PHYSICS OF FLUIDS VOLUME 11, NUMBER 5 MAY 1999

Intermittency and eddy viscosities in dynamical models of turbulence

R. Benzi
AIPA, Via Po 14, 00100 Roma, Italy

L. Biferale®
Dipartimento di Fisica, Universitél‘Tor Vergata” Via della Ricerca Scientifica 1,
1-00133 Roma, Italy and INFM, Unitdi Tor Vergata, Italy

S. Succi
Istituto Applicazioni Calcolo, CNR. V.le Policlinico 137, 00161 Roma, Italy

F. Toschi
INFM, Unita di Tor Vergata, Italy; Departimento di Fisica, Universit Pisa, P.zza Torricelli 2, 1-56126
Pisa, Italy; and INFN, Sezione di Pisa, Italy

(Received 13 March 1998; accepted 14 January 1999

The dependence of intermittent inertial properties on ultraviolet eddy viscosity closures is examined
within the framework of shell models of turbulent flows. Inertial intermittent exponents turn out to
be fairly independent on the way energy is dissipated at small scale4999 American Institute

of Physics[S1070-663199)00905-9

I. INTRODUCTION whether or not the statistical properties of fully developed

) ) three-dimensional turbulent flows exhibit a strong depen-
One of the most challenging open problems in three-dency on the energy dissipation mechanism.

dimensional fully developed turbulence is the assessment of Kolmogorov theory suggests a strong universality as-
the statistical properties of the energy transfer mechanism. IQumption: strong independency of pure inertial range quan-

statipnary turbulent_ flows, a net flux of energy establishes ifjeq o any dissipative mechanism. The theoretical implica-
:jhe llner.t|al ranlge, €., from_ forcedfscalgs,hdownh to the. tions of such an assumption are obvious. For instance, some
lissipative scaleq . Energy is transferre through a statis- ¢ e most recent analytical attacks to the intermittency of
tically scale-invariant process, characterized by a Strongl)étructure functions assume that the phenomenon is fully cap-

non;Gaus§|ar@|nterm|ttenhllacatlvny.b d by looki h tured by looking only at the nonlinear terms in the NS equa-
ntermittency is usually described by looking at the Sta'tions, at least in the limit of large Reynolds numBedow-

tistical properties of longitudinal velocity differences, ever, because of intermittency, one can question the

5{.” '(tX) :IU(X) _t?(xle r)ﬂgve;:totr ggtatl(;r; ;]s relax_e{\d for sd|m- conceptual framework of the Kolmogorov theory and conse-
plicity). In particular, the las yearsiave winessed a quently the strong universality assumption.

substantial focus of experimental and theoretical activity on Moreover, numerical investigations of turbulent flows

B — p = . .
structure functionsSy(r) =((5;v(x))"). A wide consensus are necessarily restricted to lofmnoderat¢ Reynolds num-

exi;ts on the _fa_ct that structure functions show a .scaling bef)ers. Therefore, it is of primary importance to develop some
havior in the limit of very high Reynolds numbers, i.e., in the.controllable procedure which minimizes viscous effects

presence of a large separation between the integral and d'ﬁ/'vhenever possibjeln the past, hyperviscositfigh powers
sipative scalesl./rq—c: of the Laplaciaphas often been employed in order to extend
the inertial range as much as possible. Contradictory claims
r\é® have been reported on the influence of the energy dissipation
Sp(r)”([) (1) mechanism on the inertial range dynancé.
An important tool, heavily in use to perform reliable

) . ) high Reynolds simulation, is based on the concept of eddy
The velocity fluctuations are anomalous in the sense that th\ﬂscosity.l*s’g

{(p) exponents do not follow the celebrated dimensional
Kolmogorov's predictionZ(p)=p/3. In fact, {(p) is ob-
served to be a nonlinear function of its argumpnivhich is
interpreted as the most important signature of the intermit

tent transfer of fluctuations from large to small scales. — 3mical models of turbulendshell modelsboth in the case
As it is known, the dissipative structure of the Navier—yhere the dynamics is resolved in real and Fourier space

Stokes equationgNS) is not dictated by compelling con- itree modelt®tand in the case where only the Fourier space
straints on the inertial terms. This raises the question of5 taken into accounfstandard chain-modefs19.

In either case, we find strong independence of the iner-
dElectronic mail: biferale@roma2.infn.it tial range statistics from the ultraviolet dynamical closure,

In this paper we investigate robustness of the intermit-
tent inertial properties in the context of simple dynamical
eddy viscosity models. In particular, we present a detailed
humerical investigation of such an issue in a class of dy-
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indicating that mosteventually not a)jl eddy viscosity mod- One of the simplest and most popular subgrid models is
els do not destroy the quantitative and qualitative features aflue to Smagorinskf which can be derived bg2).
the inertial range dynamics. The idea is to replace with the mesh sizé\ in Eq. (2)

The paper is organized as follows. In Sec. Il we intro-and subsequently replac® (A)~SA, where(we dispense
duce the main ideas behind eddy viscosity models. In Sec. Ifirom tensor indices for the sake of the argumestis the
we introduce the dynamical models we have used in order tetrain tensoiS~ év/r evaluated at =A.
test the dependency of intermittency on eddy viscosities. In  The result is
Sec. IV we discuss the numerical results. Conclusions follow

in Sec. V. vsos~A°S @
This expression is less transparent than it looks. In fact, it is
based on the assumption that the velocity field at the skale

Il. EDDY VISCOSITY MODELS is smooth enough to allow the definition of the space deriva-

tive S

The idea of eddy viscosity was introduced over a century  This flies in the face of the fact that, X belongs to the
ago by Boussinesq and later developed further by G. Tayloinertial range(as it should for the whole LES procedure to
and L. Prandll” and it builds upon a direct analogy with the make sense the velocity field isknownnot to be differen-
kinetic theory of gas. According to this analogy, the effect oftiable sincesv scales liker 3, On account of this, one ex-
short “microscopic” scales on large “macroscopic” scales pects Sv(A)/A to be much larger than the corresponding
can be likened to a sort of diffusion process characterized byatio evaluated at= 7 (the only scale where this operation
an effective viscosity much larger than the molecular oneis conceptually allowed This “inconsistency” is usually
Strictly speaking, this is justified only when a sharp separaacknowledged by prefactoring the right-hand side of the
tion between fast and slow modes exists, but it turns out thaéquation with an empirical coefficie€s smaller than 1,
the analogy proves useful in practice also in situationgypically Cs~0.12.
where, in principle, such an assumption would not hold. Putting all this together, and restoring tensorial indices,

By mere dimensional arguments, the effective eddy visthe full Smagorinski eddy viscosity reads as
cosity at scale reads as follows, veya(X) = CsA?[S), )

ve(r)~r-ov(r), @ whereS;; = 3(,u;+ d;u;) is the large-scale stress tensor and
where v(r) is the velocity fluctuation across a distance |S|=(25115u)1/2- The Smagorinski model is widely used in
(vector indices are relaxed for simplicjty practical engineering applications in spite of its several

Equation(2) can be also deduced by using the refinedweaknesses. Among these, worth mentioning(grthe over
Kolmogorov hypothesisRKH) as follows. According to damping of resolved scales, afid) the, at least partial, as-
Kolmogorov; a simple way to take into account the inter- sumption of isotropy of the turbulent flows. The former flaw
mittent fluctuations in the inertial range is to define a coarsemay seriously hinder the development of genuine

grained energy dissipatiog}(x): instabilities!® while the latter casts doubts on the applicabil-
1 ity of the model in the vicinity of walls and solid boundaries
er(x):—sf e(y) d3y, (3)  where the dynamics of turbulence is dominated by direc-
I tional effects.
where A (x) denotes a volume of fluid centered»n Another recent development in the area of Smagorinski
In terms ofe, one can generalize the Kolmogorov “4/5” models is the so-called structure-function eddy viscosity by
equation by assuming thés,v(x))3~re, . Lesieuf® and co-workers. The idea is to account for inter-

Now, let us defineA the scale at which we want to Mittency by estimatingsv(r) with the square root of the
compute the eddy viscosity. At such a scale, one expectgecond-order local structure function
ex=ve(A)(6v(A)/A)?. By combining these two expres- 8u(1)~ Sy(r,x) 2= v (r,x)2) 12 (6)
sions,(2) is readily obtained. ’ ’ ’

The eddy viscosity is much larger than the molecularwhere the local average is computed with the local energy
one, which reflects the enhanced mass and momentum trar&ectrume(k,x,t) according to the Batchelor relation
port observed in turbulent flows. sin(kr)

As it is well known, for most turbulent flows of practical S,(r,x)= f E(k,x)
interest, the dissipative scalgis far too short to be resolved '
by any foreseeable computer. In fact, scales likeL The relation(6) implies a certain degree of arbitrariness.
-Re %4 L being the outer scale of the flow, and conse-Why not choose($z;~8§’3 or more genericallysé’p with p
guently the scale separatituiz can easily span three to six any integer? In the absence of intermittency pl are
orders of magnitude in practical applications. equivalent, but when intermittency is on, every valuepof

Given this state of affairs, subgrid models and large-would provide a different, yet equally acceptable, answer. At
eddy simulationgLES) are mandatory. Generally speaking, this stage, the specific choice pbecomes a matter of taste,
the common aim of these models is to incorporate the effecter, better said, of how much emphasis is to be placed on the
of unresolved scales €A, A being a typical mesh sizen  most-singular structureghose sampled by highegts). The
the resolved ones>A. correct recipe is probably a weighted average of all possible

dk. (7)
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p's, the weighting factor (most likely a space—time-
dependent functignbeing basically unknown.

Another scenario is to assume that intermittency ignores
the details of the dissipation mechanisms, in which case the
idea of including intermittency effects on LES models dis-
solves on its own.

The discussion of the sophisticated developments of

LES modeling is beyond the scope of this paper. Here we o+l
shall focus exclusively on the specific question of the inter-
relation between dissipation and intermittency. Tackling this | ‘ ‘ J l ‘ ‘ I ’ I | n+2

question within the true three-dimensional Navier—Stokes :
context is a very daunting task, in view of the enormous C &y
amount of data to be produced and carefully analyzed.

It therefore makes sense to attack the problem within th
context of simplified dynamical models sharing as much
physics as possible with Navier—Stokes equations while giv-
ing away most of its computational complexity.

é:IG. 1. A picture of the hierarchical system, covering the one-dimensional
interval[0,A1].

Upon choosinga=1, b= — % andc= — %, the above equa-
tions are readily shown to conserve the followitenergy,

IIl. DYNAMICAL MODELS OF TURBULENCE helicity) invariants:

N N
In the recent years, an interesting vehicle for this kind of _ 12 “i2:. _ +12 2
investigations has emerged in the form of the so-called E_nzo (Jun %+ lun % H_nzo Knd(un [*=Jun [%).
“shell models.”t?-16 (9)

Shell models work on the principle of collapsing the
whole set of degrees of freedom lying in a finite shell
<k<k,;1, with k,=2"kg, into a handful(one or twg of
representative modes.

The dynamics of such a low-dimensional representatio
is subsequently arranged in such a way as to preserve t
nonlinear structure of the NS equations; of course all genu
inely three-dimensional effects are lost in the process.

The most popular shell model is the Gledzer—Ohkitani

Real turbulence consists of localized eddies of all sizes that
interact, merge, and break up locaffythe physical picture

is that of a large eddy which decays into smaller eddies. The
fumber of degrees of freedom in such a field problend in
ilimensions grows with the wave number k) ~kd (d

=0 in shell models The first step in reproducing this kind
of hierarchical structure is to transformchain-model into a
_treemodel withd=1.1° This is achieved by letting the num-

Yamada(GOY) model where only onécomplex mode per ber of Qegrees (_)f.freedom grow with the shell inaeas 2.
shell is used. Recently, a new class of model has been intro- AS in the original shell models, this tree model must be

duced in which, by allowing two complex modes per shell, 2" SOme sense reminiscent of the NS equations. It can be

second invariant with a close connection to NS helicity carf€9arded as describing the evolution of the coefficients of an
be defined. orthonormal wavelets expansion of a one-dimensional pro-
The statistical properties of such a helical shell model€ction of the velocity fieldv (x,t):
have been recently explored in deptt: the major finding
being that it possesses a rich physics and it exhibits a striking v (x,t)= E Uni () ¢ (%), (10
similarity (in a statistical sengeto NS intermittency. Shell n
models do nonetheless miss all spatial effects, since they can,
be regarded as zero-dimensional field models based oLy
space-filling coherent planar waves.
The dynamics of our helical shell model is governed by

rey, j(x) is a complete orthonormal set of wavelets gen-
ated from an analyzing wavelét (x) by discrete trans-
lations and dilatation:

the following evolution equation: P (X)= 2n/2¢0 o2 —]). (11)
Uy =ikn(@uy, Us o +bus Uy, +eus_ u_,) Each dynamical variable, ; describes fluctuations in a
- . box of lengthl ,=27", centered in the interval ranging from
—Dpuy +6nn,f7, ®  (j—1)I,t0]l,. At each scale there are 2~ boxes, cov-

. - _ o _ ering a total length\1=2""1,=1 (see Fig. 1
whereu,, represent the positive/negative helicity carriers re-  For the sake of convenience we define the tree model in

spectively andf~ is a large scale forcing. In the previous terms ofdensityvariables,u,;, which would correspond to
equations the ternb is a function which reproduces the { :zn/Z{,nj in a wavelets expansion. In this notation,

effects of viscous damplng at scaeln the usual case where |ur’1,j|2 represents the energy density in a flow structure of

only molecular viscosityy, is acting we have lengthl,,=2"" and spatially labeled by the indgx
. 5 In this tree structure, each variahlg ; continues to in-
D, = vk, teract with the nearest and next-nearest levels, as ifg8Eq.
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however, many possibilities are now opened by the presence The two methods are quite different in scope and formu-
of many horizontal degrees of freedom localized on eachation: Smagorinski works in real space as a local, dynamic,
shell. effective viscosity responding to the local stress so as to
The simplest choice is depicted in Fig. 2, where a por-mimic the effects of unresolved scales on the resolved ones.
tion of the tree structure is shown and the evolving in timeHyperviscosity is local irk-space, static, and doest aim at
variable,u, j, is represented by a black ball. In the figure, representing the effects of unresolved scales, but simply at

solid lines connect interacting bal{sariables. reducing the size of the dissipative region so as to take full
The dynamical tree equations are as follows: advantage of the grid resolution.

0 ——Drut 45 F* As far as connections .vv_ith the NS physics is involved,

n.J n=nj Fnng we remind the reader that it is well known from pseudospec-

a tral simulations that the effective viscosityvg
+ik, Z[U§+1,2j71(ur7+2,4473+Urﬁz,qu) =T.(k)/K?E(k), where T_(k) is the energy transferred
from wave numbek beyond the cutofk.. , is an increasing

N - - N function of the wave numbeét. This dependence is reason-
tUniag(Unizg -1+ Unizg) I+ 50U 7 ably fitted by a constant plus a power lawkinThis suggests
that a Smagorinski-like modétoughly constant irk space
plus an hyperviscous terkf® p>2 might be a good choice
I] ' (12) for a sub-grid scale modéf.Our dissipative term displays
) ) = . both aforementioned features: hyperviscous behavior reflects
where, in the indexeg, is the integer part of ((+3)/4) and  jno the presence of dissipation only in the last and last-but-
j is the integer part of ((+1)/2). one cell (“cusp-like” shape, whereas a Smagorinski-like

Again, in the standard case with only molecular viscos-argument is manifestly behind the specific prescription of the
ity we have D,f:vkﬁ. The interaction terms with coeffi- dissipative terms, namel2S—k ?ku(k). The analogy
cientsa/4, b/2, andc are depicted in Figs. 2 respectively. stops here, though. At variance with real-space Smagorinski,
'_I'he same equation holds, with all helicities reversed, foiye do not haveny dissipation belowky_;, and differently
Un,; - The numerical values @, b, andc are the same of the  from usual hyperviscous operators, we do not have any high
original helical shell. powerk?P. Trying to push this qualitative analogy further, in

To make contact with the issue of intermittency— an attempt to make full contact with Navier—Stokes, would
dissipation interrelation, we shall replace the viscous coeffipe g purposeless, possibly obscuring, exercise since we are
cientsDj of Egs.(8) and(12) with an “effective viscosity”  well aware that the present shell model does not reproduce
term, D, , which now acquires both nontrivial dependenciesthe physics of fluids as described by the Navier—Stokes

*
X(Unsgg-1F Upsgg)]Holu,_,ru g

on time and shell indexes. It reads for the two cases equations.
uz| On the other hand, this qualitative analogy serves well
+ n
Dy ()=vs(SnnTt Onn-1) e kG
n
- (13
+ _ |un,i| 2 n-2
Dy j()=vs(dn,NT Onn-1) Ky
' Y ’ kn n-1

where vg has been empirically chosen of the order1
mainly on account of conceptual simplicity. Again, an at-
tempt to match as closely as possible Navier—Stokes practice
would have suggesteegk~0.1, but since this prescription is
mostly empirical(as is well known from direct simulation of

n+l
n+2

turbulent shear flows, the “constantCg is not a constant at
all but must be heavily adjusted close to the walls as well as
in the central region of the flowwe conclude that the plain
value vrs=1 meets optimally the criteria of simplicity and
conceptual transparency.

This “subgrid scale” term is clearly patterned after the
simplest NS effective viscosity model. The only difference is
that due to the short-range interactions of our shell models,
the subgrid modeling is applied only to the last and last-but-
one shellsky, andky_1.

Our sub-grid closure combines features of the classical
Smagorinski large eddy simulation model and the so-called
hyperviscosity models used in the direct spectral simulation
of incompressible turbulence. This is consistent with the
double-locality in real and momentum space of the wavelet
basis functions.

n2

n-1

n+l

n+2

FIG. 2. Type of interactiofi(a)—(c)] for the tree model.
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. . Moreover, the slope of the spectrum is basically the same
independent of the number of shells used, which is exactly
] the property we were looking for.

We note that is not the case with normal viscosity,

] where, in order to widen the inertial range, it is necessary to
lower the value of the viscosity so as to increase the Rey-
nolds number. Of course resolution must be increased ac-
cordingly so as to resolve the dissipative region in order to
prevent numerical problems. In order to gain a more quanti-
tative assessment on the grid independence of our results, we

Log(E(k))

P shall evaluate the scaling exponedtsup top=38. In Table
e . . | we show the scaling exponents for the chain model with
N (¢3) and without ¢7) subgrid eddy viscosity* S’ stands
L L . ' L : L - J for subgrid and ‘D" for direct). The simulation was run
Logtk) with 16 shells for about f0eddy turnover time of the largest
FIG. 3. Log-log plot of the energy spectra versus the wave number for thécale'

chain model with eddy-viscosity at three different resolutioNs16 The first remark is that in both cases a significant depar-

(pluse$, N=20 (starg, andN= 24 (crossep For the sake of comparison the ture from Kolmogorov K41 law is observed, i.e., the subgrid

case with normal viscosity is also reported fdr=16 (dotted ling. The model doesiot destroy intermittency.

straight line has slope-1-£5. More precisely,g“? and g'g coincide within statistical er-
ror, which means that intermittency survives and it is basi-

our main purpose, namely asking the question of whether o?a"y insepsitive to eddy viscosity. The scaling gxpongnts
not intermittency “feels” the way that energy is dissipated, reported in Table | have been computed as a direct fit on

in the general context of nonlinear dynamical systems witpstructure functions irk space. Statistical accuracy is gener-
many degrees of freedom. ally good due to the large number of shells available.

It is nonetheless interesting to note that such an estimate
is even more accurate using extended self-similaiE83,
IV. RESULTS ; _ ; .
namely by representing thah-order structure function ver

As previously observed, the common aim of any turbu-sus the third-order one. In Fig. 4 we sh&yas a function of
lence model or large-eddy simulation is to capture the effect$s for the casewith andwithout eddy viscosity. As we see,
of unresolved scales on the resolved ones. In practice, thi§ie case of normal viscosity displays two distinct slopes in
means that once the subgrid model is appropriately tunedhe inertial and dissipative regimes, whereas with eddy vis-
the resolved scales should be basically unaffected by grigosity this slope is everywhere the “inertial” one.
resolution®* This suggests that the combined use of LES models and
This is indeed the case for our subgrid model. In Fig. 3ESS analysis might prove useful for the analysis of scaling
we show the energy spectra for the chain model with eddgxponents in more complex simulations.
viscosity at three different resolutiohs=16,20,24. For the We now move on to the discussion of the results with
sake of comparison the case with normal viscosity is alsdhe tree model.
reported forN=16. As a first remark, we note that the pres- Before analyzing the results it is worthwhile to point out
ence of the eddy viscosity considerably widens the inertiathat the tree formulation makes more contact with the usual
regime which extends deep down to the last-but-one shelNavier—Stokes Smagorinski eddy viscosity in that it intro-

TABLE |. Scaling exponents for the chain model with eddy viscosity(p), for N=16,20,24 andwith
normal viscosity (°(p), with N=16.

P(p) 23(p) 5(p) 3(p)

P N=16 N=16 N=20 N=24

1 0.368:0.007 0.3670.002 0.367-0.002 0.367-0.001

2 0.700:0.005 0.692:0.002 0.692:0.002 0.692-0.001

3 1.0+0.0 1.0:0.0 1.0:0.0 1.0:0.0

4 1.271+0.007 1.273:0.004 1.268:0.007 1.272:0.003

5 1.52+0.01 1.522-0.007 1.56:0.02 1.518-0.008

6 1.74+0.02 1.75:0.01 1.71-0.04 1.74-0.02

7 1.94+0.04 1.97:0.01 1.96:0.07 1.96:0.02

8 2.12+0.05 2.17:0.02 2.08:0.09 2.16:0.03

9 2.29+0.08 2.37:0.02 2.3-0.1 2.36-0.04
10 2.5-0.1 2.57-0.03 2.4+0.1 2.56-0.04
11 2.6:0.1 2.76-0.04 2.6:0.1 2.76-0.05
12 2.8-0.2 2.96+0.06 2.8-0.2 2.96-0.06
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' ' ‘ ' The first step in constructing the energy dissipation field
I in any tree modéf is to consider the energy dissipatidan-

r's sity, #nj, in the structure covering the regiof;(n) of

*r o 1 length 27", centered in the spatial site labeled pyThese

A structures are represented by boxes in Fig. 1.

r A ] In the case with eddy viscosity we have

Log(S_6)
+

e = . nn,j:Dr::,j(lur{j|2+|ur;j|2)- (16)

| Let us notice that in the above expression only the last and
< the last-but-one shells give nonzero contribution, different
| from the case when a molecular viscosity acting on all scales
Py is consideredthe latter would correspond to the choicelf
, , , , instead ofD in Eq. (16)].
o PR 2 A 1 The total energy dissipation densitye=(1/At)

X [ A.e(x) dx, where At is the total space length, is, by
FIG. 4. Log—log plot ofSg versusS; for the chain model witiN= 16 with T

eddy-viscosity(pluseg and without eddy viscosity(crosses The straight definition, thef Sum of all these contributiof@im over boxes
line has slope/s. at all scales in Fig. it

=

Eanj 27" (17)

duces a spatial dependence in the model. It is therefore of
interest to investigate how this spatial dependence is goingt0 5, the other hand. in order to study the scaling proper-

affect the physical picture described so far. ties of the energy dissipation field, one has to disentangle in

. The physical picture as it comes from the analysis of e contributions coming from the coarse-grained energy
intermittency in the inertial range is pretty much the same aRjissipation fielde
.

with the chain model: in particular, intermittency survives

) . In our formulation, we can then rewrite
and shows no dependency on whether a subgrid closure is

used or noisee Table I\ 1 1 2n-1 1

The actual numerical values of the scaling exponents are  e=-— | e(X)dx= == >, ( = f €(X) dx)
slightly higher than in the chain case, and this is hardly sur- AvJaq 207\ 27 am
prising since the tree model allows for spatial redistribution on-1
of the energy flow so that spotty events are somehow _ L 2 _ (18
smeared out. = €n,j>

where the last expression is independenh@ind thee, ;'s
Refined Kolmogorov hypothesis  (RKH) are the coarse-grained energy dissipation densities, obtained

In a tree structure we may also test the robustness of th@S 2verages over spatial regions of lengti?. 2Note that the

RKH. As previously discussed, the RKH links statistical 8/6rage density, ; over A;(n) does not coincide simply
properties of the energy dissipatiorgr) averaged on a box With the density 7, ; of the structure living inA;(n),

of sizer, to the inertial range fluctuationsy (r): namely,
1 (6u(r))®
— By 77 =m0+ + . 19
€.(X) 3 fAr(X)e(y)d y ; . (14 €n,j= n,j mZn T, k(m) mE>n (Dm,km)1(m) 19
In particular one may therefore write Here, in the seconghird) term on the rhs we take into
(e,(x)p/3>~8p(r)/rp/3. (15) account density contributions coming from largemalle)

scale structuregas an example, all regions contributing to
the definition ofe, ; are represented as shadowed boxes in
Fig. 1. The indexk(m) in the second term on the rhs labels
the location of larger scale structures containing the region
A;(n) under consideratioishadowed boxes witm<n in

TABLE Il. Scaling exponents for the tree modeith eddy viscosity?S(p),
andwithout eddy-viscosity £°(p).

P °(p) £3(p) Fig. 1. In the third term, an average is performed over
1 0.348-0.005 0.3470.005 k(m) el(m), wherel(m) labels the set of structures con-
2 0.682-0.005 0.6810.005 tained inA;(n), for anym>n [in Fig. 1,1(m) labels the two
3 1.00 1.00 boxes ain+1, the four boxes ah+2, and so oh
4 1.303£0.006 1.302:0.006 The best spatially resolved energy dissipation field is for
5 1.59+0.01 1.59-0.01 n=N:
6 1.86+0.02 1.85-0.02
7 2.12+0.03 2.16:0.03
8 2.35+0.03 2.32:0.03 €= ZN Dokmys =127 L (20)

m=
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0.040 T T T tuning of the coefficients in front to the eddy-viscosity term
is probably not demanded. Nevertheless, oversimplified eddy
viscosity models based only on dimensional analysis would
probably fail on the same goal, due to their inability to dis-
sipate violent intermittent bursts.

Moreover, the usual phenomenological RKH which
links energy dissipation statistics with inertial range proper-
ties is also largely unaffected by this kind of modeling.
Whether the same universality is present in real Navier—
Stokes equations is still a matter of debate in the scientific
community>*’ Certainly, in order to properly test this ques-
tion it is always necessary to have a fine resolution of the
smallest resolved scales and, more important, a detailed
study of the dependence on finite Reynolds effects. Indeed,
in many cases, bottleneck phenomena close to the subgrid
modeling scales may ari¢e These bottleneck effects may
introduce a finite-Reynolds bias which could lead to errone-
FIG. 5. Instantaneous configuration of the coarse-grained energy dissipatiaddus conclusions on the dependence of inertial range statistics
density field,ey;, over the last level sites. on eddy viscosity or hyperviscosity modeling.

The problem of coherent structure should be carefully

. . . addressed in NS equations, especially in cases of nonhomo-
In Fig. 5, the instantaneous values assumedepy in d B 4

° : geneous and nonisotropic turbulence. This kind of flow can-
the Ny/2=32 768 locations of the last level are shown. Thep,, 1, easily investigated by using surrogates as “shell mod-

ggi?t'c‘ intermittent character of this spatial signal is €V els.” In these cases also nonlocal interactions may play some
' major role in determining overall statistical properties of the

In Table Il we show that the RKH is still well verified : . i
also in the subgrid modeling picture, proving to be a robusﬂ/ow' Such questions are beyond the main purpose of this

and nontrivial property connecting small scales and inertia
range scales in turbulent flows.

0.030

Z 0.020

€

0.010

0 10000 20000 30000

i

ACKNOWLEDGMENTS

V. CONCLUSIONS We acknowledge the help of E. Trovatore for preparing

Summarizing, we have presented a detailed study of dysome of the figures and for sharing with us her numerical
namical eddy viscosity models in chain and tree shell modelgesults. LB and FT have been partially supported by INFM
of fluid turbulence. (PRA-TURBO.

The main goal was to check whether or not the inertial
range properties are affected by the way the flow dissipates
energy. We found a strong robustness of inertial range inter-Y- Frisch, Turbulence: The legacy of A. N. Kolmogori@ambridge U.P.,

. . . L Cambridge, UK, 1996
mittency once the proposed eddy viscosity model is imple-2y,~| o, ang 1. Procaccia, “Toward a non-perturbative theory of hydro-

mented in our shell models. dynamic turbulence: Fusion rules, exact bridge relations and anomalous
The eddy viscosity closure that we have adopted may viscous scaling functions,” Phys. Rev.®, 6268(1996.

also be regarded as a multiplicative closure of the small-scalév- Borue and S. A. Orszag, “Forced three-dimensional homogeneous tur-
fi f fi . it is tant tt . th t4bulence with hyperviscosity,” Europhys. Lef29, 687 (1995.
équations of motion, 1.€., It IS tantamount to assuming thatsy Cao, S. Chen, and S.-Z. She, “Scalings and the relative scalings in the

Un+1~8np+1n- Uy With an appropriate multiplicative random  Navier-Stokes turbulence,” Phys. Rev. Let6, 3711(1996.
coefficienta,,1,,. The fact that intermittency is not affected °E. Leveque and S.-Z. She, “Viscous effects on inertial-range scaling in a

; \Ji ; il : -~ ~ dynamical model of turbulence,” Phys. Rev. Letb, 2690(1995.
by the details of the eddy-viscosity models indicates that flneBL. P. Kadanoff, “A model of turbulence,” Phys. Todad8, 11 (1995.

’G. L. Eyink, “The Multifractal Model of Turbulence and A Priori Esti-

mates in Large-Eddy Simulation | and II,” Preprint University of Arizona,
TABLE lIl. Slope, x(p), of the log—log plot of Eq(15) for the tree model chao-dyn/9602018 and chao-dyn/960201996.

for p=1,...,10. Notice that wheg(p)=1 the RKH is verified. 8R. H. Kraichnan, “Eddy-viscosity in two and three dimensions,” J. At-

mos. Sci.33, 1521(1976.

p x(p) 8J. P. Chollet and M. Lesieur, “Parametrization of small scales of three-
dimensional isotropic turbulence using spectral closures,” J. Atmos. Sci.

L 1.00%0.02 38, 2746(1981).

2 1.001£0.008 R, Benzi, L. Biferale, R. Tripiccione, and E. Trovatore,(1%1)-

4 1.00G-0.007 dimensional turbulence,” Phys. Flui®¥, 2355(1997.

5 1.00G-0.01 11E Aurell, E. Dormy, and P. Frick, “Binary tree models of high-Reynolds-

6 1.00+0.02 number turbulence,” Phys. Rev. 86, 1692(1997).

7 1.0+0.03 2K, Ohkitani and M. Yamada, “Temporal intermittency in the energy cas-

8 1.02£0.04 cade process and local Lyapunov analysis in fully developed model of

9 1.02£0.06 turbulence,” Prog. Theor. Phy89, 329(1989.

10 1.02+0.07 M. H. Jensen, G. Paladin, and A. Vulpiani, “Intermittency in a cascade

model for three dimensional turbulence,” Phys. Rev43, 798 (1991).

Downloaded 01 Oct 2011 to 130.89.86.11. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



1228 Phys. Fluids, Vol. 11, No. 5, May 1999 Benzi et al.

4. Kadanoff, D. Lohse, J. Wang, and R. Benzi, “Scaling and dissipation in and stratified turbulence,” J. Fluid MecB39, 157 (1992.

the GOY shell model,” Phys. Fluidg, 617(1995. 2IR. Benzi, L. Biferale, and E. Trovatore, “Universal energy transfer statis-
15, Biferale and R. Kerr, “On the role of inviscid invariants in shell models  tics in turbulent dynamical models,” Phys. Rev. Lét, 3114(1996.
of turbulence,” Phys. Rev. 52, 6113(1995. 22y, Borue and S. Orszag, “Local energy flux and subgrid-scale statistics in

16, H R “ H
R. Benzi, L. Biferale, R. Kerr, and E. Trovatore, “Helical shell models for 1, aa_gimensional turbulence,” J. Fluid Me366, 1 (1988.

3-dimensional turbulence,” Phys. Rev.33, 3541(1996. 23 . o . . .
Y. Frisch and S. Orszag, “Turbulence: challenge for theory and experi- J. F.erz.|gecr:, S|mtulgt|gn and Mc;)ollzehqg of Turbu:jgtrltdFLowTs, C;CtAf_EQ_a;c
ments,” Phys. Today3 (1), 23 (1990. series in Comput. Science and Engineering, edited by T. Gatski, Y. Hus-

18). Smagorinski, “General circulation experiments with the primitive equa-_Sani, and J. LumleyOxford U.P., Oxford, 1996 p. 108.

tions. 1. The basic experiment,” Mon. Weather R&Z, 99 (1963. 243, Boris, F. Grinstein, E. Oran, and R. Kolbe, “New insights into large
%Y. Piomelli, P. Moin, W. Cabot, and S. Lee, “Subgrid scale backscatter in _eddy simulation,” Fluid Dyn. Res10, 199 (1992.
turbulent and transitional flows,” Phys. Fluids 3\ 1766(1991). 2D, Lohse and A. M. Groeling, “Bottleneck effects in turbulence: Scaling

200, Metais and M. Lesieur, “Spectral large eddy simulation of isotropic phenomena in- versusp-space,” Phys. Rev. Let73, 432 (1994.

Downloaded 01 Oct 2011 to 130.89.86.11. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



