
Physica D 127 (1999) 187–197

Multi-time, multi-scale correlation functions in turbulence
and in turbulent models

L. Biferalea,∗, G. Boffettab, A. Celanic, F. Toschid
a Dipartimento di Fisica, Universit̀a“Tor Vergata”, Via della Ricerca Scientifica 1, I-00133 Roma, and INFM, Unità di Tor Vergata, Italy
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Abstract

A multifractal-like representation for multi-time, multi-scale velocity correlation in turbulence and dynamical turbulent
models is proposed. The importance of subleading contributions to time correlations is highlighted. The fulfillment of the dy-
namical constraints due to the equations of motion is thoroughly discussed. The predictions stemming from this representation
are tested within the framework of shell models for turbulence.c©1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Turbulent flows are characterized by a highly chaotic and intermittent transfer of velocity fluctuations from the
stirring length,outerscale,L0, down to the viscous dissipation length,innerscale,ld . The Reynolds number defines
the ratio between the outer and the inner scales:L0/ld = Re3/4. We talk about fully developed turbulent flows in
the limit Re → ∞, in this limit it is safely assumed that there exists an inertial range of scales,ld � r � L0,
where the dynamics is dominated by the inertial terms of the Navier–Stokes equations.

The highly chaotic and intermittent transfer of energy leads to non-trivial correlation among fluctuations of the
velocity fields at different scales and at different time-delays [1].

The natural set of observable which one would like to control are the following:

Cp,q(r, R|t) = 〈δvp
r (t) · δv

q
R(0)〉 (1)
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whereδvr(t) = v(x + r, t) − v(x, t) andld � r < R � L0. In (1) we have, for the sake of simplicity, neglected
the vectorial and tensorial dependencies in the velocity fields and velocity correlations, respectively.

It is important to point out that the time dependence of correlations as (1) is trivial whenever the velocity difference
is computed in the laboratory frame of reference. In this case, the major effect is due to the sweeping of small-scale
eddies by large-scale ones, which leads to correlation times scaling asR/δvL0. The behavior of time correlations in
the laboratory frame bears thus no relation to the “true” dynamical time-scale,τR ∼ R/δvR, which is associated to
the energy transfer. To bypass this problem one has to get rid of the sweeping: this can be accomplished by moving
to a reference frame attached to a parcel of fluid in motion, the Quasi-Lagrangian frame of reference [2]. It can be
shown that single-time correlations of velocity differences in the Quasi-Lagrangian reference frame are the same
as those in the laboratory frame, as a consequence of statistical time stationarity. Hereafter, we shall always refer to
velocity differences in the Quasi-Lagrangian frame.

As a consequence of having eliminated the sweeping effects from the many time statistics, every phenomenological
description that applies to fully developed Navier–Stokes turbulence can be straightforwardly abridged to make it
applicable to shell models of turbulence (for a recent review see [11]). Shell models in this sense can be viewed as
a shorthand of Navier–Stokes equations in the Quasi-Lagrangian frame of reference.

Some subclasses of the multi-scale, multi-time correlation functions (1) have lately attracted the attention of
many scientists [2–4,6,8,10]. By evaluating (1) withr = R, at changingR, and at zero-time delay,t = 0, we have
the celebrated structure functions of orderp + q. Further, we may also investigate multi-scale correlation functions
when we have different lengths involvedr 6= R at zero delay,t = 0 as well as single-scale correlation functions by
fixing r = R at varying time-delayt etc.

Structure functions have been, so far, the most studied turbulent quantities (see [1] for a recent theoretical and
experimental review). On the other hand, only recently some theoretical and experimental efforts have been done
in order to understand the time properties of single-scale correlations,Cp,q(r, r |t) [3,10] and the scaling properties
of multi-scale correlations at zero-time delay,Cp,q(r, R |0) [2,4–7].

In this paper, we propose and check a general phenomenological framework capable to capture all the above
mentioned correlation functions and in agreement with the typical structure of non-linear terms of Navier–Stokes
equations. In Section 2, the framework of the multifractal description of correlations is briefly recalled and critically
examined. In Section 3, a representation for single-scale time correlations is introduced. In Section 4, we deal with
the most generic two-scales time correlation. In Section 5, the phenomenological description proposed for fully
developed Navier–Stokes turbulence is abridged for application to shell models of turbulence and its predictions
are compared with the numerical results.

2. Background: the multifractal description of time correlations

One of the most important outcomes of experimental and theoretical analysis of turbulent flows is the spectacular
ability of simple multifractal phenomenology [1,9] to capture the leading behavior of structure functions and of
multi-scale correlation functions at zero-time delays [4,2,6]. This may appear not surprising because, as far as time-
delays are not concerned, one may expect that (many) different phenomenological descriptions may well reproduce
scaling laws typical of single-time correlation functions: multifractals being just one of these descriptions. More
striking were the recent findings [3] that multifractal phenomenology may easily be extended to the time-domain
such as to give a precise prediction on the behavior of the time properties of single-scale correlations. As soon as
time enters in the game, one must ask consistency with the equation of motion: the major break-through was that
one may write a time-multifractal description in agreement with the dynamics. We recall once more that when we
refer to time-properties of turbulent flows we always mean the time-properties of the velocity fields once the trivial
sweeping effects of large-scale on small-scales is removed.

Let us now quickly enter into the details of previous findings in order to clarify both the phenomenological
framework and the notation that we will use in the following.
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We remind that the multifractal (Parisi–Frisch) [9] description of single-time correlation functions is based on the
assumptions that inertial range statistics is fully determined by a cascade process conditioned to some large-scale
configuration:

δvr = W(r, R) · δvR, (2)

where the fluctuating functionW(r, R) can be expressed in terms of a superposition of local scaling solution
W(r, R) ∼ (r/R)h(x) with a scaling exponenth(x) which assumes different values ofh in a class of interwoven
fractal sets with fractal co-dimensionZ(h) = 3 − D(h). From this assumption, one can write the expression for
any structure functions of orderm, which in our notation (m = p + q) becomes

Sm(R) ≡ Cp,q(R, R|0) ∼ 〈W(R, L0)
m〉〈Um

0 〉, (3)

Sm(R) ≡ 〈Um
0 〉

∫
dµR,L0(h)

(
R

L0

)hm

∼
(

R

L0

)ζ(m)

, (4)

where we have introduced the shorthand notation dµR,L0(h) ≡ dh (R/L0)
Z(h) to define the probability of having a

local exponenth connecting fluctuations between scalesR andL0. Hereafter, as before, “∼” means “equal within a
scale independent constant”. In (4) a steepest descent estimate was used, in the limitR/L0 → 0, in order to define the
intermittent scaling exponentsζ(m) = inf h[Z(h)+mh]. The signature of intermittency is the departure of theζ(m)

exponents from a linear behavior inm. In order to extend this description to the time-domain, it has been proposed
[3] to consider that two velocity fluctuations, both at scaleR but separated by a time-delayt , can be thought to be
characterized by the same fragmentation processWR,L0(t) ∼ WR,L0(0) as long as the time separationt is smaller
than the “instantaneous” eddy-turnover time of that scale,τR, while they must be almost uncorrelated for time larger
thanτR. Considering that the eddy-turnover time at scaleR is itself a fluctuating quantityτR ∼ R/(δvR) ∼ R1−h,
we may write down [3]:

Cp,q(R, R|t) ∼
∫

dµR,L0(h)

(
R

L0

)h(p+q)

Fp,q

(
t

τR

)
, (5)

where the time-dependency is hidden in the functionFp,q(x) which must be a smooth function of its argument (for
example a decreasing exponential). From (5) it is straightforward to realize that at zero-time separation we recover
the usual structure function representation. It is much more interesting to notice that (5) is also in agreement with
the constraints imposed by the non-linear part of the Navier–Stokes equations. Indeed, to make short a long story
(see [10] for a rigorous discussion) we may say that under the only hypothesis that non-linear terms are dominated
by local interactions in the Fourier space we can safely assume that as far as power-law counting is concerned the
inertial terms of Navier–Stokes equations for the velocity differenceδvR can be estimated to be of the form

∂t δvR(t) ∼ O

[
(δvR(t))2

R

]
, (6)

and, therefore we may check that

∂tC
p,q(R, R|t) ∼

∫
dµR,L0(h)

(
R

L0

)h(p+q)

(τR)−1F ′
p,q

(
t

τR

)
∼ Cp+1,q(R, R|t)

R
, (7)

where of course in the last relation there is hidden the famous closure-problem of turbulence, now restated in term of
the relation:d

dt
Fp,q(t) ∼ Fp+1,q(t). Let us therefore stress that we are “not solving turbulence” but just building up

a phenomenological framework where all the leading (and subleading, see below) scaling properties are consistent
with the constraints imposed by the equation of motion.1

1 In order to really attack the NS equations in this framework one should dive into the structure of theFpq -functions in great detail: a problem
which seems still to be far from convergence [10].
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In the following we shall show how the representation (5) must be improved to encompass the most general
multi-time, multi-scale correlationCp,q(r, R|t).

3. Single-scale time correlations

We shall first show in which respect expression (5) may not be considered a satisfactory representation of
single-scale time correlation. The first comment that can be raised about (5) is that it misses important subleading
terms which may completely spoil the long-time scaling behavior: indeed, the main hypothesis that correlation
Cp,q(R, R|t) feels only the eddy-turnover time of the scaleR is too strong. It is actually correct only when the
correlation function has zero disconnected part, i.e. when limt→∞〈δvp

R(0)δv
q
R(t)〉 ≡ 0 which is certainly false in the

most general case. The problem is not only limited to the necessity of taking into account the asymptotic mismatch
to zero given by the disconnected terms,〈δvp

R〉〈δvq
R〉, – which would be a trivial modification of (5) – because as

soon as the disconnected part is present the whole hierarchy of fluctuating eddy-turnover times from the shortest,
τR, up to the largest,τL0, must be felt by the correlation.

Let us, for the sake of simplicity, introduce a hierarchical set of scales,ln = 2−nL0 with n = 0, . . . , nd , which
span the whole inertial range and let us simplify the notation by takingL0 = 1 and by writingun = δvr in order to
refer to a velocity fluctuation at scaler = ln.

More precisely, we can perform a wavelet decomposition of the field of velocity differences in a Quasi-Lagrangian
frame of reference: thenun stands for a representative of the wavelet coefficients at the octaven.

The picture which will allow us to generalize the time-multifractal representation to the multi-time, multi-scale
case goes as follows.

For time-delays,t ∼ τm, typical of the eddy-turnover time of themth scale we may safely say that the two velocity
fluctuations follow the same fragmentation process from the integral scaleL0 down to scalelm while they follow
two uncorrelated processes from scalelm down to the smallest scale in the process,ln. In the multifractal language
we must write that for timet ∼ τm we have

un(0) ∼ W ′
n,m(0)Wm,0(0)u0(0) ∼

(
ln

lm

)h′ (
lm

L0

)h

u0(0), (8)

un(t) ∼ W ′′
n,m(t)Wm,0(t)u0(t) ∼ W ′′

n,m(t)Wm,0(0)u0(0) ∼
(

ln

lm

)h′′ (
lm

L0

)h

u0(0), (9)

where withW, W ′, W ′′, . . . we mean different independent outcomes of the cascade process with exponentsh, h′, h′′
and where we have used the fact that in this time-windowWm,0(t) ∼ Wm,0(0).

Apart from subtle further-time dependencies (see below) we should therefore conclude that for timet ∼ τm the
correlation functions may be approximated as

C
p,q
n,n (τm) ∼ 〈Wp

n,m〉〈Wq
n,m〉〈Wp+q

m,0 〉, (10)

which must be considered the fusion-rules prediction for the time-dependent fragmentation process [4,2,6]. Let us
notice that this proposal has already been presented in [8] and considered to express the leading term in the limit
of large time-delaysτm → ∞; here, we want to refine the proposal made in [8] showing that by adding the proper
time-dependencies it is possible to obtain a coherent description of the correlation functions for all time-delays.
Expression (10) summarizes the idea that for time-delay larger thanτm but smaller thanτm−1, velocity components
with support on scalesr > lm−1 did not have enough time to relax and therefore the local exponent,h, which
describes fluctuations on those scales must be the same for both fields. On the other hand, components with support
on scalesr < lm−1 have already decorrelated fort > τm−1 and therefore we must consider two independent scaling
exponentsh′, h′′ for describing fluctuations on these scales.
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Adding up all these fluctuations, centered at different time-delays, we end with the following multifractal repre-
sentation forCp,q(ln, ln|t) ≡ C

p,q
n,n (t):

C
p,q
n,n (t) =

∫
dµn,0(h)l

(q+p)h
n Fp,q

(
t

τn

)

+
n−1∑
m=1

∫
dµm,0(h)dµn,m(h1)dµn,m(h2)

(
lm

L0

)(q+p)h (
ln

lm

)qh1
(

ln

lm

)ph2

fp,q

(
t

τm

)
. (11)

Let us now spend a few words in order to motivate the previous expression. In the first term of the R.H.S. of (11) we
have explicitly separated the only contribution we would have in the case of vanishing disconnected part. This term
remains the leading contribution in the static limit (t = 0) also when disconnected parts are non-zero. About the
new terms controlling the behavior of the correlation functions for larger time the most general dependency should
include in the arguments offp,q also the ratios(ln/ lm)1−h1 and(ln/ lm)1−h2. In first approximation, we assume
the simplified dependence in (11) withfp,q(x) being a function peaked at its argumentx ∼ 0(1) which must be
exactly zero forx = 0 and different from zero only in a interval of widthδx ∼ O(1).

Let us now face the consistency of the representation (11), with the constraint imposed by the equations of
motion. By applying a time-derivative to a correlationC

p,q
n,n (t) one produces a new correlation with by-definition

zero-disconnected part, whose representation has thus no subleading term(fp,q ≡ 0). When performing the time-
derivative on both sides of (11) it is evident that – in order to accomplish the dynamical constraints – all the
derivatives of the subleading terms must sum to a zero contribution.

This is the first non-trivial result we have reached until now. If our representation (11) is correct, we claim that
all eddy-turnover times must be present in the general single-scale correlation functions but strong cancellations of
all subleading terms must take place whenever disconnected contributions vanish.

Let us finally notice that for time-delays larger than the eddy-turnover time of the integral scale we should add
to the RHS of (11) the final exponential decay toward the full disconnected term〈up

n 〉〈uq
n〉.

4. Two-scales time correlations

Let us now jump to the most general multi-scale, multi-time correlation functions:

Cp,q(r, R|t) = 〈δvq
R(0) · δv

p
r (t)〉, (12)

where from now on we will always suppose thatδvr describes the velocity fluctuation at the smallest of the two
scales considered, i.e.r < R. It is clear that now we have to consider the joint statistics of two fields: first, the
slower, at large-scale,δvR(0) and second, the faster, at small-scale and at a time-delayt, δvr (t).

As done in the previous section, we shall use an octave-based notationun = δvR anduN = δvr , where it is
understood thatr = 2−NL0 andR = 2−nL0 (with N > n), denotingCp,q(r, R|t) ≡ C

p,q
N,n(t).

Following the same reason as before we may safely assume that from zero time-delays up to time delays of the
order of the slower component,t ≤ τn, the velocity field at small-scale feels the same transfer process ofun up to
scalen and then from scalen to scaleN an uncorrelated transfer mechanism:

uN(t) = WN,n(t)un(t) ∼ WN,n(t)un(0) ∼ WN,n(t)W
′
n,0(0)u0 for 0 ≤ t ≤ τn. (13)

Similarly, for time-delays withinτn ≤ τm < t < τm−1 ≤ τ0 also the field at large-scalen will start to see different
transfer processes:

un(0) ∼ W ′′
n,m(0)um(0) ∼ W ′′

n,m(0)W ′
m,0(0)u0, (14)

uN(t) ∼ WN,m(t)um(t) ∼ WN,mum(0) ∼ WN,m(t)W ′
m,0(0)u0. (15)
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It is clear now, how we may write down the correlation for any time:

C
p,q
N,n(t) =

∫
dµn,0(h)dµN,n(h1)

(
ln

L0

)(q+p)h (
lN

ln

)ph1

Fp,q

(
t − τnN

τn

)

+
n−1∑
m=1

∫
dµm,0(h)dµn,m(h1)dµN,m(h2)

(
lm

L0

)(q+p)h (
ln

lm

)qh1
(

lN

lm

)ph2

fp,q

(
t

τm

)
(16)

whereτnN ' τn − τN represents the time-delay needed for an energy burst to travel from shelln to shellN and the
functionsFp,q(x) andfp,q(x) are defined in the same way as done for (11).

Let us observe that the sum in the above expression goes only up to the index of the largest scalen: this is because
only for time larger thanτn the correlation is a true multi-time correlation. Indeed, for time-delay shorter thanτn

only the field at small-scale,uN , is changing but always under the same large-scale configuration,un.
Let us stress that in generalFp,q andfp,q should depend on all the time-scale ratios into the game:(ln/ lm)1−h1,

(lN/lm)1−h2. We have here assumed that in first approximation the main effect of the asymmetry inn, N is a delay
in the propagation of the correlation. Other, more complex functional dependences are possible but we think that it
would be very difficult to discriminate between them.

The matching of representation, (16), with the equation of motion reveals some important dynamical properties.
From simple time-differentiation we should have

∂tC
p,q
N,n(t) ∼ O

[
C

p+1,q
N,n (t)

lN

]
, (17)

which seems to be in disagreement with the time-representation proposed (16) because in the RHS of (17) does
appear explicitly the fast eddy-turnover timeτN (through the dependency fromlN ). Actually, the representation
(16), is still in agreement with the equation of motion because the dependency of (17) fromτN is false: again, exact
cancellations must take place in the RHS. The explanation goes as follows: in the multifractal language we may
write uN(t) = WN,n(t)un(t), and therefore,

d

dt
uN(t) =

(
d

dt
WN,n(t)

)
un(t) + WN,n(t)

(
d

dt
un(t)

)
, (18)

but for time shorter than the eddy-turnover of the large-scaleτn, the termWN,n(t)
(

d
dt

)
un(t) is zero because the

shellun did not move at all, while, once averaged, the first term of the RHS of (18) becomes
〈(

d
dt

WN,n(t)
)〉

〈un(t)〉
which also vanishes because of the total time-derivative. The time-derivative,∂tC

p,q
n,N (t) will therefore be a function

which scales asCp,q+1
N,n (t)/ ln instead ofCp+1,q

N,n (t)/ lN as simple power counting would predict. This may even be
shown rigorously by evaluating the following averages:

∂t 〈uq
n(t)u

p
N(t)〉 ≡ 0 ≡ 〈(∂tu

q
n)u

p
N 〉 + 〈uq

n(∂tu
p
N)〉. (19)

The previous exact relation forces one of the two correlation to not satisfy the simple multifractal ansatz because
otherwise power-law counting would be contradictory:

〈(∂tu
q
n)u

p
N 〉 ∼ C

p,q+1
N,n (0)

ln
6= 〈uq

n(∂tu
p
N)〉 ∼ C

p+1,q
N,n (0)

lN
. (20)

Now, in view of the previous discussion, we know that it is the correlation with the time-derivative at small-scale,
〈uq

n(∂tu
p
N)〉, which does not satisfy the multifractal power-law, but has the same scaling of〈(∂tu

q
n)u

p
N 〉 as our

representation correctly reproduces.
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5. Shell models

In order to check the representations (11) and (16) we have performed numerical investigations in a class of
dynamical models of turbulence (shell models) [11]. Within this modeling the approximation of local-interactions
among velocity fluctuations at different scales is exact and therefore no-sweeping effects are present. This fact
makes of shell models the ideal framework where non-trivial temporal properties can be investigated.

We shall adopt the following dynamical equations for the complex shell variablesun (further details on these
model equations are given in Ref. [12])

dun

dt
= ikn(un+2u

∗
n+1 − 1

4
un+1u

∗
n−1 + 1

8
un−1un−2) − νk2

nun + fn. (21)

Shell variablesun are meant to represent velocity fluctuationsδvR at scaleR = 2−nL0 = k−1
n . The total number

of shells in our simulations is 24. Forcing is restricted to the first and second shell and the viscosity coefficient is
ν = 5×10−7 corresponding to a Reynolds numberRe ' 108. A statistically steady state is reached after a transient
of a few large eddy-turnover times, and then time-averages are computed over several eddy-turnover times.

5.1. Single-scale time correlations

In order to test the dependency of (11) from the whole set of eddy-turnover times we show in Fig. 1 the corre-
lation C

p,q
nn (t) for two cases with and without disconnected part. As it is evident, the correlation with a non-zero

disconnected part decays in a time-interval much longer than the characteristic time of the shellτn. This shows that
it is not possible to associate a single time-scaleτn to the correlation functions of the form (11). In Fig. 2, we also
compare the correlation when one of the two observable is a time-derivative with the correlation chosen such as to
have the same dimensional properties but without being an exact time-derivative. Also in this case the difference is
completely due to the absence (presence) of all subleading terms in the former (latter).

Fig. 1. The time-dependency of single-scale correlation functions,C1,1
n,n(t), in two different cases. The continuous line is the case with a non-zero

disconnected part,〈|un(0)‖un(t)|〉 − 〈|un|〉2, while the dashed line represents a case with vanishing disconnected partR(〈un(0)u∗
n(t)〉). Both

correlations are rescaled to their value att = 0. The scale is fixed in the middle of the inertial range,n = 12, and the eddy-turnover time of the
reference scale wasτ12 ' 0.29. The average has been performed over approximately 500τ12, about 10 large eddy-turnover times. The presence
of subleading terms in the first case (continuous line) is apparent. The remnant anticorrelation in the second case, fort > τ12, reveals a partial
cancellation of subleading terms: full cancellation requires averaging over a time interval of many more large eddy-turnover times.
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Fig. 2. Comparison between the two correlationskn〈|un(0)|2 |un(t)|3〉, continuous line.−〈|un(0)|2 d|un(t)|2/dt〉, dashed line. The two correla-
tions have the same dimensional properties, but the latter decays faster due to cancellations of subleading terms. It vanishes at zero delay because
of stationarity and smoothness of the processun(t). Scale and characteristic times as in Fig 1.

5.2. Intermittent integral time-scales

In the case when the disconnected part of the time correlation is absent, in the representation (11) all the subleading
terms mutually cancel, letting the fully-connected contribution alone.

Under this condition and in presence of intermittency one expects anomalous scaling behavior for the integral
time-scales,s(p,q)(R), characterizing the mean decorrelation time of fluctuations at scaleR, defined as [3]:

s(p,q)(R) =
∫ ∞

0 dt Cp,q(R, R|t)
Cp,q(R, R|0)

, (22)

exploiting the multifractal representation (11) it is easy to show that

s(p,q)(R) = s(p+q)(R) ∼
(

R

L0

)z(p+q)

, (23)

where the exponentsz(m) are fully determined in terms of the intermittent spatial scaling exponents:z(m) =
1 + ζ(m − 1) − ζ(m).

This prediction in practice is very difficult to check: indeed full cancellation of the subleading terms requires an
extremely long time span, and since the cancellations affect dramatically the convergence of the time integral there
is no chance of measuring with sufficient precision thez(m) exponents.

In order to bypass this problem we devised an alternative way to extract the integral times. We introduce fluctuating
decorrelation times at a scaleR, defined as the time intervalTi in which the instantaneous value of the correlation
has changed by a fixed factorλ, i.e. in our octave notation:

un(ti)un(ti + Ti) = λ±1|un(ti)|2. (24)

At time ti+1 = ti + Ti we repeat this procedure and we record the new decorrelation timeTi+1 and so forth for an
overall number of trialsN . The averaged decorrelation times can be thus defined as

τ (m)
n = 〈T 2|un|m〉e/〈T |un|m〉e = 〈T |un|m〉t /〈|un|m〉t ,
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Table 1
Comparison between the integral time-scales intermittency exponents,zm, estimated
from the measured spatial intermittent exponents,z

(th)
m = 1 + ζ(m − 1) − ζ(m), and

from direct measuring via the “doubling-time”T , z
(num)
m

m ζm z
(num)
m (z

(th)
m )

1 0.39 0.61(0.61)
2 0.72 0.68(0.67)
3 1.00 0.72(0.72)
4 1.26 0.75(0.74)
5 1.49 0.77(0.78)
6 1.71 0.78(0.78)
7 1.93 0.80(0.80)
8 2.13 0.80(0.80)

Fig. 3. Multi-time multi-scale correlation functions,C
1,1
n,N (t), for n = 6 andN = 6, . . . , 13 (from bottom curve to top curve). Observe the

saturation in the time-delays,τn,N ≡ τn − τN → τn whenN increases.

where〈· · · 〉e stands for ensemble averaging over theN trials and〈· · · 〉t represents the usual time average,2 . Since
the multifractal description applies to time averages the averaged decorrelation times scale asτ

(m)
n ∼ l

z(m)
n with the

same scaling exponents of the integral timess
(m)
n .

In Table 1, we report the observed numericalζ(m) along with the observed and expected scaling exponents for
τ

(m)
n , showing a very good agreement.

5.3. Two-scales time correlations

In order to test the representation (16) we plot in Fig. 3 the typical multi-time, multi-scale velocity correlation
C

p,q
N,n(t) for p = q = 1, n = 6, N = 6 − 13. As one can see the correlation has a peak which is in agreement with

the delay predicted by (16), which saturates at the valueτnN ' τn for n � N .
Let us also notice that due to the dynamical delay,τm,N , the simultaneous multi-scale correlation functions

C
p,q
N,n(0) do not show the fusion-rules prediction, i.e. pure power laws behaviors at all scales:

C
p,q
N,n(0) ∼ S

p
N

S
p
n

S
p+q
n ∼

(
lN

ln

)ζ(p) (
ln

L0

)ζ(p+q)

, (25)

2 The relation between thee-average and thet-average is simply derived by observing that〈|un|mT 〉t = (
∫ T

0 T |un|mdt)/T ' (
∑

iT
2
i

|un(ti )|m)/(
∑

iTi ) = 〈T 2|un|m〉e/〈T 〉e.
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Fig. 4. Lin-log plot of Multi-scale correlationC1,1
n,N (t) = 〈|un(0)| |uN(t)|〉 rescaled with the Fusion Rule prediction:C

1,1
n,N (t)/(S1

NS2
n/S1

n) at fixed
n = 6 and at changingN ≥ n. The lower line represents the zero-delay correlation (t = 0), the upper line is for the average delayt = T6,N .

whereS
p
n ≡ 〈|un|p〉 is thepth order structure function. As a matter of fact fort → 0, only the first term on the

RHS survives in (16) andFp,q(−τnN/τn) can be considered a constant only in the limit of large scale separation,
n � N , while otherwise we will see finite-size corrections.

The effect of the delay in multi-scale correlations is shown in Fig. 4, where we compareC
1,1
N,n(0) andC

1,1
N,n(TnN)

(for N > n = 6) rescaled with the Fusion Rule prediction (25). The time-delayTnN is the time of the maximum of
C

1,1
N,n(t) computed from Fig. 3. We see that without delay, the prediction (25) is recovered only forN � n with a

scaling factorF1,1(−1) ' 0.83, while including the average delayTnN the Fusion Rule prediction is almost verified
over all the inertial range.

Of course the delayτnN is a fluctuating quantity and one should compute the average (16) with fluctuating delays.
In this case the dimensional estimateτnN = lnu

−1
n − lNu−1

N is somehow ill-defined, first of all being not positive
definite. To find a correct definition for the fluctuating time-delays is a subtle point which lays beyond the scope of
the present Paper.

6. Conclusions

In conclusion, we have proposed a multifractal-like representation for the multi-time, multi-scale velocity corre-
lation which should take into account all possible subtle time-dependencies and scale-dependencies. The proposal
can be seen as a merging of the proposal made in [3] – valid only for cases when the disconnected part is vanishing
– and the proposal made in [8] – valid only in the asymptotic regime of large time-delays and large-scale separation.
Our proposal is phenomenologically realistic and consistent with the dynamical constraints imposed by the equation
of motion. We have numerically tested our proposal within the framework of shell models for turbulence. A new
way to measure intermittent integral-time scales,s(p,q)(R), has also been proposed and tested.

Further tests on the true Navier–Stokes equations would be of first-order importance. Furthermore, the building
of synthetic signals which would reproduce the correct dynamical properties of the energy cascade would also be
of primary importance [13].
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