculation is in good agreement the exact regit 2
¥ — &, suggesting that our approach is able to give relevant
0.0 ‘ . statistical information also on not too intense fluctuations.

5 10 15 In conclusion, we presented an application of the semi-
n classical approach to shell models for passive scalar advec-
FIG. 2. Exponents,, of structure functions of ordervs n for  tion. Instantons are calculated through a numerically assisted
£=1: (*), data from direct numerical simulation of R¢L4]; (+), method solving the equations from probability extrema: the
Legendre transform of the actidith)=S;; (®), Legendre trans- algorithm has proved to be capable of picking up those con-
form of the actionf(h) =S,+S;. The solid line corresponds to the figurations, giving the main contributions to high-order mo-
dimensional scaling. ments. Of course, we are far from having a systematic, under
Let us now present the othéreliminary result, i.e., the analytical control approach to calculate anomalous expo-
role played by instantons for finite-order structure functionsN€nts in this class of models. Still, the encouraging results
If we just keep the zeroth order approximation fogh) ~ Presented here raise some relevant questions, going well _be-
=S,(h)/log\, we get ther,, curve shown in Fig. 2, which is  Yond the realm of shell models. To mention just one, we still
quite far from the numerical results pi4] (the asymptotic lack a full comprehension of the connection between the
linear behavior is in fact not even reached in the range of usual multiplicative-random process and the instantonic ap-
represented on the figyren order to get a better assessmentproaches to multifractality: in particular, the prediction for
of the true statistical weight of the optimal solutions, we multiscale and multitime correlations of the kind discussed
computed the next to leading order term in a “semiclassidin [15] within the instantonic formulation, is not a clear mat-
cal” expansion. Fluctuations around the action were develier.
oped to quadratic order with respecta8, p°, andC® and
the summation over all perturbed trajectories leading to the It is a pleasure to thank J-L. Gilson and P. Muratore-
same effective scaling exponent for thdield afterm cas-  Ginanneschi for many useful discussions. Partial support by
cade steps was performed. It turns ¢see Fig. 2 that the INFM (PRA-TURBO), by EU Contract No. FMRX-CT98-
contribution in the action of quadratic fluctuatiorss,(h), 0175 to L.B., and by EU Contract No. ERB-FMBI-CT96-
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