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Disentangling Scaling Properties in Anisotropic and Inhomogeneous Turbulence
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We address scaling in inhomogeneous and anisotropic turbulent flows by decomposing structu
functions into their irreducible representation of the SO(3) symmetry group which are designated b
j, m indices. Employing simulations of channel flows with Rel ø 70 we demonstrate that different
components characterized by differentj display different scaling exponents, but for a givenj
these remain the same at different distances from the wall. Thej ­ 0 exponent agrees extremely
well with high Re measurements of the scaling exponents, demonstrating the vitality of the SO(3
decomposition. [S0031-9007(99)09384-9]
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Most of the available data analysis and theoretical thin
ing about the universal statistics of the small scale structu
of turbulence assume the existence of an idealized mo
of homogeneous and isotropic flows. In fact most reali
tic flows are neither homogeneous nor isotropic. Accord
ingly, one can analyze the data pertaining to such flow
in two ways. The traditional one has been to disrega
the inhomogeneity and anisotropy and proceed with th
data analysis assuming that the results pertain to the h
mogeneous and isotropic flows. The second, which is a
vocated in this Letter, is to take the anisotropy explicitl
into account, to carefully decompose the relevant statistic
objects into their isotropic and anisotropic contributions
and to assess the degree of universality of each compon
separately. We analyze here direct numerical simulatio
(DNS) of a channel flow with Rel ø 70 [1–3]. The main
conclusion of this Letter is that this procedure is unavoid
able; in particular, it highlights the universality of the scal
ing exponents of the isotropic sector which are presumab
those governing the universal small scale statistics at ve
high Reynolds numbers. In agreement with recent stu
ies of this subject [4,5] we report that different irreducible
representations of the symmetry group (characterized
indicesj, m) exhibit scalar functions that scale with appar
ently universal exponents that differ for differentj. The
exponents found at low values of the Reynolds numb
for thej ­ 0 (isotropic) sector are in excellent agreemen
with high Re results; these exponents are invariant to t
position in the inhomogeneous flow, leading to reinterpre
tation of recent findings of position dependence as resulti
from the intervention of the anisotropic sectors. The latte
have nonuniversal weights that depend on the position
the flow.

We consider here channel flow simulations on a gr
of 256 points in the streamwise direction̂x, and s128 3

128d in the other two directions,̂y, ẑ. We denote by
ẑ the direction perpendicular to the walls and byŷ the
spanwise direction in planes parallel to the walls. W
employ periodic boundary conditions in the spanwise an
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streamwise directions and no-slip boundary conditions
the walls. The Reynolds number based on the Taylor sc
is Rel ø 70 in the center of the channelsz ­ 64d. The
simulation is fully symmetric with respect to the centr
plane. The flow correctly develops a mean profile in t
streamwise direction which depends only on the distan
from the wall,Uxszd. The mean profile shows the thre
typical regimes: a laminar linear mean profile inside t
viscous sublayers, a logarithmic profile for intermedia
distances, and, finally, a parabolic mean profile in the c
of the channel. For more details on the averaged quanti
and on the numerical code the reader is referred to [1,3

Previous analysis of the same database [1], as well a
other DNS [6] and experimental data [7,8] in anisotrop
flows, found that the scaling properties of energy spec
energy cospectra, and longitudinal structure functions
hibit strong dependence on the local degree of anisotro
For example, in [2] the authors studied the longitudin
structure functions at fixed distances from the walls:

Ss pdsR, zd ; kfyxsx 1 R, y, zd 2 yxsx, y, zdgplz ,

wherek· · ·lz denotes a spatial average on a plane at a fix
height z, 1 , z , 64. For this set of observables the
found that (i) these structure functions did not exhibit cle
scaling behavior as a function of the distanceR. Conse-
quently, one needed to resort to “extended self-similari
(ESS) [9] in order to extract a set of relative scaling e
ponentsẑ zspd ; z zspdyz zs3d; (ii) the relative exponents
ẑ zspd depended strongly on the heightz. Moreover, only
at the center of the channel and very close to the walls
error bars on the relative scaling exponents extracted by
ing ESS were small enough to claim the very existence
scaling behavior in any sense. Similarly, an experimen
analysis of a turbulent flow behind a cylinder [7] showe
a strong dependence of the relative scaling exponents
the position behind the cylinder for not too big distanc
from the obstacle, i.e., where anisotropic effects may s
be relevant in a wide range of scales. In the followin
we present an interpretation of the variations in the scal
© 1999 The American Physical Society
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exponents observed in nonisotropic and nonhomogene
flows upon changing the position in which the analysis
performed. In particular, we will show that decomposin
the statistical objects into their differents j, md sectors ra-
tionalizes the findings, i.e., scaling exponents in a giv
s j, md sector appear quite independent of the spatial
cation; only theamplitudesof the SO(3) decomposition
depend strongly on the spatial location. These findings
confirmed by other independent measurements, would s
gest that the apparent dependence of scaling exponents
longitudinal structure functions on the location in a non
homogeneous flow results from a superposition of pow
laws each of which is characterized by its ownuniversal
scaling exponent. The amplitudes of the various cont
butions may depend on the local degree of anisotropy a
nonhomogeneity.

Our method of analysis is quite simple [4,5]. W
start by a direct measurement of the longitudinal structu
functions

Ss pdsrc, Rd ­ khfusrc 1 Rd 2 usrc 2 Rdg ? R̂jpl .
(1)

Note that the two velocity fields are measured at th
extremes of the diameter of a sphere of radiusR centered at
rc. Because of the inhomogeneity this function depen
explicitly on rc. Because of the anisotropy the functio
depends on the orientation of the separation vector2R as
well as on its magnitude. The average must be taken o
different time frames. Typically we have used 160 tim
frames for such an average. The time frames are separ
by about one eddy turn over time. In each time fram
we also improved the statistics by averaging over on
fourth of the total number of spatial points in the plan
at fixedz, invoking the homogeneity in the spanwise an
streamwise directions,̂x, ŷ. Thus we have finally about
1 3 106 contributions to each average.

Having computedSs pdsrc, Rd we decompose it into the
irreducible representations of the SO(3) symmetry gro
according to

Ss pdsrc, Rd ­
X
j,m

S
s pd
j,msrc, jRjdYj,msR̂d . (2)

We expect that when scaling behavior sets in (presuma
at high enough Re) we should find

S
s pd
j,msrc, jRjd , aj,msrcd jRjzj s pd. (3)

In other words, we expect [4] the scaling exponentz jspd
to be independent ofm.

The first result that we want to display is that b
applying the SO(3) decomposition we seem to impro
significantly the very existence of scaling behavior. I
Fig. 1 we show (i) the log-log plot of the raw structur
function (1) with p ­ 4 measured on the central plan
with the vectorR in the streamwise direction,R ­ Rx̂,
and (ii) the fully isotropic sectorS

s4d
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FIG. 1. Log-log plot of the isotropic sector of the 4th orde
structure functionS

s4d
0,0 vs R at the center of the channe

rc
z ­ 64 (1). The data represented by (3) correspond to the

raw longitudinal structure function,Ss4dsrc
z ­ 64, Rx̂d averaged

over the central plane only. The dashed line corresponds
the intermittent isotropic high Reynolds numbers exponen
z s4d ­ 1.28.

average in (1) taken on the sphere centered on the cen
planerc

z ­ 64.
It appears that already at this fairly low Reynold

number thej ­ 0 sector shows decent scaling behavi
as a function ofR. This is in marked contrast with the
raw structure function for which no scaling behavior
detectable (3 symbols in Fig. 1). For the raw quantity the
method of extended self-similarity [9] is unavoidable if on
wants to extract any kind of apparent scaling exponent.
our analysis we found similar results also for higher ord
structure functions. The scaling behavior is improve
dramatically for the components and it can be seen ev
without ESS. Nevertheless, we will use ESS below for
quantitativereading of the exponents within every secto

The second point we stress is the apparentinvarianceof
the scaling exponents belonging to the sames j, md sector
with respect to changing the spatial location in the flow
To study this issue quantitatively we resort to ESS a
examine the relative scaling of, say, structure functions
ordern with respect to the structure function of order2 for
n ­ 3, 4 . . . . The ESS method is applied in eachs j, md
sector separately.

In Fig. 2 we show two typical ESS plots for longitudina
structure functions of order 4 vs longitudinal structu
functions of order 2 both at the centerz ­ 64 and at
z ­ 32 in the sectorj ­ 0. Also, in the inset the quality of
the scaling can be appreciated by looking at thelogarithmic
local slopesof logfSs4d

0,0src, jRjdg vs logfSs2d
0,0src, jRjdg as a

function of R for the same two different central position
of the sphere: at the center of the channel (rc

z ­ 64) and at
one-quarter of the total channel height (rc

z ­ 32). The two
curves give the same global relative scaling exponent. W
compute the scaling exponents by numerical differentiati
5041
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FIG. 2. Isotropic sector: ESS plot of logS
s4d
0,0 vs logS

s2d
0,0 at

the center,rc
z ­ 64, (bottom curve) and atrc

z ­ 31 (top
curve), the straight lines are the best fits with slope1.82.
Inset: local slope of logS

s4d
0,0, vs logS

s2d
0,0 as a function of

R, for two different locations in the channel: (1) center
of the channelrc

z ­ 64, (3) one-quarter of the total height
rc

z ­ 32. The local slopes are very close. For compar
son we have also plotted a horizontal curve correspondi
to the accepted anomalous high Reynolds number valu
z s4dyz s2d ­ 1.82.

and fitting; the best fits for the relative scaling exponents
the sectors j ­ 0d give ẑ

z­64
0 s4d ; z

z­64
0 s4dyz

z­64
0 s2d ­

1.84 6 0.05 at the center and̂z z­32
0 s4d ­ 1.82 6 0.04 at

rc
z ­ 32. This result is remarkable and together with th

experimental result of Ref. [5] it provides strong evidenc
for the universality of the scaling exponent as define
in distinct s j, md sectors. We recall that the accepte
value of this relative exponent in high-Re experiments
z s4dyz s2d ø 1.82 6 0.02 [10].

Similarly, but affected from larger error bars, one recov
ers the same invariance with respect to higher order m
ments. For instance, we measureẑ

z­64
0 s6d , ẑ

z­32
0 s6d ­

2.5 6 0.1. As for relative scaling exponents of highe
j sectors, the scaling is less clean and therefore we m
quote only qualitative estimates. As an example, fo
relative scaling exponents of thes j ­ 2, m ­ 2d and
s j ­ 2, m ­ 0d sectors we havêz z­64

2,0 s4d ­ 1.1 6 0.1,
ẑ

z­32
2,0 s4d ­ 1.15 6 0.1, ẑ

z­64
2,2 s4d ­ 1.3 6 0.1, ẑ

z­32
2,2 s4d ­

1.0 6 0.1.
To underline the quantitative improvement resultin

from the application of the SO(3) decomposition we sho
in Fig. 3 thelogarithmic local slopesof the raw structure
functions Ss4dsrc

z , Rx̂d vs Ss2dsrc
z , Rx̂d at rc

z ­ 64 and at
rc

z ­ 32. Also thelogarithmic local slopesof the projec-
tion on thej ­ 0 sector at the same two distances from
the walls are presented. As is evident, the raw structu
function at the center of the channel and the twoj ­ 0
projections are in good agreement with the high Reynol
numbers estimatez s4dyz s2d ­ 1.82 while a clearly spu-
rious departure is seen for the raw structure functions
rz

c ­ 32.
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FIG. 3. Logarithmic local slopes of the ESS plot of ra
structure function of order 4 vs raw structure function
order 2 at rz

c ­ 64 (3), at rz
c ­ 32 (p) and of the j ­ 0

projection centered atrz
c ­ 64 (1), and at rz

c ­ 32 (h).
Also two horizontal lines corresponding to the high Reynol
number limit, 1.82, and to the K41 nonintermittent value,2,
are shown.

Notice that due to the invariance of Eq. (1) under t
inversionR ! 2R all the amplitudesaj,m belonging to
sectors with oddj vanish. Similarly, at the center of the
channel the symmetry with respect to the centerRz !
2Rz forces all the amplitudes of the components wi
j 1 m odd to vanish as well. As a consequence, the sec
s j ­ 2, m ­ 1d is relevant only when the center of mass
not in the central plane. Whenrc

z ­ 32 we recover indeed
good scaling behavior also for this sector but with a relat
scaling exponent̂z z­31

2,1 spd slightly larger than the relative
scaling exponents observed for the otherj ­ 2 sectors.
This fact, which seems to violate the supposed foliati
in the j index asserted in Eq. (3) is not well understoo
at the moment and it may be correlated with the prese
of large scale coherent structures (hairpin) oriented at±

with respect to the walls observed in all channel flo
simulations [11].

Finally, we discuss briefly the determination of the sca
ing exponents associated with higherj sectors. The scal-
ing exponentzj­2s2d was estimated by a number of autho
on the basis of dimensional analysis [12–15], and the
sult is zj­2s2d ­ 4y3. There is no theoretical knowledg
of the actual value of this exponent with intermittency co
rections. Our direct analysis forj ­ 2 seems to confirm
the dimensional expectation, in agreement with the pre
ous experimental [5] finding.

In Fig. 4 we show the log-log plot ofS
s2d
j,msrc, jRjd

vs jRj for s j ­ 2, m ­ 2d at the center of the channe
and fors j ­ 2, m ­ 2d ands j ­ 2, m ­ 0d at rc

z ­ 32,
superimposed with the straight line with slope4y3. The
agreement is quite good. Considering the relatively lo
Reynolds numbers and the fact that the projections on
different sectors depend on the nonuniversal prefact
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FIG. 4. Log-log plot ofS
s2d
2,2 (p); S

s2d
2,0 (3) as functions ofR

at rc
z ­ 32 and of S

s2d
2,2 as a function ofR (1) at the center,

rc
z ­ 64. The straight line corresponds to the expectation

dimensional analysis:zj­2s2d ­ 4y3.

aj,m in the decomposition (3), we think that together wit
the experimental result reported in [5] the present findin
gives strong support to the view that the scaling expone
in the j ­ 2 sector are universal. We are not able y
to offer the similar support to the possibility that all th
scaling exponents in the higherj sectors are universal.
Such a conclusion calls for additional careful analysis
the scaling of higher order structure functions and high
j sectors. It is outside the scope of this Letter, but it
currently under active study.

In summary, we presented three important results th
follow from the SO(3) decomposition of the longitudina
structure functions measured in channel flow simulatio
[1,3]: these are (i) the scaling behavior is better defined
separateds j, md sectors. This is in contradistinction with
the raw longitudinal structure function which fails to ex
hibit any scaling at all. (ii) The isotropics0, 0d component
of the structure functions exhibits a universal scaling e
ponent which is invariant to the spatial location in the flo
and the distance from the walls. (iii) Thej ­ 2 com-
ponent exhibits a scaling exponent which is compatib
with the theoretical expectation and is in excellent agre
ment with the experimental measurement [5], indicatin
universality.

The picture that emerges is that the higher order sect
are characterized by scaling exponents that are larger t
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the fundamental exponent in the isotropic sector whic
for p ­ 2 is known to be about 0.7. If this is so, it may
explain the decay of anisotropy at small scales for high R
flows. In the limit Re! ` we expect scaling behavior at
very small values ofRyL with L being the outer scale.
At such small scales only the smallest exponent survive
and this is how the alleged universality of the small scale
is achieved.
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