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The dependence of intermittent inertial properties on ultraviolet eddy viscosity closures is examined
within the framework of shell models of turbulent flows. Inertial intermittent exponents turn out to
be fairly independent on the way energy is dissipated at small scales. ©1999 American Institute
of Physics.@S1070-6631~99!00905-8#
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I. INTRODUCTION

One of the most challenging open problems in thr
dimensional fully developed turbulence is the assessmen
the statistical properties of the energy transfer mechanism
stationary turbulent flows, a net flux of energy establishe
the inertial range, i.e., from forced scales,L, down to the
dissipative scale,r d . Energy is transferred through a stati
tically scale-invariant process, characterized by a stron
non-Gaussian~intermittent! activity.

Intermittency is usually described by looking at the s
tistical properties of longitudinal velocity difference
d rv(x)5v(x)2v(x1r ) ~vector notation is relaxed for sim
plicity!. In particular, the last 20 years1 have witnessed a
substantial focus of experimental and theoretical activity
structure functions:Sp(r )5^„d rv(x)…p&. A wide consensus
exists on the fact that structure functions show a scaling
havior in the limit of very high Reynolds numbers, i.e., in t
presence of a large separation between the integral and
sipative scales,L/r d→`:

Sp~r !;S r

L D z~p!

. ~1!

The velocity fluctuations are anomalous in the sense that
z(p) exponents do not follow the celebrated dimensio
Kolmogorov’s predictionz(p)5p/3. In fact, z(p) is ob-
served to be a nonlinear function of its argumentp, which is
interpreted as the most important signature of the interm
tent transfer of fluctuations from large to small scales.

As it is known, the dissipative structure of the Navie
Stokes equations~NS! is not dictated by compelling con
straints on the inertial terms. This raises the question

a!Electronic mail: biferale@roma2.infn.it
1221070-6631/99/11(5)/1221/8/$15.00
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whether or not the statistical properties of fully develop
three-dimensional turbulent flows exhibit a strong dep
dency on the energy dissipation mechanism.

Kolmogorov theory suggests a strong universality
sumption: strong independency of pure inertial range qu
tities on any dissipative mechanism. The theoretical impli
tions of such an assumption are obvious. For instance, s
of the most recent analytical attacks to the intermittency
structure functions assume that the phenomenon is fully c
tured by looking only at the nonlinear terms in the NS equ
tions, at least in the limit of large Reynolds number.2 How-
ever, because of intermittency, one can question
conceptual framework of the Kolmogorov theory and con
quently the strong universality assumption.

Moreover, numerical investigations of turbulent flow
are necessarily restricted to low~moderate! Reynolds num-
bers. Therefore, it is of primary importance to develop so
controllable procedure which minimizes viscous effe
~whenever possible!. In the past, hyperviscosity~high powers
of the Laplacian! has often been employed in order to exte
the inertial range as much as possible. Contradictory cla
have been reported on the influence of the energy dissipa
mechanism on the inertial range dynamics.3–7

An important tool, heavily in use to perform reliabl
high Reynolds simulation, is based on the concept of e
viscosity.1,8,9

In this paper we investigate robustness of the interm
tent inertial properties in the context of simple dynamic
eddy viscosity models. In particular, we present a deta
numerical investigation of such an issue in a class of
namical models of turbulence~shell models! both in the case
where the dynamics is resolved in real and Fourier sp
~tree model!10,11and in the case where only the Fourier spa
is taken into account~standard chain-models12–16!.

In either case, we find strong independence of the in
tial range statistics from the ultraviolet dynamical closu
1 © 1999 American Institute of Physics
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1222 Phys. Fluids, Vol. 11, No. 5, May 1999 Benzi et al.
indicating that most~eventually not all! eddy viscosity mod-
els do not destroy the quantitative and qualitative feature
the inertial range dynamics.

The paper is organized as follows. In Sec. II we intr
duce the main ideas behind eddy viscosity models. In Sec
we introduce the dynamical models we have used in orde
test the dependency of intermittency on eddy viscosities
Sec. IV we discuss the numerical results. Conclusions fol
in Sec. V.

II. EDDY VISCOSITY MODELS

The idea of eddy viscosity was introduced over a cent
ago by Boussinesq and later developed further by G. Ta
and L. Prandtl17 and it builds upon a direct analogy with th
kinetic theory of gas. According to this analogy, the effect
short ‘‘microscopic’’ scales on large ‘‘macroscopic’’ scale
can be likened to a sort of diffusion process characterized
an effective viscosity much larger than the molecular o
Strictly speaking, this is justified only when a sharp sepa
tion between fast and slow modes exists, but it turns out
the analogy proves useful in practice also in situatio
where, in principle, such an assumption would not hold.

By mere dimensional arguments, the effective eddy v
cosity at scaler reads as follows,

nE~r !;r •dv~r !, ~2!

wheredv(r ) is the velocity fluctuation across a distancer
~vector indices are relaxed for simplicity!.

Equation~2! can be also deduced by using the refin
Kolmogorov hypothesis~RKH! as follows. According to
Kolmogorov,1 a simple way to take into account the inte
mittent fluctuations in the inertial range is to define a coar
grained energy dissipatione r(x):

e r~x!5
1

r 3 E
Lr ~x!

e~y! d3y, ~3!

whereL(x) denotes a volume of fluid centered inx.
In terms ofe r one can generalize the Kolmogorov ‘‘4/5

equation by assuming that„d rv(x)…3;r e r .
Now, let us defineD the scale at which we want t

compute the eddy viscosity. At such a scale, one exp
eD5nE(D)„dv(D)/D…

2. By combining these two expres
sions,~2! is readily obtained.

The eddy viscosity is much larger than the molecu
one, which reflects the enhanced mass and momentum t
port observed in turbulent flows.

As it is well known, for most turbulent flows of practica
interest, the dissipative scaleh is far too short to be resolve
by any foreseeable computer. In fact,h scales like L
•Re23/4, L being the outer scale of the flow, and cons
quently the scale separationL/h can easily span three to si
orders of magnitude in practical applications.

Given this state of affairs, subgrid models and larg
eddy simulations~LES! are mandatory. Generally speakin
the common aim of these models is to incorporate the eff
of unresolved scales (r ,D, D being a typical mesh size! on
the resolved ones,r .D.
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One of the simplest and most popular subgrid model
due to Smagorinski,18 which can be derived by~2!.

The idea is to replacer with the mesh sizeD in Eq. ~2!
and subsequently replacedv(D);SD, where~we dispense
from tensor indices for the sake of the argument! S is the
strain tensorS;dv/r evaluated atr 5D.

The result is

nSGS;D2S. ~4!

This expression is less transparent than it looks. In fact,
based on the assumption that the velocity field at the scaD
is smooth enough to allow the definition of the space deri
tive S.

This flies in the face of the fact that, ifD belongs to the
inertial range~as it should for the whole LES procedure
make sense!, the velocity field isknownnot to be differen-
tiable sincedv scales liker 1/3. On account of this, one ex
pectsdv(D)/D to be much larger than the correspondi
ratio evaluated atr 5h ~the only scale where this operatio
is conceptually allowed!. This ‘‘inconsistency’’ is usually
acknowledged by prefactoring the right-hand side of
equation with an empirical coefficientCS smaller than 1,
typically CS;0.12.

Putting all this together, and restoring tensorial indic
the full Smagorinski eddy viscosity reads as

nSMG~x!5CSD2uSu, ~5!

whereSi j 5
1
2(] iuj1] jui) is the large-scale stress tensor a

uSu5(2Si j Si j )
1/2. The Smagorinski model is widely used i

practical engineering applications in spite of its seve
weaknesses. Among these, worth mentioning are~i! the over
damping of resolved scales, and~ii ! the, at least partial, as
sumption of isotropy of the turbulent flows. The former fla
may seriously hinder the development of genui
instabilities,19 while the latter casts doubts on the applicab
ity of the model in the vicinity of walls and solid boundarie
where the dynamics of turbulence is dominated by dir
tional effects.

Another recent development in the area of Smagorin
models is the so-called structure-function eddy viscosity
Lesieur20 and co-workers. The idea is to account for inte
mittency by estimatingdv(r ) with the square root of the
second-order local structure function

dv~r !;S2~r ,x!1/2[^dv~r ,x!2&1/2, ~6!

where the local average is computed with the local ene
spectrumE(k,x,t) according to the Batchelor relation

S2~r ,x!5E E~k,x!
sin~kr !

r
dk. ~7!

The relation ~6! implies a certain degree of arbitrarines
Why not choosedv;S3

1/3 or more genericallySp
1/p with p

any integer? In the absence of intermittency allp’s are
equivalent, but when intermittency is on, every value ofp
would provide a different, yet equally acceptable, answer.
this stage, the specific choice ofp becomes a matter of taste
or, better said, of how much emphasis is to be placed on
most-singular structures~those sampled by highestp’s!. The
correct recipe is probably a weighted average of all poss
ense or copyright; see http://pof.aip.org/about/rights_and_permissions



-

re
th

is

o
w
er
hi
ke
u

th
c

giv

o
lle

e

tio
t

nu

i–

tr
l, a
a

de

kin

c

by

re
s
e
e

that

he

d

-

be
be

f an
ro-

n-

l in

n,
of

nal

1223Phys. Fluids, Vol. 11, No. 5, May 1999 Benzi et al.
p’s, the weighting factor ~most likely a space–time
dependent function! being basically unknown.

Another scenario is to assume that intermittency igno
the details of the dissipation mechanisms, in which case
idea of including intermittency effects on LES models d
solves on its own.

The discussion of the sophisticated developments
LES modeling is beyond the scope of this paper. Here
shall focus exclusively on the specific question of the int
relation between dissipation and intermittency. Tackling t
question within the true three-dimensional Navier–Sto
context is a very daunting task, in view of the enormo
amount of data to be produced and carefully analyzed.

It therefore makes sense to attack the problem within
context of simplified dynamical models sharing as mu
physics as possible with Navier–Stokes equations while
ing away most of its computational complexity.

III. DYNAMICAL MODELS OF TURBULENCE

In the recent years, an interesting vehicle for this kind
investigations has emerged in the form of the so-ca
‘‘shell models.’’12–16

Shell models work on the principle of collapsing th
whole set of degrees of freedom lying in a finite shellkn

,k,kn11 , with kn52nk0 , into a handful~one or two! of
representative modes.

The dynamics of such a low-dimensional representa
is subsequently arranged in such a way as to preserve
nonlinear structure of the NS equations; of course all ge
inely three-dimensional effects are lost in the process.

The most popular shell model is the Gledzer–Ohkitan
Yamada~GOY! model where only one~complex! mode per
shell is used. Recently, a new class of model has been in
duced in which, by allowing two complex modes per shel
second invariant with a close connection to NS helicity c
be defined.

The statistical properties of such a helical shell mo
have been recently explored in depth,16,21 the major finding
being that it possesses a rich physics and it exhibits a stri
similarity ~in a statistical sense! to NS intermittency. Shell
models do nonetheless miss all spatial effects, since they
be regarded as zero-dimensional field models based
space-filling coherent planar waves.

The dynamics of our helical shell model is governed
the following evolution equation:

u̇n
65 ikn~aun11

6 un12
7 1bun21

6 un11
7 1cun21

7 un22
7 !

2Dn
6un

61dn,n0
f 6, ~8!

whereun
6 represent the positive/negative helicity carriers

spectively andf 6 is a large scale forcing. In the previou
equations the termDn

6 is a function which reproduces th
effects of viscous damping at scalen. In the usual case wher
only molecular viscosity,n, is acting we have

Dn
65nkn

2.
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Upon choosinga51, b52 5
12 andc52 1

24, the above equa-
tions are readily shown to conserve the following~energy,
helicity! invariants:

E5 (
n50

N

~ uun
1u21uun

2u2!; H5 (
n50

N

kn~ uun
1u22uun

2u2!.

~9!

Real turbulence consists of localized eddies of all sizes
interact, merge, and break up locally:22 the physical picture
is that of a large eddy which decays into smaller eddies. T
number of degrees of freedom in such a field problem ind
dimensions grows with the wave number asN(k);kd (d
50 in shell models!. The first step in reproducing this kin
of hierarchical structure is to transform achain-model into a
tree-model withd51.10 This is achieved by letting the num
ber of degrees of freedom grow with the shell indexn as 2n.

As in the original shell models, this tree model must
in some sense reminiscent of the NS equations. It can
regarded as describing the evolution of the coefficients o
orthonormal wavelets expansion of a one-dimensional p
jection of the velocity fieldv(x,t):

v~x,t !5(
n, j

v̂n, j~ t !cn, j~x!. ~10!

Herecn, j (x) is a complete orthonormal set of wavelets ge
erated from an analyzing waveletc0,0(x) by discrete trans-
lations and dilatation:

cn, j~x!52n/2c0,0~2nx2 j !. ~11!

Each dynamical variablev̂n, j describes fluctuations in a
box of lengthl n522n, centered in the interval ranging from
( j 21)l n to j l n . At each scalen there are 2n21 boxes, cov-
ering a total lengthLT52n21l n5 1

2 ~see Fig. 1!.
For the sake of convenience we define the tree mode

terms ofdensityvariables,un, j , which would correspond to
ûn, j52n/2v̂n, j in a wavelets expansion. In this notatio
uun, j u2 represents the energy density in a flow structure
length l n522n and spatially labeled by the indexj.

In this tree structure, each variableun, j continues to in-
teract with the nearest and next-nearest levels, as in Eq.~8!;

FIG. 1. A picture of the hierarchical system, covering the one-dimensio
interval @0,LT#.
ense or copyright; see http://pof.aip.org/about/rights_and_permissions
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1224 Phys. Fluids, Vol. 11, No. 5, May 1999 Benzi et al.
however, many possibilities are now opened by the prese
of many horizontal degrees of freedom localized on e
shell.

The simplest choice is depicted in Fig. 2, where a p
tion of the tree structure is shown and the evolving in tim
variable,un, j , is represented by a black ball. In the figur
solid lines connect interacting balls~variables!.

The dynamical tree equations are as follows:

u̇n, j
1 52Dn

1un, j
1 1dn,n0

F1

1 iknH a

4
@un11,2j 21

1 ~un12,4j 23
2 1un12,4j 22

2 !

1un11,2j
1 ~un12,4j 21

2 1un12,4j
2 !#1

b

2
@u

n21,j̄

1

3~un11,2j 21
2 1un11,2j

2 !#1c@u
n22,j%
2

u
n21,j̄

2
#J *

, ~12!

where, in the indexes,j% is the integer part of ((j 13)/4) and
j̄ is the integer part of ((j 11)/2).

Again, in the standard case with only molecular visco
ity we have Dn

65nkn
2. The interaction terms with coeffi

cients a/4, b/2, andc are depicted in Figs. 2 respectivel
The same equation holds, with all helicities reversed,
u̇n, j

2 . The numerical values ofa, b, andc are the same of the
original helical shell.

To make contact with the issue of intermittency
dissipation interrelation, we shall replace the viscous coe
cientsDn

6 of Eqs.~8! and~12! with an ‘‘effective viscosity’’
term,Dn

6 , which now acquires both nontrivial dependenc
on time and shell indexes. It reads for the two cases

Dn
6~ t ![nS~dn,N1dn,N21!

uun
6u

kn
kn

2;

~13!

Dn, j
6 ~ t ![nS~dn,N1dn,N21!

uun, j
6 u

kn
kn

2,

where nS has been empirically chosen of the orderns;1
mainly on account of conceptual simplicity. Again, an a
tempt to match as closely as possible Navier–Stokes pra
would have suggestednS;0.1, but since this prescription i
mostly empirical~as is well known from direct simulation o
turbulent shear flows, the ‘‘constant’’CS is not a constant a
all but must be heavily adjusted close to the walls as wel
in the central region of the flow!, we conclude that the plain
value nS51 meets optimally the criteria of simplicity an
conceptual transparency.

This ‘‘subgrid scale’’ term is clearly patterned after th
simplest NS effective viscosity model. The only difference
that due to the short-range interactions of our shell mod
the subgrid modeling is applied only to the last and last-b
one shellskN , andkN21 .

Our sub-grid closure combines features of the class
Smagorinski large eddy simulation model and the so-ca
hyperviscosity models used in the direct spectral simula
of incompressible turbulence. This is consistent with
double-locality in real and momentum space of the wave
basis functions.
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The two methods are quite different in scope and form
lation: Smagorinski works in real space as a local, dynam
effective viscosity responding to the local stress so as
mimic the effects of unresolved scales on the resolved o
Hyperviscosity is local ink-space, static, and doesnot aim at
representing the effects of unresolved scales, but simpl
reducing the size of the dissipative region so as to take
advantage of the grid resolution.

As far as connections with the NS physics is involve
we remind the reader that it is well known from pseudosp
tral simulations that the effective viscositynE

[T.(k)/k2E(k), where T.(k) is the energy transferred
from wave numberk beyond the cutoffk. , is an increasing
function of the wave numberk. This dependence is reason
ably fitted by a constant plus a power law ink. This suggests
that a Smagorinski-like model~roughly constant ink space!
plus an hyperviscous termk2p p.2 might be a good choice
for a sub-grid scale model.23 Our dissipative term displays
both aforementioned features: hyperviscous behavior refl
into the presence of dissipation only in the last and last-b
one cell ~‘‘cusp-like’’ shape!, whereas a Smagorinski-like
argument is manifestly behind the specific prescription of
dissipative terms, namelyD2S→k22ku(k). The analogy
stops here, though. At variance with real-space Smagorin
we do not haveany dissipation belowkN21 , and differently
from usual hyperviscous operators, we do not have any h
powerk2p. Trying to push this qualitative analogy further,
an attempt to make full contact with Navier–Stokes, wou
be a purposeless, possibly obscuring, exercise since we
well aware that the present shell model does not reprod
the physics of fluids as described by the Navier–Sto
equations.

On the other hand, this qualitative analogy serves w

FIG. 2. Type of interaction@~a!–~c!# for the tree model.
ense or copyright; see http://pof.aip.org/about/rights_and_permissions
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1225Phys. Fluids, Vol. 11, No. 5, May 1999 Benzi et al.
our main purpose, namely asking the question of whethe
not intermittency ‘‘feels’’ the way that energy is dissipate
in the general context of nonlinear dynamical systems w
many degrees of freedom.

IV. RESULTS

As previously observed, the common aim of any turb
lence model or large-eddy simulation is to capture the effe
of unresolved scales on the resolved ones. In practice,
means that once the subgrid model is appropriately tun
the resolved scales should be basically unaffected by
resolution.24

This is indeed the case for our subgrid model. In Fig
we show the energy spectra for the chain model with e
viscosity at three different resolutionsN516,20,24. For the
sake of comparison the case with normal viscosity is a
reported forN516. As a first remark, we note that the pre
ence of the eddy viscosity considerably widens the iner
regime which extends deep down to the last-but-one sh

FIG. 3. Log–log plot of the energy spectra versus the wave number for
chain model with eddy-viscosity at three different resolutionsN516
~pluses!, N520 ~stars!, andN524 ~crosses!. For the sake of comparison th
case with normal viscosity is also reported forN516 ~dotted line!. The
straight line has slope212z2 .
Downloaded 01 Oct 2011 to 130.89.86.11. Redistribution subject to AIP lic
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Moreover, the slope of the spectrum is basically the sa
independent of the number of shells used, which is exa
the property we were looking for.

We note that is not the case with normal viscosi
where, in order to widen the inertial range, it is necessary
lower the value of the viscosity so as to increase the R
nolds number. Of course resolution must be increased
cordingly so as to resolve the dissipative region in order
prevent numerical problems. In order to gain a more qua
tative assessment on the grid independence of our results
shall evaluate the scaling exponentszp up to p58. In Table
I we show the scaling exponents for the chain model w
(zp

S) and without (zp
D) subgrid eddy viscosity~‘‘ S’’ stands

for subgrid and ‘‘D’’ for direct!. The simulation was run
with 16 shells for about 105 eddy turnover time of the larges
scale.

The first remark is that in both cases a significant dep
ture from Kolmogorov K41 law is observed, i.e., the subg
model doesnot destroy intermittency.

More precisely,zp
S andzp

D coincide within statistical er-
ror, which means that intermittency survives and it is ba
cally insensitive to eddy viscosity. The scaling expone
reported in Table I have been computed as a direct fit
structure functions ink space. Statistical accuracy is gene
ally good due to the large number of shells available.

It is nonetheless interesting to note that such an estim
is even more accurate using extended self-similarity~ESS!,
namely by representing thepth-order structure function ver
sus the third-order one. In Fig. 4 we showS6 as a function of
S3 for the casewith andwithout eddy viscosity. As we see
the case of normal viscosity displays two distinct slopes
the inertial and dissipative regimes, whereas with eddy v
cosity this slope is everywhere the ‘‘inertial’’ one.

This suggests that the combined use of LES models
ESS analysis might prove useful for the analysis of scal
exponents in more complex simulations.

We now move on to the discussion of the results w
the tree model.

Before analyzing the results it is worthwhile to point o
that the tree formulation makes more contact with the us
Navier–Stokes Smagorinski eddy viscosity in that it intr

e

TABLE I. Scaling exponents for the chain model with eddy viscosity,zS(p), for N516,20,24 andwith
normal viscosity,zD(p), with N516.

p
zD(p)
N516

zS(p)
N516

zS(p)
N520

zS(p)
N524

1 0.36860.007 0.36760.002 0.36760.002 0.36760.001
2 0.70060.005 0.69960.002 0.69960.002 0.69960.001
3 1.060.0 1.060.0 1.060.0 1.060.0
4 1.27160.007 1.27360.004 1.26860.007 1.27260.003
5 1.5260.01 1.52260.007 1.5060.02 1.51860.008
6 1.7460.02 1.7560.01 1.7160.04 1.7460.02
7 1.9460.04 1.9760.01 1.9060.07 1.9660.02
8 2.1260.05 2.1760.02 2.0860.09 2.1660.03
9 2.2960.08 2.3760.02 2.360.1 2.3660.04

10 2.560.1 2.5760.03 2.460.1 2.5660.04
11 2.660.1 2.7660.04 2.660.1 2.7660.05
12 2.860.2 2.9660.06 2.860.2 2.9660.06
ense or copyright; see http://pof.aip.org/about/rights_and_permissions
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duces a spatial dependence in the model. It is therefor
interest to investigate how this spatial dependence is goin
affect the physical picture described so far.

The physical picture as it comes from the analysis
intermittency in the inertial range is pretty much the same
with the chain model: in particular, intermittency surviv
and shows no dependency on whether a subgrid closu
used or not~see Table II!.

The actual numerical values of the scaling exponents
slightly higher than in the chain case, and this is hardly s
prising since the tree model allows for spatial redistribut
of the energy flow so that spotty events are someh
smeared out.

Refined Kolmogorov hypothesis „RKH…

In a tree structure we may also test the robustness o
RKH. As previously discussed, the RKH links statistic
properties of the energy dissipations,e(r ) averaged on a box
of size r, to the inertial range fluctuations,dv(r ):

e r~x!5
1

r 3 E
Lr ~x!

e~y!d3y;
„dv~r !…3

r
. ~14!

In particular one may therefore write

^e r~x!p/3&;Sp~r !/r p/3. ~15!

FIG. 4. Log–log plot ofS6 versusS3 for the chain model withN516 with
eddy-viscosity~pluses! and without eddy viscosity~crosses!. The straight
line has slopez6 .

TABLE II. Scaling exponents for the tree modelwith eddy viscosityzS(p),
andwithout eddy-viscosity,zD(p).

p zD(p) zS(p)

1 0.34860.005 0.34760.005
2 0.68260.005 0.68160.005
3 1.00 1.00
4 1.30360.006 1.30260.006
5 1.5960.01 1.5960.01
6 1.8660.02 1.8560.02
7 2.1260.03 2.1060.03
8 2.3560.03 2.3260.03
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The first step in constructing the energy dissipation fi
in any tree model10 is to consider the energy dissipationden-
sity, hn, j , in the structure covering the regionL j (n) of
length 22n, centered in the spatial site labeled byj. These
structures are represented by boxes in Fig. 1.

In the case with eddy viscosity we have

hn, j5Dn, j
6 ~ uun, j

1 u21uun, j
2 u2!. ~16!

Let us notice that in the above expression only the last
the last-but-one shells give nonzero contribution, differe
from the case when a molecular viscosity acting on all sca
is considered@the latter would correspond to the choice ofD
instead ofD in Eq. ~16!#.

The total energy dissipation density,e5(1/LT)
3*LT

e(x) dx, where LT is the total space length, is, b
definition, the sum of all these contributions~sum over boxes
at all scales in Fig. 1!:

e5(
n, j

22nhn, j . ~17!

On the other hand, in order to study the scaling prop
ties of the energy dissipation field, one has to disentangl
e the contributions coming from the coarse-grained ene
dissipation fielde r .

In our formulation, we can then rewrite

e5
1

LT
E

LT

e~x!dx5
1

2n21 (
j 51

2n21 S 1

22n E
L j ~n!

e~x! dxD
5

1

2n21 (
j 51

2n21

en, j , ~18!

where the last expression is independent ofn and theen, j ’s
are the coarse-grained energy dissipation densities, obta
as averages over spatial regions of length 22n. Note that the
average densityen, j over L j (n) does not coincide simply
with the density hn, j of the structure living inL j (n),
namely,

en, j5hn, j1 (
m,n

hm,k~m!1 (
m.n

^hm,k~m!& I ~m! . ~19!

Here, in the second~third! term on the rhs we take into
account density contributions coming from larger~smaller!
scale structures~as an example, all regions contributing
the definition ofen, j are represented as shadowed boxes
Fig. 1!. The indexk(m) in the second term on the rhs labe
the location of larger scale structures containing the reg
L j (n) under consideration~shadowed boxes withm,n in
Fig. 1!. In the third term, an average is performed ov
k(m)PI (m), where I (m) labels the set of structures con
tained inL j (n), for anym.n @in Fig. 1, I (m) labels the two
boxes atn11, the four boxes atn12, and so on#.

The best spatially resolved energy dissipation field is
n5N:

eN, j5 (
m<N

hm,k~m! ; j 51,...,2N21. ~20!
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In Fig. 5, the instantaneous values assumed byeN, j in
the NT/2532 768 locations of the last level are shown. T
chaotic, intermittent character of this spatial signal is e
dent.

In Table III we show that the RKH is still well verified
also in the subgrid modeling picture, proving to be a rob
and nontrivial property connecting small scales and iner
range scales in turbulent flows.

V. CONCLUSIONS

Summarizing, we have presented a detailed study of
namical eddy viscosity models in chain and tree shell mod
of fluid turbulence.

The main goal was to check whether or not the iner
range properties are affected by the way the flow dissip
energy. We found a strong robustness of inertial range in
mittency once the proposed eddy viscosity model is imp
mented in our shell models.

The eddy viscosity closure that we have adopted m
also be regarded as a multiplicative closure of the small-s
equations of motion, i.e., it is tantamount to assuming t
un11;an11,n•un with an appropriate multiplicative random
coefficientan11,n . The fact that intermittency is not affecte
by the details of the eddy-viscosity models indicates that

FIG. 5. Instantaneous configuration of the coarse-grained energy dissip
density field,eN j , over the last level sites.

TABLE III. Slope, x(p), of the log–log plot of Eq.~15! for the tree model
for p51,...,10. Notice that whenx(p)51 the RKH is verified.

p x(p)

1 1.0060.02
2 1.00160.008
4 1.00060.007
5 1.00060.01
6 1.0060.02
7 1.0160.03
8 1.0260.04
9 1.0260.06

10 1.0260.07
Downloaded 01 Oct 2011 to 130.89.86.11. Redistribution subject to AIP lic
-

t
l

y-
ls

l
es
r-
-

y
le
t

e

tuning of the coefficients in front to the eddy-viscosity ter
is probably not demanded. Nevertheless, oversimplified e
viscosity models based only on dimensional analysis wo
probably fail on the same goal, due to their inability to d
sipate violent intermittent bursts.

Moreover, the usual phenomenological RKH whic
links energy dissipation statistics with inertial range prop
ties is also largely unaffected by this kind of modelin
Whether the same universality is present in real Navie
Stokes equations is still a matter of debate in the scien
community.3,4,7 Certainly, in order to properly test this que
tion it is always necessary to have a fine resolution of
smallest resolved scales and, more important, a deta
study of the dependence on finite Reynolds effects. Inde
in many cases, bottleneck phenomena close to the sub
modeling scales may arise.25 These bottleneck effects ma
introduce a finite-Reynolds bias which could lead to erro
ous conclusions on the dependence of inertial range stati
on eddy viscosity or hyperviscosity modeling.

The problem of coherent structure should be carefu
addressed in NS equations, especially in cases of nonho
geneous and nonisotropic turbulence. This kind of flow c
not be easily investigated by using surrogates as ‘‘shell m
els.’’ In these cases also nonlocal interactions may play so
major role in determining overall statistical properties of t
flow. Such questions are beyond the main purpose of
work.
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