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Disentangling Scaling Properties in Anisotropic and Inhomogeneous Turbulence
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We address scaling in inhomogeneous and anisotropic turbulent flows by decomposing structure
functions into their irreducible representation of the SO(3) symmetry group which are designated by
j,m indices. Employing simulations of channel flows with ,Re 70 we demonstrate that different
components characterized by differept display different scaling exponents, but for a givgn
these remain the same at different distances from the wall. jTHe0 exponent agrees extremely
well with high Re measurements of the scaling exponents, demonstrating the vitality of the SO(3)
decomposition. [S0031-9007(99)09384-9]

PACS numbers: 47.27.Eq

Most of the available data analysis and theoretical thinkstreamwise directions and no-slip boundary conditions on
ing about the universal statistics of the small scale structurthe walls. The Reynolds number based on the Taylor scale
of turbulence assume the existence of an idealized mod& Re, = 70 in the center of the channé&t = 64). The
of homogeneous and isotropic flows. In fact most realissimulation is fully symmetric with respect to the central
tic flows are neither homogeneous nor isotropic. Accordplane. The flow correctly develops a mean profile in the
ingly, one can analyze the data pertaining to such flowstreamwise direction which depends only on the distance
in two ways. The traditional one has been to disregardrom the wall, U,(z). The mean profile shows the three
the inhomogeneity and anisotropy and proceed with théypical regimes: a laminar linear mean profile inside the
data analysis assuming that the results pertain to the heiscous sublayers, a logarithmic profile for intermediate
mogeneous and isotropic flows. The second, which is addistances, and, finally, a parabolic mean profile in the core
vocated in this Letter, is to take the anisotropy explicitly of the channel. For more details on the averaged quantities
into account, to carefully decompose the relevant statisticand on the numerical code the reader is referred to [1,3].
objects into their isotropic and anisotropic contributions, Previous analysis of the same database [1], as well as of
and to assess the degree of universality of each componenther DNS [6] and experimental data [7,8] in anisotropic
separately. We analyze here direct numerical simulationows, found that the scaling properties of energy spectra,
(DNS) of a channel flow with Re= 70 [1-3]. The main energy cospectra, and longitudinal structure functions ex-
conclusion of this Letter is that this procedure is unavoid-hibit strong dependence on the local degree of anisotropy.
able; in particular, it highlights the universality of the scal- For example, in [2] the authors studied the longitudinal
ing exponents of the isotropic sector which are presumablgtructure functions at fixed distances from the walls:
those governing the universal small scale statistics at very _
high Reynolds numbers. In agreement with recent stud- SR, 2) = ([valx + R.y.2) = vilw,y, 1)
ies of this subject [4,5] we report that different irreducible where(: - -), denotes a spatial average on a plane at a fixed
representations of the symmetry group (characterized blgeightz, 1 < z < 64. For this set of observables they
indicesj, m) exhibit scalar functions that scale with appar-found that (i) these structure functions did not exhibit clear
ently universal exponents that differ for different The  scaling behavior as a function of the distarite Conse-
exponents found at low values of the Reynolds numbequently, one needed to resort to “extended self-similarity”
for the j = 0 (isotropic) sector are in excellent agreement(ESS) [9] in order to extract a set of relative scaling ex-
with high Re results; these exponents are invariant to thponentsZ?(p) = £%(p)/*(3); (ii) the relative exponents
position in the inhomogeneous flow, leading to reinterpre<<( p) depended strongly on the height Moreover, only
tation of recent findings of position dependence as resultingt the center of the channel and very close to the walls the
from the intervention of the anisotropic sectors. The lattererror bars on the relative scaling exponents extracted by us-
have nonuniversal weights that depend on the position iing ESS were small enough to claim the very existence of
the flow. scaling behavior in any sense. Similarly, an experimental

We consider here channel flow simulations on a gridanalysis of a turbulent flow behind a cylinder [7] showed
of 256 points in the streamwise direction and (128 X a strong dependence of the relative scaling exponents on
128) in the other two directionsy,z. We denote by the position behind the cylinder for not too big distances
2 the direction perpendicular to the walls and bythe  from the obstacle, i.e., where anisotropic effects may still
spanwise direction in planes parallel to the walls. Webe relevant in a wide range of scales. In the following
employ periodic boundary conditions in the spanwise andve present an interpretation of the variations in the scaling
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exponents observed in nonisotropic and nonhomogeneous o1 :
flows upon changing the position in which the analysis is
performed. In particular, we will show that decomposing o,
the statistical objects into their differetf, m) sectors ra- »
tionalizes the findings, i.e., scaling exponents in a given
; N . 0.001 1
(j,m) sector appear quite independent of the spatial lo- x
cation; only theamplitudesof the SO(3) decomposition
depend strongly on the spatial location. These findings, if%°%? |
confirmed by other independent measurements, would sug- x
gest that the apparent dependence of scaling exponents fote-05 - 1
longitudinal structure functions on the location in a non-
homogeneous flow results from a superposition of power 1e-06 | + 1
laws each of which is characterized by its owniversal
scaling exponent. The amplitudes of the various contri- 1¢-97 ‘ ‘
butions may depend on the local degree of anisotropy and 10 100

nonhomogeneity. o o FIG. 1. Log-log plot of the isotropic sector of the 4th order
Our mEthOd of analysis is quite S|mple_[4,5]. We structure functionS((fo) vs R at the center of the channel
start by a direct measurement of the longitudinal structurgc — 64 (+). The data represented by correspond to the

functions raw longitudinal structure functior§(r¢ = 64, R%) averaged
. . . 2 over the central plane only. The dashed line corresponds to
S(p)(rL’R) = {[u(® + R) —u(r® = R)]- R}"). the intermittent igotropic t){igh Reynolds numbers ex%onents
1) ¢4 =128
Note that the two velocity fields are measured at the
extremes of the diameter of a sphere of radiicentered at average in (1) taken on the sphere centered on the central
r¢. Because of the inhomogeneity this function dependplaner! = 64.
explicitly on r¢. Because of the anisotropy the function It appears that already at this fairly low Reynolds
depends on the orientation of the separation vezibias number thej = 0 sector shows decent scaling behavior
well as on its magnitude. The average must be taken overs a function ofR. This is in marked contrast with the
different time frames. Typically we have used 160 timeraw structure function for which no scaling behavior is
frames for such an average. The time frames are separatddtectable X symbols in Fig. 1). For the raw quantity the
by about one eddy turn over time. In each time framemethod of extended self-similarity [9] is unavoidable if one
we also improved the statistics by averaging over onewants to extract any kind of apparent scaling exponent. In
fourth of the total number of spatial points in the planeour analysis we found similar results also for higher order
at fixed z, invoking the homogeneity in the spanwise andstructure functions. The scaling behavior is improved
streamwise directionst, §. Thus we have finally about dramatically for the components and it can be seen even
1 X 10° contributions to each average. without ESS. Nevertheless, we will use ESS below for a
Having computed?)(r¢, R) we decompose it into the quantitativereading of the exponents within every sector.
irreducible representations of the SO(3) symmetry group The second point we stress is the appaimvdrianceof

T
+X

+ X

[N

according to the scaling exponents belonging to the sdmen) sector
with respect to changing the spatial location in the flow.
sP @, R) = ZS}fn)(rC, IRI)Yj,m(R). (2) To study this issue quantitatively we resort to ESS and
Jj-m examine the relative scaling of, say, structure functions of

9rdern with respect to the structure function of ordefior
n =3,4.... The ESS method is applied in eath m)
sector separately.
S](-f,j(rc, IR|) ~ a,(r¢) RIS, 3) In Fig. 2 we show two typical ESS plots for longitudinal
structure functions of order 4 vs longitudinal structure
In other words, we expect [4] the scaling expongftp)  functions of order 2 both at the center= 64 and at
to be independent of. z = 32inthe sectoj = 0. Also, in the inset the quality of
The first result that we want to display is that by the scaling can be apg)reciated by Iookin% atldgarithmic
applying the SO(3) decomposition we seem to improvéocal slopesof Iog[S((fO(rc, |R|)] vs Iog[S((fo(rc, IR|)] as a
significantly the very existence of scaling behavior. Infunction of R for the same two different central positions
Fig. 1 we show (i) the log-log plot of the raw structure of the sphere: at the center of the chanmgl+ 64) and at
function (1) with p = 4 measured on the central plane one-quarter of the total channel height (= 32). The two
with the vectorR in the streamwise directiorR = R%,  curves give the same global relative scaling exponent. We
and (i) the fully isotropic sectorS(()fl())(rC, |R|) with the  compute the scaling exponents by numerical differentiation

We expect that when scaling behavior sets in (presumabl
at high enough Re) we should find
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FIG. 2. Isotroplc sector: ESS plot of Iﬁéo Vs IogSOO at 0 5 10 15 20 25 30 3% 40 45 50

the center,r; = 64, (bottom curve) and aty =31 (top  F|G. 3. Logarithmic local slopes of the ESS plot of raw
curve), the straight lines are the best fits with sIop82.  structure function of order 4 vs raw structure function of
Inset: local slope of IQQD,O, Vs IogSo,o as a function of order 2 atr? =64 (X), at r? =32 (*¥) and of thej =0

R, for two different locations in the channel+] center projection centered at: = 64 (+), and atr: =32 (O).

of the channelr! = 64, (X) one-quarter of the total height Also two horizontal lines corresponding to the high Reynolds
ré =32. The jocal slopes are very close. For compari-number limit, 1.82, and to the K41 nonintermittent value,
son we have also plotted a horizontal curve correspondingre shown.

to the accepted anomalous high Reynolds number value,

{4)/{(2) = 1.82. . . :
Notice that due to the invariance of Eq. (1) under the

inversionR — —R all the amplitudesz; ,, belonging to

and fitting; the best fits forthe relative scaling exponents irsectors with oddi vanish. Similarly, at the center of the
the sectol( j = 0) give &5~ (4) = £7%4)/Z7%(2) =  channel the symmetry with respect to the cemter—
1.84 = 0.05 at the center andi (4) =182 = 0.04 at —R, forces all the amplitudes of the components with
r¢ = 32. This result is remarkable and together with thej + m odd to vanish as well. As a consequence, the sector
experimental result of Ref. [5] it provides strong evidence(j = 2,m = 1) is relevant only when the center of mass is
for the universality of the scaling exponent as definedhot in the central plane. Wheti = 32 we recover indeed
in distinct (j,m) sectors. We recall that the acceptedgood scaling behavior also for this sector but with a relative
value of this relative exponent in high-Re experiments isscaling exponen;z 31(p) slightly larger than the relative
l(4)/£(2) = 1.82 % 0.02 [10]. scaling exponents observed for the othier 2 sectors.

Similarly, but affected from larger error bars, one recov-This fact, which seems to violate the supposed foliation
ers the same invariance with respect to higher order man the j index asserted in Eg. (3) is not well understood
ments. For instance, we measuge °*(6) ~ 5 °%(6) =  at the moment and it may be correlated with the presence

2.5 = 0.1. As for relative scaling exponents of higher of large scale coherent structures (hairpin) oriented at 45
j sectors, the scaling is less clean and therefore we mayith respect to the walls observed in all channel flow
guote only qualitative estimates. As an example, forsimulations [11].

relative scaling exponents of theJ =2,m=2) and Finally, we discuss briefly the determination of the scal-

(j =2,m =0) sectors we haves, 644) = 1.1 + 0.1,  ing exponents associated with highesectors. The scal-
Go *2(4) =1.15*0.1, 555 64(4) =13+0.1, {z 2(4) = ing exponent;—,(2) was estimated by a number of authors

1. 0 + 0.1. on the basis of dimensional analysis [12—15], and the re-

To underline the quantitative improvement resultingsult is {;=2(2) = 4/3. There is no theoretical knowledge
from the app“cauon of the 80(3) decomposmon we ShOV\pf the actual value of this exponent with Intermlttency cor-
in Fig. 3 thelogarithmic local slope®f the raw structure rections. Our direct analysis fgr= 2 seems to confirm
functions S(4)(r ,R%) VS S(2>(r ,R%) at r¢ = 64 and at the dimensional expectation, in agreement with the previ-

ré =32. Also thelogarithmic local slopef the projec-  0us experimental [5] finding.

tlon on thej = 0 sector at the same two distances from In Fig. 4 we show the log-log plot oE](-,z,),,(rC, IR])

the walls are presented. As is evident, the raw structures |R| for (j = 2,m = 2) at the center of the channel,

function at the center of the channel and the tive- 0  and for(j = 2,m = 2) and(j = 2,m = 0) atr{ = 32,

projections are in good agreement with the high Reynoldsuperimposed with the straight line with slo«p)és The

numbers estimaté(4)/{(2) = 1.82 while a clearly spu- agreement is quite good. Considering the relatively low

rious departure is seen for the raw structure functions a@Reynolds numbers and the fact that the projections on the
= 32. different sectors depend on the nonuniversal prefactors
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100 the fundamental exponent in the isotropic sector which
for p = 2 is known to be about 0.7. If this is so, it may
explain the decay of anisotropy at small scales for high Re
10 | ##M flows. In the limit Re— o we expect scaling behavior at
perttT e very small values ofR /L with L being the outer scale.
1 et - At such small scales only the smallest exponent survives,
and this is how the alleged universality of the small scales
T is achieved.
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r{ = 64. The straight line corresponds to the expectation of
dimensional analysig;—,(2) = 4/3.
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