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Multiscale correlation functions in high Reynolds number experimental turbulence, numerical
simulations, and synthetic signals are investigated. Fusion Rules predictions as they arise from
multiplicative, almost uncorrelated, random processes for the energy cascade are tested. Leading
and subleading contribution, in the inertial range, can be explained as arising from a multiplicative
random process for the energy transfer mechanisms. Two different predictions for correlations
involving dissipative observable are also briefly discussed. ©1999 American Institute of Physics.
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I. INTRODUCTION

Understanding the statistical properties of intermitten
is one of the most challenging open problem of thre
dimensional fully developed turbulence.

Intermittency in the inertial range is usually analyzed
means of the statistical properties of velocity differenc
d rv(x)5v(x1r )2v(x). In the following, being mainly in-
terested in one-dimensional cuts of experimental, synthe
and numerical signals, we will disregard all vectorial depe
dencies in the velocity fields.

In the last 20 years,1 overwhelming experimental an
theoretical works focused on structure functions,Sp(r )
5^(d rv(x))p&. A wide agreement exists on the fact th
structure functions show a scaling behavior in the limit
very high Reynolds numbers, i.e., in the presence of a la
separation between integral and dissipative scales,L/r d

→`,

Sp~r !;S r

L D z~p!

. ~1!

The velocity fluctuations are anomalous in the sense
z(p) exponents do not follow the celebrated dimensio
prediction made by Kolmogorov,z(p)5p/3. In fact, z(p)
are observed to be a nonlinear function ofp, which is the
most important signature of the intermittent transfer of flu
tuations from large to small scales.
2211070-6631/99/11(8)/2215/10/$15.00
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In order to better characterize the transfer mechanism
is natural to look also at correlations among velocity fluctu
tions at different scales and at different times. The prototy
of such a class of correlations is

Cp,q~r ,R;t!5^~d rv~x,t !!p~dRv~x,t1t!!q&, ~2!

where, hereafter we will always assume the obvious no
tion, r ,R.

Unfortunately, the nontrivial time dependency of corr
lations such as~2! is completely hidden, in a Eulerian
reference-frame, by the sweeping of small scales by la
scales. The ‘‘positive’’ side of sweeping is connected to t
Taylor hypothesis, i.e., to the possibility of identifying sing
point measurements at a time delayt with single time mea-
surements at separation scaler;tV̄, where V̄ is the large
scale sweeping velocity. The ‘‘negative’’ side of sweeping
connected to the fact that the inertial time scales are alw
subdominant with respect to the sweeping time. This imp
that in order to measure the temporal properties of the in
tial range energy-transfer it is necessary to abandon the u
Eulerian reference-frame and to move in a Lagrangian
quasi-Lagrangian reference-frame where sweeping eff
are absent.2,3,5,7,9Of course, from the experimental point o
view, it is much harder to measure the velocity field in
Lagrangian frame than in the usual laboratory referen
frame. To our knowledge, the only results about multi-tim
velocity correlations are purely theoretical5,9 or numerical.4,5

For this reason, in the following, we will limit to an exper
5 © 1999 American Institute of Physics
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mental and theoretical analysis of simultaneous -single ti
multiscale correlation functions only. Recently, some th
retical work6–9 and an exploratory experimenta
investigation10 have been devoted to the behavior of sing
time multiscale velocity correlations~MSVC!,

Fp,q~r ,R![^~v~x1r !2v~x!!p~v~x1R!2v~x!!q&

[^~d rv~x!!p~dRv~x!!q&, ~3!

with r d,r ,R,L. When the smallest among the two sca
r goes beyond the dissipative scales,r d , new properties of
the correlation functions~3! may arise due to the nontrivia
physics of the dissipative cutoff.1,11 From now on, we will
mostly concentrate on correlation functions with bothr and
R in the inertial range, only in the last section we will a
dress the important point concerned with the crossover of
dissipative scale. Moreover, in order to simplify our discu
sion, we will confine our analysis to the case of longitudin
velocity differences.

The main purpose of this paper is to review and to
tend a recent experimental and theoretical analysis of m
scale correlations~3!.16 In particular, we present a systemat
analysis of multiscale correlation functions in different e
perimental setup, we also perform a critical comparison w
the same observable measured in synthetic turbulent sig
defined in terms of purely multiplicative random processe

The comparison with the synthetic signals will allow
to conclude that multiscale correlation functions are inquan-
titative agreement, with the prediction one obtains by usin
pure uncorrelated multiplicative process for the energy c
cade, as long as both separationsr,R are in the inertial range
As for the case when one of the two separations is alread
the dissipative range we will critically review the two mo
important different predictions one can obtain imposing
dissipative cut-off using either multifractals15 or the GESS
phenomenology.11 Unfortunately, the actual state-of-the-a
experimental dissipative-scales data does not allow to cle
distinguish among the two predictions.12,13

The paper is organized as follows. In Sec. II we brie
review theansatzthat one simply obtains for MSVC~3! by
using a multiplicative random process for the inertial-ran
energy cascade. In Sec. III we discuss subleading correc
induced by geometrical constraints which necessarily affe
any MSVC for finite separation of scales. These geometr
constraints introduce subleading power laws behavior wh
may strongly interfere with the leading multiplicative predi
tions for finite separation of scalesr /R;O(1). In Sec. III
we also present our experimental data-analysis and the c
parison with the synthetic multifractal field. In Sec. IV w
briefly address the problem of dissipative correlation fu
tions. Conclusions follow in Sec. V.

II. CASCADE PROCESSES

Stochastic cascade processes are simple and well kn
useful tools to describe the leading phenomenology of
intermittent energy transfer in the inertial range. Bo
anomalous scaling exponents and viscous effects1,11 can be
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reproduced by choosing a suitable random process for
multiplier, W(r ,R), which connects velocity fluctuations a
two different scales,R.r .

The main idea turns around the hypothesis that sm
scale statistics is fully determined by a cascade process
ditioned to some large scale configuration,

d rv~x!5W~r ,R!•dRv~x!, ~4!

where, requiring homogeneity along the cascade process
random functionW should depend only on the ratior /R and
it is not-positive defined. In the hypothesis of negligible co
relations among multipliers we obtain

Fp,q~r ,R!5Cp,qK FWS r

RD G pL K FWS R

L D G p1qL
;

Sp~r !

Sp~R!
Sp1q~R!. ~5!

This expression was for the first time proposed in Ref. 6 a
later examined in more details in Ref. 7, where it was nam
‘‘fusion rules.’’ In the same article the authors proved th
the fusion rule prediction gives the leading behavior of~3!
when r /R→0 as long as some hypothesis of scaling inva
ance and of universality of scaling exponents in Navie
Stokes equations hold. The name fusion-rules refers, p
ably, to the fact that thanks to the—supposed—uncorrela
nature of the cascade process every multiscale correla
can be written in terms of single scale correlations, i.e., str
ture functions.

Let us notice that, beside any rigorous claim, express
~5! is also the zeroth order prediction starting from any m
tiplicative uncorrelated random cascade satisfyingSp(r )
5^@W(r /R)#p&Sp(R). Let us also stress that the fusion rul
prediction as stated in~5! does not necessarily require an
scaling property of the underlying structure functions, a f
which suggests that the validity of the statement should
almost Reynolds independent.

In this paper we want to address three main questions~i!
whether the prediction~5! gives the correct leading behavio
in the limit of large scales separation:r /R;0; ~ii ! if this is
the case, what one can say about subleading behavio
separationr /R;O(1); ~iii ! what happens to those obser
able for which the ‘‘multiplicative prediction;’’~5! is incor-
rect because of symmetry reasons.

The last item comes from the observation that for cor
lation like

F1,q~r ,R!5^~d rv !~dRv !q&, ~6!

the multiplicative prediction gives

F1,q~r ,R!5
S1~r !

S1~R!
•S11q~R!.

Such a prediction is wrong because, if homogeneity can
assumed,S1(r )[0 for all scalesr. In this case prediction~5!
does not represent the leading contribution.

In the following we propose a systematic investigati
of ~3! in high Reynolds number experiments,17,18 numerical
simulation,19 and synthetic signals.14 The main purpose con
sists in probing whether multiscale correlation functions m
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show new dynamical properties~if any! which are not taken
into account by the standard simple multiplicative models
the energy transfer.

III. DATA ANALYSIS

In this section we present our main contributions by d
cussing the three items listed in the previous section and
presenting a detailed data-analysis in experiments at diffe
Reynolds numbers, in numerical simulations and in synth
signals.

Experimental data sets come mainly from two differe
laboratories. We have analyzed data obtained in a wind
nel ~Modane! with Rel52000, the integral scale wasL
;20 m and the dissipative scale wasr d50.31 mm. The sec-
ond data set comes from a recirculating wind tunnel~ENS de
Lyon! with a working section 3 m long and 50350 cm2 cross
section. Rel involved in experiments were 400~wake behind
a cilinder! and 800~jet turbulence!. Integral scales were 0.
m and 0.125 m, respectively, whereas the dissipative sc
were 0.15 mm and 0.1 mm.

Synthetic signals are built in terms of a Wavelet deco
position with coefficients defined by a pure uncorrelated r
dom multiplicative process.14 In the following, the compari-
son between the synthetic field and the experimental d
will play a central role in our discussion. Therefore, in t
Appendix, we briefly recall how a multiaffine field may b
synthesized—and analyzed—in terms of a wavelet repre
tation.

In the Appendix we prove that such a signal shows
fusion rules prediction~5! and therefore it will turn out to be
an useful tool for testing how much deviations from~5!,
observed in experiments or numerical simulations, are du
important dynamical effects or only to unavoidable ge
metrical corrections. Let us proceed with a simple but ba
observation.

Notice that for any one-dimensional string of numb
~such as the typical outcome of laboratory experiments
turbulence! the multiscale correlations~3! feel unavoidable
strong geometrical constraints. In particular, for any MSV
with two velocities at the same spatial pointv(x) and the
two other velocities in a collinear geometry at spatial loc
tions v(x1r ) and v(x1R), like those analyzed in the fol
lowing, we will always write down what we like to call th
‘‘ward-identities’’ ~WI!,

Sp~R2r ![^@~v~x1R!2v~x!!2~v~x1r !2v~x!!#p&
~7!

5 (
k50,p

b~k,p!~21!kFk,p2k~r ,R!, ~8!

whereb(k,p)5p!/ @k!( p2k)! #. For example, forp52 we
have

2F1,1~r ,R![S2~r !1S2~R!2S2~R2r !

;F S r

RD z~2!

1OS r

RD G•S2~R!, ~9!

where the latter expression has been obtained by expan
S2(R2r ) in the limit r /R→0.
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The ‘‘ward-identities’’ will turn out to be useful for un-
derstanding subleading predictions to the multiplicative c
cade process. One may argue that in a geometrical s
different from the one specified in~3! the same kind of con-
straint will appear with eventually different weights amon
different terms.

The most important result one must extract from~8! is
that the multiscale correlation functions, as stated in~3!, may
not be a perfect scaling functions even in the limit of ve
high Reynolds number. Indeed, the WI tell us that MSV
with different order of velocity moments must be connect
unavoidably one with the other, which would be in contra
with the assumption that each MSVC should be determi
by a single power law behavior.

The main result presented in this work is that all mul
scale correlations functions are well reproduced in their le
ing term,r /R→0, by a simple uncorrelated random casca
~5! and that their subleading contribution,r /R;O(1), are
fully captured by the geometrical constrained previously d
cussed, namely the ‘‘ward-identities.’’

The recipe for calculating multiscale correlations is t
following: First, apply the multiplicative guess for the lea
ing contribution and look for geometrical constraints in ord
to find out sub-leading terms. Second, in all cases where
leading multiplicative contribution vanishes because of u
derlying symmetries, look directly for the geometrical co
straints and find out what is the leading contribution apply
the multiplicative random approximation to all, nonvanis
ing, terms in the WI.

A. Fusion rules: Even moments

Let us check the fusion rules prediction~5! for even
momentsp,q52,4,... . In order to better highlight the scalin
properties we will often use in the following,F̃p,q(r ,R), the
MSVC compensated with the fusion-rule prediction,

F̃p,q~r ,R!5
Fp,q~r ,R!•Sp~R!

Sp~r !•Sp1q~R!
. ~10!

In order to compare experiments with different Reyno
numbers we may use as independent variable in our plot
quantity,x(R)[(R2r )/(L2r ), where withL we intend the
integral scale of each different experiment. In this way,
fixing the small scaler 55h and by changingr<R<L for
each set of data we have a variation of 0<x(R)<1. In Fig.
1 we have checked the large scale dependency by plo
the compensated MSVC as a function ofx[(R2r )/(L2r )
at fixed, r, for p52, q52 and different Reynolds number
~experimental and numerical!. Expression~5! predicts the
existence of aplateau~independent ofR! at all scalesr<R
<L, where the leading multiplicative description is correc

From Fig. 1 one can see that experiments with low
numbers show a slightly poorplateau. In particular the direct
numerical simulation~DNS! with Rel;40 does not show
any plateau. The absence of aplateau is connected to the
overwhelming geometrical effects present at such low R
nolds numbers~see below!. For this reason, in the following
figures we will show only experimental data from Moda
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wind tunnel, which have the highest Re number we can
cess.

In Fig. 2~a! we plot structure functions of order 2 and
for the highest Reynolds number data we had. As it is p
sible to see, a quantitative good agreement with the acce
high-Reynolds number intermittent scaling is detectable
almost two decades. On the other hand, in Fig. 2~b! we plot
the multiscale correlation functionF2,2(r ,R) and F2,4(r ,R)
as a function ofR at fixed r. As it is possible to see the
scaling is not as clear as was for the single-scale struc
function and indeed it is impossible to extract any quant
tive measurements about scaling exponents even at suc
high Reynolds numbers (Rel52000). As already stated
above, in order to better appreciate the violation to
fusion-rule scaling we plot in Fig. 2~c! the compensated cor
relation functions for two different set of moments. In th
limit of large separationR→L at fixed r, we indeed see a
tendency toward aplateau. On the other hand, there are cle
deviations forr /R;O(1). Thesame behavior is seen in Fig
3 for the same compensated quantities fixing the large s
R and by changing the small scaler. Such deviations show a
very slow decay as a function of the scale separation.
decaying is so slow that a clearplateauis seen only for the
largest Reynolds number available. The question whethe
observed finite-size corrections have an important phys
origin or not is therefore of primary importance.

In order to understand the physical meaning of the
served deviations to the fusion rules~5!, we compare, in Fig.
4, the experimental data against the equivalent quant
measured by using the synthetic signal.

We notice an almost perfect superposition of the t
data sets, indicating that the deviations observed in real
can hardly be considered a ‘‘dynamical effect.’’ For dynam
cal effect we mean a correlation of the energy cascade w
must be incorporated in the statistical properties of the m
tiplicative process.

Using the WI plus the multiplicativeansatzfor the lead-
ing behavior of all correlation functions forp54 we quickly
read that the leading contribution toF2,2 is O(r z(2))
•O(Rz(4)2z(2)), while subleading terms scale asO(r z(4)),

FIG. 1. Compensated MSVCF̃2,2(r ,R) at fixed r and changingx(R)5(R
2r )/(L2r ) for different experiments and numerical simulation:~3! direct
numerical simulation (Rel540), ~1! jet (Rel5800), ~* ! modane (Rel
52000), ~h! wake (Rel5400). Typical statistics are 100 eddy turn ov
times for the DNS, and 50 eddy turn over times for the experimental sign
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and asO(r z(3))•O(Rz(4)2z(3)). This superposition of powe
laws is responsible for the slowly-decaying correlations
Figs. 1–4.

In Table I we summarize the leading and sublead
contributions that may be inferred from the WI for the sta
dard MSVC with p52, q52. Similar tables can be con
structed for any other even MSVC.

The result so far obtained, i.e., that both the experim
tal data and the synthetic signal show the same quantita

ls.

FIG. 2. ~a! Log–log plot of the second order,S2(R), and fourth order,
S4(R), structure functions with superimposed the straight line expected
the corresponding high-Reynolds number intermittent scalings.x-scale is in
unity of 16 Kolmogorov scales,y-units are arbitrary.~b! Log–log plot of the
two-scale correlation functionF2,2(r ,R) ~1! and F2,4(r ,R) ~3! at fixed r
and at changingR. The small scaler is fixed to be 16 Kolmogorov scales

Units are as in~a!. ~c! Compensated MSVCF̃p,q(r ,R) at fixedr and chang-
ing the large scaleR for p52, q52 ~1! andp52, q54 ~3!. Units are as
in ~b!.
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behavior, is a strong indication that multiscale correlat
functions, at least for even order of the moments, i.e., in
cases where the signal is not affected by cancellation p
lems, are in good agreement with the random multiplicat
model for the energy transfer.

An even stronger proof of this statement comes from
analysis of multiscale correlations in terms of the coefficie
obtained by a Wavelet analysis of the experimental sig
~see Appendix!. The Wavelet coefficienta j ,k may be seen as
the representative of a velocity fluctuation at scaler 522 j

and centered in one of thek51,2,...,2j spatial point chosen
equispaced in the original total length of the signal.

With this interpretation in mind, we may think at th
Wavelet coefficients as the ideal observable which minim
the geometrical constraints and therefore as the ideal c
where one can test the idea that behind the multiplica
process there are only geometrical constraints. In o
words, in terms of the coefficients obtained by a wave
analysis of the experimental signal, the multiscale correla
function should show the fusion rules prediction for a ran
of scales much wider than for the velocity increments, i
geometrical constraints, which introduce subleading pow
laws decaying, should be minimized. Of course the degre
elimination of geometrical constraints may depend on

FIG. 3. Experimental compensated MSVCFp,q(r ,R)/Sp1q(R)•Sp(r ) at
fixed R and changing the small scale 1/r for p52, q52 ~1! and p52, q
54 ~3!.

FIG. 4. Comparison between experimental and synthetic compens

MSVC, F̃p,q(r ,R) at fixed r and changing the large scaleR for p52, q
52: ~1! synthetic and~3! experimental. Forp52, q54: ~* ! synthetic and
~h! experimental.
n
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kind of analyzing wavelets used. For instance by analyz
the synthetic signal with the same kind of wavelets we u
to build it we have a ‘‘perfect’’ elimination of all geometri
cal constraints and we find again the pure uncorrelated m
tiplicative process. On the other hand, had we used a dif
ent wavelet basis we would not have obtained in out
exactly the same coefficients we put in input. Neverthele
the physical intuition leads us to the claim that—a part fro
pathological choices–using wavelets should always clean
spurious effects described by the ward identities~8!. An ex-
perimental proof supporting this intuition is shown in Fig.
In Fig. 5 we show the equivalent ofF2,2(r ,R) built in terms
of the Wavelet coefficients,

F2,2
wav~r 522 j ,R522 j 8!5^ua j ,ku2ua j 8,k8u

2&. ~11!

In the figure we plot, as in the previous figures, the comp
sated correlation, obtained from the wavelet coefficients
fixed small scale and at changing the large scale. In Fig
the same quantities are plotted at changing the small sc
As it is evident, the finite scale-separation effects visible
the standard MSVC have here disappeared; theplateau is
reached immediately after, say, one fragmentation step.

B. A case where fusion rules fail

For multiscale correlations where the direct applicati
of the random-cascade prediction is useless~because of the

FIG. 5. Comparison between real space~1! and wavelet analysis~3! of the

experimental data set from Modane. CompensatedF̃2,2 is shown for fixedr
at varyingR.

TABLE I. Leading ~first column! and subleading~second column! contri-
bution to the different multiscale velocity correlations entering in the W
written for p54. Notice that all the leading behaviors have been obtained
using the multiplicativeansatz~when applicable!. The subleading behaviors
are consistent with the constraints imposed by the WI.

Leading Subleading

S4(R2r ) Rz(4)
r

R
Rz~4!

F3,1(r ,R) r z(3)Rz(4)2z(3)
r

R
Rz~4!

F1,3(r ,R) S4(R2r ),F3,1(r ,R)

F2,2(r ,R) r z(2)Rz(4)2z(2) rz~3!Rz~4!2z~3!,
r

R
Rz~4!

ed
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translation symmetry!, like F1,q(r ,R), we suppose that the
main leading contribution is simply due to the geometri
constraints. In other words, we say that as soon as the m
leading effect induced by the presence of a multiplicat
random energy transfer is depleted because of symmetry
sons, the subleading contributions induced by the geom
becomes the leading contributions.

In order to give a prediction for such class of MSVC w
therefore use the WI applying the multiplicative prediction
all terms, except theF1,q . One obtains the expansion

F1,q~r ,R!;FOS r

RD z~2!

1OS r

RD z~3!

1OS r

RD z~4!

1¯1OS r

RD z~q11!G•Sq11~R!, ~12!

which coincides whenq51 with the exact result~9! using
z(3)51.

In Fig. 7 we show the experimentally measuredF1,2 and
the fit that we obtain by keeping only the first two terms
the compensated expansion in~12!, i.e., F1,2(r ,R)/S3(R)
5(a(r /R)z(2)1b(r /R)z(3)). The fit has been performed b
imposing the value for the scaling exponentsz~2!, z~3! mea-
sured on the structure functions, i.e., only the coefficients
front of the power laws,a,b have been fitted. As one ca

FIG. 6. Comparison between real space~1! and wavelet analysis~3! of the

experimental data set from Modane. CompensatedF̃2,2 is shown for fixedR
at varyingr.

FIG. 7. ExperimentalF1,2(r ,R) at fixed r 516r d and at varyingR. The
integral scaleL;13104r d . Let us remark that the observed change of s
in the correlation implies the presence of at least two power laws.
continuous line is the fit in the regionr ,R,L obtained by using only the
first two terms in~12!.
l
in

e
a-
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f
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notice, the fit works perfectly in the inertial range. Let
remark that the correlation changes sign in the middle of
inertial range, which is a clear indication that a single pow
law fit ~neglecting subleading terms! would completely miss
the correct behavior.

Next we consider the WI forp53. Due to the fact that
S3(r );r in the inertial range, one can easily show that t
WI enforcesF12;F21. Therefore, we can safely state th
also correlation functions of the formFp,1 feel nontrivial
dependency from the large scaleR, proving that the predic-
tion given in Ref. 8 using isotropy arguments is wrong.

C. Fusion rules: Odd moments

For the most general MSVC involving odd moments
velocity increments,Fp,q(r ,R) with p,q53,5,7,..., the situa-
tion is slightly more confused. The problem stems from t
fact that the fusion rules contribution to this correlation fe
indeed the skewed part of the process which is order of m
nitudes less important than the even part. For example,
multiplicative contribution to the correlationF3,1(r ,R)
would beS3(r )/S3(R)•S4(R) which is different form zero
only due to the fact that the process for the longitudin
velocity correlation is skewed.

The weakness of the signal from the multiplicative co
tributions makes these class of correlation functions v
hard to analyze from the point of view of scaling. Here, t
geometrical constraints may well be more important, in
large range of scale separation, than the fusion rules pre
tion. For example in Fig. 8 we plot the standard MSVC f
p53, q51 and the same correlations but with moduli
velocity increments, such as to get rid, in the second case
cancellation effects. As it is evident, the two correlation ha
a very different amplitude as soon as the scale separa
becomes important and it is hard to say whether the MS
without moduli follow the fusion rules prediction for larg
scale separation or not. On the other hand, the correla
with absolute values does follow the multiplicative pred
tion reaching aplateauafter the usual finite size transient a
the ordinary even-MSVC.

e

FIG. 8. Comparison between compensatedF̃3,1 odd MSVC with absolute
values~1! and without~3!. Data are shown for fixedr at varyingR. It is
evident that the odd MSVC with absolute values has the same behavi
even MSVC, while the one without absolute value does not follow the sa
behavior.
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A high statistics and high Reynolds number investig
tion of such a class of correlation may well be of some
terest in order to elucidate whether the odd part of veloc
increments follows the same physics of the even part or

IV. DISSIPATIVE PHYSICS

In this section we discuss the application of fusion ru
in the dissipative range. We will be mainly interested in t
following two quantities:

An~R!5^Dv~x!•dvR~x!n&, ~13!

Bp,n~R!5^T~x!p
•dvR~x!n&, ~14!

where Dv(x) is the Laplacian computed at the pointx,
dvR(x)5v(x1R)2v(x) and T(x) is the velocity gradient
computed atx. In order to simplify the discussion we restri
to the one-dimensional case, namely, the Laplacian and
gradient are computed in one dimension and velocity diff
ences are longitudinal. Moreover we restrict our analysis
the cases ofn odd andn1p even. Our findings will anyway
be valid in the most general case. The scaling propertie
An andBp,n have been investigated in Refs. 7, 12, and 1

We start by considering the scaling properties ofAn . By
its definition we have

An~R!5 lim
r→0

K S v~x1r !1v~x2r !22v~x!

r 2 D
•~v~x1R!2v~x!!nL

5 lim
r→0

r 22~F1,n~r ,R!1F1,n~2r ,R!!. ~15!

In order to understand how Eq.~15! works, we compute the
easiest quantities, i.e.,A1 and A3 . By using Eq. ~9!, we
obtain

A1~R!5 lim
r→0

r 22

2
~2S2~R!12S2~r !2S2~R2r !2S2~R1r !!

~16!

5 lim
r→0

r 22S S2~r !2
1

2
r 2

d2S2~R!

dR2 1O~r 3! D ~17!

5^~]xv !2&2
1

2

d2S2~R!

dR2 . ~18!

In Eq. ~18!, we have used the relation

^~]xv !2&5 lim
r→0

S2~r !

r 2 . ~19!

The computation ofA3 is similar and we find, using Eq.~8!,

A3~R!5 lim
r→0

r 22 1
4~2S4~R!12S4~r !112F2,2~r ,R!

24F3,1~r ,R!24F3,1~2r ,R!

2S4~R2r !2S4~R1r !!
-
-
y
t.

s

he
-
o

of

5 lim
r→0

r 22S 3F2,2~r ,R!2
1

4
r 2

d2S4~R!

dR2 1O~r 3! D
53B2,2~R!2

1

4
r 2

d2S4~R!

dR2 . ~20!

In Eq. ~20! we used the definition ofB2,2, namely,

B2,2~R!5 lim
r→0

r 22F2,2~r ,R!. ~21!

At this point it is quite easy to find the most general expr
sion for An , which is

An~R!5nB2,n21~R!2
1

n11

d2Sn11~R!

dR2 . ~22!

Equation~22! is an exact results which is independent on a
physical assumption on the fusion rules. The last term on
r.h.s. of ~22! becomes small forR in the inertial range. On
the other hand, for small value ofR, i.e., for R→0, the last
term of the r.h.s. of~22! cannot be neglected. In particula
for R→0, an explicit computation, either using~22! or ~13!,
gives @after cancellations of leading terms in the r.h.s.
~22!#,

An~R!.O~Rn11!. ~23!

In order to complete our computation forAn , we need an
estimate forB2,n . There are in principle two ways to com
pute Bp,n ; the first one using the multiscaling approach15

the second one using the GESS theory discussed in Ref
We first analyze the case of multiscaling. In this ca

one can use the approach of mutliplicative processes w
multiscaling viscous cutoff.15 Namely, for the correlation
B2,n(R)5^(]xv)2(dRv(x))n& one obtains

B2,n~R!;K ~dRv~x!!nS d r d
v

r d
D 2L , ~24!

wherer d is the dissipative scale. In the multifractal interpr
tation we assumed r d

v5(r d /R)h
•dRv with probability

Ph(r d ,R)5(r d /R)32D(h). Following Ref. 15 we have

d r d
v•r d;S r d

R D h

dRv•r d;n. ~25!

Inserting the last expression in the definition ofB2,n(R), we
finally have

B2,n~R!;E dm~h!
~dRv !n12

R2

•S n

R•dRv D @2~h21!132D~h!#/~11h!

;
Sn13~R!

n•S3~R!
,

~26!

where we have used the fact that the multifractal proces
such thatn^(]xv)2&→O(1) in the limit n→0. Expression
~26! coincides with the prediction given in Ref. 8. The abo
computation, are easily generalized for a
^(]xv)p(dRv(x))q&. By using~26! and~22! we finally obtain
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An~R!5nCn

Sn12~R!

nS3~R!
2

1

n11

d2Sn11~R!

dR2 . ~27!

Let us note that, forR→0 Eq. ~27! predicts thatAn(R)
;O(Rn21) which violates Eq.~23!.

We now computeAn(R) by using the GESS approac
discussed in Ref. 11. In this case the computation ofB2,n can
be easily done by noting that, within the GESS approach,
fluctuations of the dissipation scale are confined in the ra
wheredRv;R. This implies that, for what concerns the sca
ing properties ofB2,n(R), the effect of a fluctuating dissipa
tion scale can be disregarded. Following Ref. 11, after a l
but straightforward computation, we obtain

B2,n~R!5Dn

^T2&Sn12~R!

S2~R!
, ~28!

whereT is the velocity gradient andDn is a constant. Equa
tion ~28! can be easily understood by noting that, within t
GESS approach,F2,n(r ,R);@S2(r )•Sn12(R)#/S2(R) for
any values ofr andR, i.e., also in the limitr→0. Using~28!
we finally obtain

An~R!5nDn

^T2&Sn11~R!

S2~R!
2

1

n11

d2Sn11~R!

dR2 . ~29!

For R→0, using the estimateSn(R);^Tn&Rn1O(Rn12),
and the fact thatDn51 for R50, we can easily show tha
Eq. ~29! satisfies the constrain~23!.

From an experimental point of view, it is extremely di
ficult to distinguish between the two predictions~27! or ~29!.
We note that the experimental and numerical analysis
cussed in Refs. 12 and 13, has been done neglecting
second term on the r.h.s. of~22!. Also, the experimenta
analysis performed in Ref. 11 seems to indicate that mu
scaling effects are not observed in real turbulence. At
rate, no definitive conclusions can be drawn from exist
experimental data. A third, different parameterization of v
cous effects has also been presented in Ref. 22.

V. CONCLUSIONS

Let us summarize what is the framework we have fou
until now.

Whenever the simple scalingansatzbased on the uncor
related multiplicative process is not prevented by symme
arguments, the multiscale correlations are in go
asymptotic agreement with the fusion rules prediction eve
strong corrections due to subleading terms are seen
small-scale separationr /R;O(1). Subleading terms are
strongly connected to the WI previously discussed, i.e.
geometrical constraints. In the other cases@i.e., F1,q(r ,R)#
the geometry fully determines both leading and sublead
scaling. All these findings, led us to the conclusions t
multiscale correlations functions measured in turbulence
fully consistent with a multiplicative, almost uncorrelate
random process. Nevertheless, the strong and slo
decaying subleading corrections to the naive multiplicat
fusion rules predictions are the main obstacle for any
tempts to attack analytically the equation of motion for stru
ture functions; in that case, multiscale correlations at alm
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coinciding scales are certainly the dominant contributions
the nonlinear part of the equations.8 Indeed, as shown in an
analytical calculation for a dynamical toy model of rando
passive-scalar advection,20 fusion rules are violated at sma
scale-separation and the violations are relevant for corre
evaluating the exact behavior of structure functions at
scales.

Finally, let us remark that the standard multiplicativ
process cannot be the end of the story, i.e., the dynamic
certainly more complex than what here summarized. For
ample, one cannot exclude that also subleading~with respect
to the multiplicativeansatz! dynamical processes are actin
in the energy transfer from large to small scales. These
namical corrections must be either negligible with respec
the geometrical constraints or, at best, of the same order
already discussed, a better understanding of this small de
tions is necessary in order to improve our analytic contro
intermittent deviations in Navier–Stokes equations. Let
cite, for example, a previous attempt, made by some of
authors, to close the equation of motion in a dynami
model of turbulence by using a simple multiplicativ
process.28 In that case, one was able to find a satisfacto
qualitative agreement with the numerical simulations and
the same time one could also prove that the closure was
exact due to the presence of small out of control, deviati
from the multiplicative ansatz. Unfortunately, these dev
tions, as shown in this paper, are hardy detectable exp
mentally. Also, as shown in Sec. III C, the odd correlati
functions are not fully understood; higher Reynolds num
experiments, with higher statistics, are needed.

The question connected to the transfer properties
quantities with different physical dimension from the energ
say the helicity, may reveal different physical mechanism25

What happens for all those multiscale correlation functio
which feel a nontrivial helicity dependency for nonparity i
variant flows is in this framework an open question.

In the past, similar analysis in a class of multiplicativ
models for the energy dissipation have been done.26 Also in
that case, the multipliers connecting coarse-grained ene
dissipation over two overlapping intervals shows some w
correlations among scales. This correlation can also be
derstood in terms of unavoidable geometrical effects due
the overlapping nature of the intervals where the coar
grained energy dissipation is defined.

For what concerns fusion rules involving velocity grad
ents or Laplacian and velocity differences, we observe t
there are controversial arguments leading to different pre
tions. It is difficult to distinguish which predictions is reall
observed in real turbulence, because experimental dat
large Reynolds number do no resolve the far dissipa
range with enough accuracy.

Finally, let us mention that other possible candidates
investigate the previous problems are shell models for tur
lence, where geometrical constraints do not affect the ene
cascade mechanism.
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APPENDIX: SYNTHETIC SIGNALS

We build up a one-dimensional synthetic signal acco
ing to a random multiplicative process defined in a dya
hierarchical structure as originally introduced in Ref. 14~for
a review and references see also Ref. 21!.

Let us consider a wavelet decomposition of the funct
f(x),

f~x!5 (
j ,k50

`

a j ,kc j ,k~x!, ~A1!

wherec j ,k(x)52 j /2c(2 j x2k) andc(x) is any wavelet with
zero mean. The above decomposition defines the signal
dyadic superposition of basic fluctuations with differe
characteristic widths~controlled by the indexj! and centered
in different spatial points~controlled by the indexk!. For
functions defined onN52n points in the interval@0, 1# the
sums in~A1! are restricted from zero ton21 for the indexj
and from zero to 2j21 for k.

In Ref. 14 it has been shown that the statistical behav
of signal increments,

^udf~r !up&5^uf~x1r !2f~x!up&;r z~p!

is controlled by the coefficientsa j ,k . By defining thea co-
efficients in terms of a multiplicative random process on
dyadic tree it is possible to give an explicit expression for
scaling exponentsz(p). For example, it is possible to re
cover the standard anomalous scaling by defining thea’s tree
in term of the realizations of a random variableh with a
probability distributionP(h),

a0,05const.

a1,05h1,0a0,0; a1,15h1,1a0,0;

a2,05h2,0a1,0; a2,15h2,1a1,0; ~A2!

a2,25h2,2a1,1; a2,35h2,3a1,1;

and so on. Let us note that in the previous multiplicat
process different scales are characterized by different va
of the indexj, i.e., r j522 j . If the h j ,k are independent iden
tically distributed random variables it is straightforward
realize thata j ,k are random variables with moments given

^ua j ,kup&5r j
2 log2~hp!

5r j
z~p! , ~A3!

where the ‘‘mother eddy’’a0,0 has been chosen to be equ
to one. In~A3! with ¯ we intend averaging over theP(h)
distribution. In Ref. 14 it has been shown that also the sig
f(x) has the same anomalous scaling of~A3!.

The same arguments used in order to prove that the
f(x) has an anomalous scaling can be invoked to show
that the fusion-rules prediction~5! are satisfied -at least fo
large scale separation-.
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On the other hand, it is trivial matter to realize that t
above signal will showexactly, and for any separation of
scale, the fusion-rules prediction if expressed for the wav
coefficientsa j ,k . For example, let us consider two wavel
coefficients at different scalesr j,r j 8 and let us chose thek
indices such that the two coefficients refer to two spatia
overlapping wavelets, then it is trivial to realize that, due
the multiplicative nature of the wavelet coefficients, we ha

^ua j ,kupua j 8,k8u
q&[S r j

r j 8
D z~p!

r j 8
z~p1q! ~A4!

which shows that the fusion rules prediction is satisfied
actly for any separation of scales as long as the two fluc
tions are chosen with overlapping distances. In the case
two distances are not overlapping, deviations from the fus
rules prediction are certainly seen in the synthetic field d
to the dyadic~ultrametric! nature of the underlying structure
The question whether such deviations may be seen als
the experimental data is an interesting point which is outs
the scope of this paper~see, for similar problems, Refs. 23
24!.

Other synthetic signals27 can be built either starting by a
multiplicative process from the energy dissipation, and us
the refined Kolmogorov hypothesis in order to have a sig
for the velocity, or by using ‘‘wavelet-like’’ tent functions
Our signal, focusing directly on the velocity fields incr
ments, without passing from the energy dissipation, and
ing infinitely differentiable, at difference from the ten
function signal, looks more appropriate for our purposes.
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