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Multifractality in the Statistics of the Velocity Gradients in Turbulence
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Using the multifractal approach, we derive the probability distribution function (PDF) of the velocity
gradients in fully developed turbulence. The PDF is given by a nontrivial superposition of stretched ex-
ponentials, corresponding to the various singularity exponents. The form of the distribution is explicitly
dependent on the Reynolds number. The experimental data are in good agreement with the PDF pre-
dicted by the same random beta model used to fit the scaling of the velocity structure functions.

PACS numbers: 47.25.—c

One of the fundamental features of three-dimensional
fully developed turbulence is the non-Gaussian statistics
at small scales. The energy transfer toward small scales
is related to the nonzero skewness of the probability dis-
tribution function (PDF) of the gradients, and the large
flatness of the PDF (kurtosis) corresponds to the presence
of strong bursts in the energy dissipation. This is the
most striking signature of the so-called intermittency
phenomenon, responsible for the failure of the classical
theory of Kolmogorov (K41) which neglects the presence
of fluctuations in the energy transfer [1].

Recently, several papers [2-5] have discussed the PDF
problem. A first approach [2-4] uses a new mapping-
closure theory introduced by Kraichnan [2]. Starting
from a Gaussian reference field, he introduced a mapping
function J describing the squeezing ratio of the length
scale. The evolution equation for J is obtained by model-
ing the dynamical processes present in the Navier-Stokes
equations with a particular emphasis on the local self-
distortion of turbulent structures in physical space. A
second method applied dimensional arguments in order to
relate the small-scale Auctuations to large-scale statistics
assumed to be Gaussian [5]. Thus, explicit forms of the
PDF are derived in the context of the K41 theory and of
the fractal beta model [6,7]. However, these forms are
not consistent with the existing data.

This Letter generalizes the approach used in Ref. [5] to
the multifractal [6,8,9] case. In particular, we show that
the random beta model [9] allows us to obtain good fits of
both the scaling exponents of the structure functions and
the PDF of the gradients.

Let us brieAy recall the basic features of the multifrac-
tal description. In the following, we shall ignore the vec-
torial character of the quantities, as well as constants of
order 1 in the equalities, which are unessential for our di-
mensional arguments.

In the inertial range of lengths, the velocity increments

P (Ir)dIr =I "p(h)dh, (2)

where p(h) is a smooth function of h which is indepen-
dent of /. The scaling ansatz (2) implies that

gp =min[Iip+3 —D(h)],

using a saddle-point estimate of the structure functions
[8].

Bv„(l) =
~
v(x+ I)—v(x)

~
are assumed to scale as

Sv, (l) rx vr)l",

where vrr =
( Vrr~ is the absolute value of the characteristic

velocity difference Vo on the typical macroscopical length
Lo. For the sake of simplicity, we assume Lo=l. In gen-
eral, the scaling exponent h depends on the particular
Auid point x considered. Fluctuations of h lead to a
strong spatial intermittency in the magnitude of the gra-
dients and thus in the energy dissipation. The main as-
surnption of the fractal description of intermittency [6] is
that h & 1 in a set F with fractal dimension DF & 3 where
the energy dissipation concentrates as the Reynolds num-
ber Re ~. The complement of this set is covered by
regular regions (which are not fractal) where the velocity
field can be linearized, i.e., h ~ 1, so that the gradients
remain small at high Re. F is a multifractal [8] if con-
sidered as a superposition of subsets O(h) of points x
such that Bt~ —I' with z 6 [Ir, h+dh]. Multifractality is
characterized by a function D(h) which is the fractal di-
mension of the set Q(h). We remark that in the mul-
tifractal description DF=3 is also allowed. In practice,
one extracts D(h) from the scaling exponents gz of the
structure functions (c$v~) —I ". In fact, one can argue
that the probability of picking up a singularity exponent
h should scale in the inertial range as the fraction of the
coarse graining measure of the volume of A(h) over the
total volume, that is,
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In order to determine its PDF, one can relate the proba-
bility of the velocity increments on small scales to the
probability II(vp) of the characteristic velocity difference
Vp on large scales. II(vp) is usually assumed to be
Gaussian on the basis of the experimental results as well
as of heuristic central-limit arguments [1]. For our pur-

pose, it is convenient to consider the conditional probabil-
ity Ph(s), i.e., the PDF restricted to points belonging to
the subset 0 (h) characterized by a particular singularity
exponent [5]. Using the relation

dVp
P, (s) =II(vp)

ds
(7)

It is important to have in mind that the velocity incre-
ments are self-similar only in the inertial range up to a
length scale lD where viscous eA'ects become comparable
to nonlinear transfer. lg is thus determined by imposing
that the effective Reynolds number on scale l is equal to
unity, i.e.,

()v(lD)ID/v= 1 . (4)

It follows [10] that the dissipative scale ID is itself a func-
tion of h,

i (h)-( / )'"""' (5)
The stronger the singularity exponent, the smaller the
value of the corresponding dissipative scale lt)(h). In or-
der to stop the cascade one has to require that the small-
est singularity exponent A;„& —1. Because of in-

compressibility constraints [11], the value h;„=0, how-

ever, seems more reasonable and it is consistent with the
present experimental data [12,13]. The velocity gradients
s can be expressed in terms of the singularities h via (1)
and (5) as

g, (( )/(, (h —),2/()+h) (h —1)/(h+)) (6)

and expressing Vp in terms of s via (6), it follows that

Ph (s)—
I~ I

(1 —h)/2

exp
1
—h 1+h

2(vp)

The prediction of the K41 theory is obtained by neglect-
ing intermittency eA'ects, i.e., by assuming h =

3 unl-

forrnly in the Auid. One thus finds [5]

P(s) —(v/Ist) ' exp[ —Cv 'Ist '1, (9)

with C=(2(Vp)) '. Let us recall that in a fractal pic-
ture, the velocity gradients are very small in the nonactive
zones where h ~ 1. Therefore, we must take into account
the presence of an additional delta function in the PDF:

P(s) =PF(s)+ y8(s), (10)

where PF is the PDF restricted to the active zones cover-

ing the fractal set F and y is a normalization factor, such

that fP(s)ds =1. For instance [5], PF(s) =Ph in the
beta model where the singularity value on F is constant
and equal to h =(DF —2)/3. It is important to stress that
both the Ic'4l theory and the beta model predict a PDF
with stretched exponentials of the form exp( —cIsI'),
with t & 1. In a log-linear plot of the PDF, such a form

implies a convexity of the curve which is in contradiction
with the qualitative feature of the experimental and nu-

inerical data [14,15]. Indeed, as one can see in Fig. 2,
they seem consistent with an efII'ective stretched exponent
t &1.

Let us now derive the form of the PDF in the mul-
tifractal approach. As a matter of fact, when there is a
hierarchy of singularities, the probability of observing
a gradient value s related to a given singularity h is
P (sh)P (th), where Pt is given by (2). It follows that
the conditional probability is given by a weighted integral
over the singularities,

VP~(s) = dh Ph(s)P, (h) — dh P(h)4 Isl

' 2 —fh+D(h)]/2

exp
1
—h 1+h

2(v,')

An analytic estimate of the integral is not easy, since one
cannot apply a saddle-point method as for the analogous
integral giving the structure functions. This is due to the
fact that, as shown by (6), IsI —v " ' /"+' . Even for
strong singularities h =0, one has Ist —v ', and we
therefore expect that Is tv should be of order unity in the
viscosity. We remark that in the multifractal model the
relation v(s ) const in the limit of Re ~ immediate-
ly follows [16] from the condition g3 =1.

It is of course possible for a numerical computation of
the integral, inserting the dimension function D(h) ob-
tained by the Legendre transformation (3). In order to
have an explicit form of D(h), we can use the random
beta model [9]. It is one of the simplest multifractal
models which provides a good At of structure functions.
We show here that it is also capable to reproduce the gra-

t
dients statistics with the same accuracy.

In the random beta model [9] the velocity difference
t. „=bv((„) on the sc—ale („=2 "is given by

( )/3 + p
—I/3

where the P s are independent, identically distributed
random variables. Phenomenological arguments suggest
the foliowini. choice: p; = 1 with probability a or p;—(1 —h,„)=8=2 '" with probability 1

—a. The two limit
cases are a =1 corresponding to the K41 theory and a =0
corresponding to the usual beta model [7], where at the
end of the cascade the energy concentrates on a fractal
structure with dimension DF =2+3h;„. A fit of the ex-
perimental data of Anselmet et al. and the more recent
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data of Meneveau and Sreenivasan [12] for the g„exponents gives the value a = —', , assuming it;„=0, i.e., 8 = —,
' .

Instead of inserting in (9) the corresponding function D(h) given by the random beta model [10], one can obtain a
simpler formula for the PDF, by a direct estimation. The results are of course equivalent, although the latter permits a
more transparent reading. From (12), one sees that the probability distribution of the velocity increments is

P(U„)= j II(Vo)dVo 8 U. —Vol„'"gP; '" gP;P(P;)dP;,i=l i=1

where p(p) is the probability density of the p s. Since the p s are identically distributed according to a binomial distri-

bution, the integral can be reduced to the sum

n pg

P(t, ) g an K(1 ) K(8) 4K 3i I/3 [ C8 2K/3i —2/3„, 2]
K 0,

(14)

lN=2 v/s .

that 8 =(v/s) '" and the conditional PDF isBecause the cascade stops at N =ln(s/v)/(21n2), it follows

1V
' (1+2/t)/3

P ( ) —g aN K(1 )K—
~-0,&, , Isl

where k =K(1 —3itm;„)/N and N=ln(IsIv)/(21n2). The
K41 prediction (9) corresponds to considering only the
term K =0, with a =1. When N(s) is not large, the main
contribution to the sum is given by the first K terms. For
increasing Is I, the PDF becomes sensitive to higher K
terms, i.e., to stronger singularities. A direct inspection
of (15) shows that the largest contributions to the sum
are given by K around a K*(s) which exhibits a very
weak dependence on s, probably logarithmic. The ab-
sence of any dominant contribution implies that one nev-

[ Cv(2+k)/3I
I

(4 —k)/3]

I er has a pure exponential (eventually stretched) form of
the PDF. The maximal value of N(s) is limited by the
Reynolds number of the experiment: Typical values are
N =14-16. Figure 2 sho~s the comparison between the
numerical data of Vincent and Meneguzzi [15] and Eq.
(15), with the same parameters, it;„=0 and a = —„', used
for the fit [9,10] of the structure function exponents g~.

where C=(2(V())) ' and l„=2 ". Figure 1 shows P(v„) for different values of n Th.e passage of the velocity incre-
ments PDF from a Gaussian form at large scales to an exponential-like form at small scales is quite evident.

The gradient PDF is obtained by (14), computed at the step N which corresponds to the viscous cutoff (5),
vNlN/v= 1, namely,
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FIG. I. Log-linear plot of the probability distribution P(I„)
of the velocity increments v„vs c,/o„, where cr„=&i.,2), for n =2,
5, 10, 15 (solid lines); see Eq. (14) with a= —, , &V$) = I. For
n =0 one has a Gaussian corresponding to a parabola (dashed
line).
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FIG. 2. Log-linear plot of the PDF of the gradients PF(s) vs

slo, where o =&s2). We choose &Vj) =1, v=10 ', and Lo=l
to be consistent with the simulation [15]. The data of Ref. [15]
are indicated by circles; the solid line is the multifractal predic-
tion of Eqs. (11) or (15) with a= —, ; the K41 prediction (9)
and the beta model result (8) with DF =2.83 (it —0.27) are, re-

spectively, the dotted and the dashed lines.
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Note that the (~'s obtained in Ref. [15] are in good
agreement with the experimental results [11] considered
in Refs. [9] and [10].

Equation (11) can be immediately specialized to the
Burgers equation. Apart from the regular regions, there
is only one kind of singularity h =0 with D(h =0) =0,
corresponding to the presence of shocks. The regular
zones have h =1 and D(h =1)=1 so that the scaling ex-
ponents of the structure functions are g„=p for p ( I

and (~ =I for p) l. As we are dealing with a one-
dimensional system, one has Pt(h)-l' " instead of
(2). The integral (11) for the PDF is then given by just
one term:

PF (s) —(v/Is I )exp[ —Cvls I] . (16)

This result is valid for large negative s because the strong
jumps in the velocity increments are now only negative.
Equation (16) coincides with the result obtained by
Kraichnan [2] using the mapping-closure approach.

In conclusion, we have obtained the predictions of the
multifractal theory for the PDF of the velocity gradients,
in both the Navier-Stokes and Burgers equations. In the
Navier-Stokes case, the PDF has no stretched or pure ex-
ponential form, but is a superposition of stretched ex-
ponentials, each one linked to a singularity exponent h.
The global —but deceptive —effect of the slow increasing
with s of K (s) is not too different from a stretched ex-
ponential exp( —cIsI') with an exponent t slightly less
than 1, as shown in Fig. 2. We argue that such a feature
suggested misleading interpretations of the experimental
results. Here, we have obtained a good agreement with
the available data using the random beta model with the
same value of the free parameters (a = —'„, h;„=0) given

by an independent previous fit of the structure functions
[9].
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