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Coherent structures in random shell models for passive scalar advection
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A study of anomalous scaling in models of passive scalar advection in terms of singular coherent structures
is proposed. The stochastic dynamical system considered is a shell model reformulation of Kraichnan model.
We extend the method introduced by Daumont, Dombre, and Gilson~e-print archive chao-dyn/9905017! to the
calculation of self-similar instantons and we show how such objects, being the most singular events, are
appropriate to capture asymptotic scaling properties of the scalar field. Preliminary results concerning the
statistical weight of fluctuations around these optimal configurations are also presented.
@S1063-651X~99!51312-3#
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Experimental and numerical investigation of passive s
lars advected by turbulent flows have shown that pas
scalar structure functionsT2n(r ) have an anomalous powe
law behavior:T2n(r )5^@u(x1r )2u(x)#2n&5^@d ru(x)#2n&
;r z(2n), where for anomalous scaling we mean that the
ponents z(2n) do not follow the dimensional estimat
z(2n)5nz(2). A great theoretical challenge is to develop
theory which allows a systematic calculation ofz(n) from
the Navier-Stokes equations. Recently@1#, it has been real-
ized that intermittent power laws are also present in a mo
of passive scalar advected by stochastic velocity fields,
n.1 @2,3#. The model, introduced by Kraichnan, is defin
by the standard advection equation

] tu1u•u5kDu1f, ~1!

whereu is a Gaussian, isotropic,d-function-correlated sto-
chasticd-dimensional field with a scaling second-order stru
ture function: ^@ui(x1r )2ui(x)#@uj (x1r )2uj (x)#&
5D0r j@(d1j21)d i j 2jr i r j /r 2#. The physical range for
the scaling parameter of the velocity field is 0<j<2, f is
an external forcing andk is the molecular diffusivity.

A huge amount of work has been done in the last years
the Kraichnan model. Due to thed-function correlation char-
acter of the advecting velocity field, the equation for pass
correlators of any ordern are linear and closed. This allow
explicit, perturbative calculations of anomalous exponent
terms of zero-mode solutions of the closed equation satis
by n-points correlation function, by means of developme
in j @2# or in 1/d @3#, with d the physical space dimension
ality.

The connection between anomalous scaling and z
modes, if fascinating from one side, looks very difficult to
useful for the most important problem of Navier-Stok
equations. In that case, where the problem is nonlinear,
hierarchy of equations of motion for velocity correlators
not closed and the zero-mode approach should be pursu
a much less handable functional space.

From a phenomenological point of view, a simple way
understand the presence of anomalous scaling is to thin
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the scalar field as made of singular scaling fluctuatio
d ru(x);r h(x), with a probability to develop anh-fluctuation
at scaler given byPr(h);r f (h), f (h) being the codimension
of the fractal set whereh(x)5h. This is the multifractal road
to anomalous exponents@4# that leads to the usual saddle
point estimate for the scaling exponents of structure fu
tions: z(2n)5minh@2nh1f(h)# @5#. In this framework, high-
order structure functions are dominated by the most inte
events, i.e., fluctuation characterized by an exponenthmin :
limn→`z(n)5nhmin . The emergence of singular fluctua
tions, at the basis of the multifractal interpretation, natura
suggests that instantonic calculus can be used to study
special configurations in the system. Recently, instant
have been successfully applied in the Kraichnan mode
estimate the behavior of high-order structure functions wh
d(22j)@1 @6#, and to estimate probability distributio
function tails forj52 @7#.

In this Rapid Communcation, we propose an applicat
of the instantonic approach in random shell models for p
sive scalar advection, where explicit calculation of the s
gular coherent structures can be performed. Let us bri
summarize our strategy and our main findings. First, we
strict our hunt for instantons to coupled, self-similar config
rations of noise and passive scalar, a plausible assumptio
view of the multifractal picture described above. We deve
a numerically assisted method for computing in an exact w
such configurations of optimal Gaussian weight for any sc
ing exponenth. We find thath cannot go below some finite
thresholdhmin(j). We comparehmin(j) at varyingj given
from the instantonic calculus with those extracted from n
merical simulation, showing that the agreement is perf
and therefore supporting the idea that self-similar structu
properly capture the intermittent exponents of high-ord
moments. Second, assuming that these localized pulse
instantons constitute the elementary bricks of intermitten
also for finite-order moments we compute their dressing
quadratic fluctuations. We obtain in this way the first tw
terms of the functionf (h) via a ‘‘semiclassical’’ expansion
Let us notice that a rigorous application of the semiclass
analysis would demand for a small parameter controlling
R6299 © 1999 The American Physical Society
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rate of convergence of the expansion, such as 1/n wheren is
the order of the moment@7# or 1/d, whered is the physical
space dimension@6#. As we do not dispose of such a sma
parameter in our problem, the reliability of our results co
cerning the statistical weight of theh-pulses can only be
checked from ana posteriori comparison with numerica
data existing in literature. At the end of this paper, we w
present some preliminary results on such important iss
while much more extensive work will be reported elsewhe

Shell models are simplified dynamical models that ha
demonstrated in the past to be able to reproduce many o
most important features of both velocity and passive tur
lent cascades@5#. The model we are going to use is defin
as follows. First, a shell-discretization of the Fourier space
a set of wave numbers defined on a geometric progres
km5k0lm is introduced. Then, passive increments at sc
r m5km

21 are described by a real variableum(t). The time
evolution is obtained according to the following criteria:~i!
the linear term is purely diffusive and is given b
2kkm

2 um ; ~ii ! the advection term is a combination of th
form kmum8um9 , where um are random Gaussian an
d-function-correlated shell-velocity fields;~iii ! interacting
shells are restricted to nearest-neighbors ofm; ~iv! in the
absence of forcing and damping, the model conserves
volume in the phase-space and the energyEu5(muumu2.
Properties~i!, ~ii !, and ~iv! are valid also for the origina
equation~1! in the Fourier space, while property~iii ! is an
assumption of locality of interactions among modes, which
rather well founded as long as power law spectraEu(k)
;k2a has 1,a,3.

The simplest model exhibiting inertial-range interm
tency is defined by@8#:

S d

dt
1kkm

2 D um~ t !5cmum21~ t !um~ t !

1amum21~ t !um21~ t !1d1mf~ t !,

~2!

with am52cm215km , and where the forcing term acts on
on the first shell. Following Kraichnan, we also assume t
the forcing termf(t) and the velocity variablesum(t) are
independent Gaussian andd-function-correlated random
variables, with the following scaling prescription for the a
vecting field: ^um(t)un(t8)&5d(t2t8)km

2jdmn . Shell mod-
els have been proved analytically and nonperturbatively@8#
to possess anomalous zero modes similar to the original
ichnan model~1!.

The role played by fluctuations with local exponenth(x)
in the original physical space model is replaced here by
formation at larger scale of structures propagating s
similarly towards smaller scales. The existence in the inv
cid unforced problem of such solutions associated with
appearance of finite time singularities is a general featur
shell models@9,10#. The analytical resolution of the instan
tonic problem even in the simplified case of shell models
hard task. In@11#, a numerical method to select self-simil
instantons in the case of a shell model for turbulence,
been introduced. In the following, we are going to apply
similar method to our case. We rewrite model~2! in a more
concise form,
-
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du

dt
5M@b#u. ~3!

The scalar and velocity gradient vectorsu andb, are made
from the variablesum andkmum . As far as inertial scaling is
concerned, we expect that some strong universality pro
ties apply with respect to the large scale forcing. Inde
forcing changes only the probability with which a pulse a
pears at large scale, but not its inertial range scaling beh
ior, Pkm

(h);km
2 f (h) . So, as we are interested only in th

evaluation off (h), we drop the forcing and dissipation i
Eq. ~3!. The matrixM @b# is linear inb and can be obviously
deduced from Eq.~2!. The stochastic multiplicative equatio
~3! must be interpreted in the Stratonovich sense. Howe
once the Ito-prescription for time discretization is adopte
the dynamics gets Markovian and a path integral formulat
can then be easily implemented. This changes Eq.~3! into

du

dt
52BDu1M @b#u, ~4!

whereD is a diagonal matrix~Ito-drift! Dmm5km
22j , andB

is a positive constant. As we said before, we are looking
coherent structures developing a scaling lawum;km

2h as
they propagate towards small scales in the presence
velocity realization of optimal Gaussian weight. The pro
ability to go from one point to another in configuration spa
~spanned byu) between timest i and t f can be written quite
generally as a path integral over the three fieldsb, u, andp
of the exponentiale2S[b,u,p]5exp(2*ti

tfL@b,u,p#dt), where

the LagrangianL is given by the equation

L~b,u,p!5
1

2
b•D21b1p•S du

dt
1BDu2M @b#uD , ~5!

andp is an auxiliary field conjugated tou which enforces the
equation of motion~4!. The minimization of the effective
actionS leads to the following coupled equations:

du

dt
52BDu1M @b#u, ~6!

dp

dt
5BDp2 tM @b#p, ~7!

with the self-consistency condition forb,

b5D tN@u#p, ~8!

where the matrixN@u# is defined implicitly through the re-
lation N@u#b5M @b#u. Notice that our saddle-point approx
mation is not based on the largen structure-function proce-
dure as in@6#.

We are now able to predict the scaling dependence
variablesbm . For a truly self-similar propagation, the cost
action per each step along the cascade must be constant
characteristic turn-over time required by a pulse localized
the mth shell to move to the next one can be dimensiona
estimated as 1/(umkm)[bm

21 . Recalling the scaling depen
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dence ofD and the definition of action~5!, we expect:DS
5* tm

tm11Ldt;km
2(22j)bm . We can thus deduce thatbm

;km
22j .
Let us now discuss how to explicitly find solutions of th

above system of equations. Clearly, there is no hope to
lytically find the exact solutions of these deterministic no
linear coupled equations. Also numerically, the problem
quite delicate, because Eqs.~6! and~7! are obviously dual of
each other and have opposite dynamical stability proper
This phenomenon can be hardly captured by a direct t
integration. To overcome this obstacle, in@11# it has been
proposed a general alternative scheme which adopts an i
tive procedure. For a given configuration of the noise, e
step consists in integrating the dynamics of the passive sc
~6! forward in time to let the solution of optimal growt
emerge. Conversely, the dual dynamics of the auxiliary fi
~7! is integrated backward in time, along the direction
minimal growth in agreement with the prediction deduc
from Eq. ~8!: ipi;iui21. Then the noiseb can be recom-
puted by the self-consistency equation~8! and the process is
repeated until the convergence is reached.

Self-similar passive solutions must be triggered by s
similar noise configuration,

bm~ t !5
1

~ t* 2t !
F„km

22j~ t* 2t !…, ~9!

wheret* is the critical time at which a self-similar solutio
reaches infinitesimally small scales in absence of dissipat
To overcome the nonhomogeneity of time evolution seen
these accelerating pulses, we introduce a new time vari
t52 log(t*2t). Then, the advecting self similar velocit
field ~9! can be rewritten under the formb(t)5etC(t),
where Cm(t), is still the velocity gradient field, but ex
pressed in a different time scale, such thatCm(t)5F„m (2
2j)logl2t….

The sought self-similar solutions appear in this repres
tation as traveling waves, whose periodT5(22j)logl is
fixed by the scaling consideration reported above. In t
way, we can limit the search of solutions on the time inter
@02T#, and the action at the final timet f5mT is deduced
by S(t f)5mS(T).

Then comes the main point of our algorithm. For a fix
noise configurationC, the field u must be the eigenvecto
associated to the maximal~in absolute value! Lyapunov ex-
ponentsmax of the Floquet evolution operator,

U~T;0!5T21expE
0

T

$2BDe2t1M @C~t!#%dt. ~10!

HereT21 denotes the translation operator by one unit to
left along the lattice. Similarly, the auxiliary field must b
the eigenvector associated with the Lyapunov expone
2smax of the inverse dual operatortU21.

Starting from an initial arbitrary traveling wave shape f
C(t) with period T, we have computed the passive sca
and its conjugate fields at any time between 0 andT, by
diagonalization of operatorU, recomputed the velocity gra
dient fieldC(t) from the self-consistency equation~8!, and
iterated this procedure until an asymptotic stable state,u 0,
a-
-
s

s.
e

ra-
h
lar

d
f

-

n.
y
le

-

is
l

e

t

r

p0, andC0, was reached. The scaling exponentum;km
2h for

the passive scalar can be deduced byum
0 (h);emsmaxT, so

thath5(j22)smax. Note thath is bound to be positive due
to the conservation of energy. In our algorithm, the norm
the gradient velocity fieldC(0) acts as the unique contro
parameter in a one to one correspondence withh. The action
S0(h) is, in multifractal language, nothing but the first es
mate of thef (h) curve based only on the contribution of a
pulselike solutions, more preciselyf (h)5S0(h)/ ln l.

We now turn to the presentation and discussion of
main result. By varying the control parameter, we obtain
continuum of exponents in the rangehmin(j)<h<hmax(j).
The simple analysis of theh-spectrum allows predictions
only for observables that do not depend on thef (h) curve,
i.e., only on the scaling ofT2n for n→`, @z(n);hminn for
n large enough, ifhminÞ0].

Unfortunately, high-order exponents are the most diffic
quantities to be extracted from numerical or experimen
data. However, due to the extreme simplicity of shell mo
els, very accurate numerical simulations have been done@12#
at different values ofj and in some cases a safe upper bou
prediction on the asymptotic ofz(n) exponents could be
extracted. To compare our results with the numerical d
existing in literature, we have analyzed the shell-model v
sion of passive advection proposed in@12#. In Fig. 1, we
show thehmin curve obtained at variousj from instantonic
calculation, together with thehmin

num values extracted from di-
rect numerical simulation of the quoted model@12# per-
formed at two different values ofj: the agreement is good
Our calculation predicts, within numerical errors, the ex
tence of a criticaljc;1.75 above which the minimal expo
nent reaches the lowest boundhmin50. This goes under the
name of saturation and it is the signature of the presenc
discontinuouslike solutions in the physical spaced ru;r 0.
Theoretical@6# and numerical@13# results suggest the exis
tence of such effect in the Kraichnan model for any value
j. Saturation, in the latter, is due to typical Lagrangian
fects, and thus it is not surprising if there is not a compl
quantitative analogy with the shell-model case.

FIG. 1. Behavior of the asymptotic slopehmin as function of
g522j: ~1!, results from the instantonic calculus for the model
Ref. @12#; (*), upper bound value forhmin as extracted from nu-
merical integration of the same model.
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Let us now present the other~preliminary! result, i.e., the
role played by instantons for finite-order structure functio
If we just keep the zeroth order approximation forf (h)
5S0(h)/ logl, we get thezn curve shown in Fig. 2, which is
quite far from the numerical results of@14# ~the asymptotic
linear behavior is in fact not even reached in the range on
represented on the figure!. In order to get a better assessme
of the true statistical weight of the optimal solutions, w
computed the next to leading order term in a ‘‘semiclas
cal’’ expansion. Fluctuations around the action were dev
oped to quadratic order with respect tou 0, p0, andC0, and
the summation over all perturbed trajectories leading to
same effective scaling exponent for theu field after m cas-
cade steps was performed. It turns out~see Fig. 2! that the
contribution in the action of quadratic fluctuations,S1(h),
greatly improves the evaluation ofz(n).

FIG. 2. Exponentszn of structure functions of ordern vs n for
j51: (*), data from direct numerical simulation of Ref.@14#; ~1!,
Legendre transform of the actionf (h)5S0 ; (d), Legendre trans-
form of the actionf (h)5S01S1. The solid line corresponds to th
dimensional scaling.
,
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Naturally, in the absence of any small parameter in
problem, we cannot take for granted that the next corr
tion~s! would not spoil this rather nice agreement with n
merical data. But the surprising fact thatS01S1 is strongly
reduced with respect toS0, even for the most intense event
does not imply by itself a lack of consistency of our comp
tation. In any case, the prediction of the asymptotic slope
the zn curve, based on the valuehmin is obviously valid
beyond all orders of perturbation. Moreover, for values
j.1, we find that the second-order exponent extracted fr
our calculation is in good agreement the exact resultz252
2j, suggesting that our approach is able to give relev
statistical information also on not too intense fluctuations

In conclusion, we presented an application of the se
classical approach to shell models for passive scalar ad
tion. Instantons are calculated through a numerically assi
method solving the equations from probability extrema:
algorithm has proved to be capable of picking up those c
figurations, giving the main contributions to high-order m
ments. Of course, we are far from having a systematic, un
analytical control approach to calculate anomalous ex
nents in this class of models. Still, the encouraging res
presented here raise some relevant questions, going wel
yond the realm of shell models. To mention just one, we s
lack a full comprehension of the connection between
usual multiplicative-random process and the instantonic
proaches to multifractality: in particular, the prediction f
multiscale and multitime correlations of the kind discuss
in @15# within the instantonic formulation, is not a clear ma
ter.
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