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Abstract

We present an investigation ofε-entropy,h(ε), in dynamical systems, stochastic processes and turbulence. This tool allows
for a suitable characterization of dynamical behaviours arising in systems with many different scales of motion. Particular
emphasis is put on a recently proposed approach to the calculation of theε-entropy based on the exit-time statistics. The
advantages of this method are demonstrated in examples of deterministic diffusive maps, intermittent maps, stochastic self- and
multi-affine signals and experimental turbulent data. Concerning turbulence, the multifractal formalism applied to the exit-time
statistics allows us to predict thath(ε) ∼ ε−3 for velocity–time measurement. This power law is independent of the presence
of intermittency and has been confirmed by the experimental data analysis. Moreover, we show that theε-entropy density of
a three-dimensional velocity field is affected by the correlations induced by the sweeping of large scales. © 2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Many sciences, ranging from geophysics to economics, share the crucial problem of extracting information about
the underlying dynamics of a system through the analysis of data time series [1]. In these investigations, a central
role is played by the evaluation of the complexity degree of a string of data as a way to probe the underlying
dynamics [2,3]. Since the pioneering works of Shannon on information theory [4,5], entropy has been proposed as
the proper mathematical tool to quantitatively address such a question. Nowadays, entropy constitutes a key-concept
to answer questions ranging from the more conceptual aim to distinguish a pure stochastic evolution from a chaotic
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deterministic one to the more applied goal of quantifying the degree of predictability at varying the space–time
resolution [6–11]. The latter question is evidently of primary importance, e.g., to set the proper resolution of the data
accumulation rate in experimental settings or to efficiently compress data which have to be stored or transmitted.

The distinction between stochastic and deterministic chaotic evolution can be formalized by introducing the
Kolmogorov–Sinai (KS) entropy,hKS [12,13]. Let us consider a time seriesxt (with t = 1, . . . , T ) where, for
simplicity, the time is discretized butxt is a continuous variable. By defining a finite partition of the phase-space,
where each element of the partition has diameter smaller thanε, and by recording for eacht the symbol (letter)
identifying the cellxt belongs to, one can code the time series into a sequence of symbols out of a finite alphabet.
Then, from the probabilities of words of lengthm (m-words) one can compute them-block entropy. Finally, one
measures the information-gain in going fromm-words to(m+1)-words: in the limit of infinitely long words (m →
∞) and of arbitrary fine partition (ε → 0) one obtainshKS, i.e. an entropy per unit time [6]. Naturally, this limit
cannot be carried out for any real data due to the finite sampling time and resolution of any experimental set-up. The
value ofhKS characterizes the process which has generated the time series. For example, in a continuous stochastic
evolution, which reveals more and more unpredictable outcomes at increasing the resolution, the KS-entropy is
infinite. On the other hand, a regular deterministic signal is characterized by a zero KS-entropy, since it is completely
predictable after a finite number of observations, at any given resolution. Between these two limiting cases, a finite
positive value ofhKS is the signature of a deterministic chaotic dynamics. The KS-entropy measures the growth
rate of unpredictability of the evolution, which coincides with the rate of information acquisition necessary to
unambiguously reconstruct the signal. However, the distinction between chaotic and stochastic dynamics can be
troublesome in practical application (see [11] for a related discussion). Indeed, only in simple, low-dimensional,
dynamical systems thehKS evaluation can be properly carried out. As soon as one has to cope with realistic systems,
e.g., geophysical flows, the number of degrees of freedom is so large that it inhibits any definite statement based
on the KS-entropy evaluation. Moreover, even if one were able to compute the KS-entropy of those systems, many
interesting features cannot be answered by only knowinghKS. As a relevant example we mention the case of
turbulence, the dynamics of which is characterized by a hierarchy of fluctuations with different characteristic times
and spatial scales [14]. In this respect the KS-entropy is related only to the fastest timescale present in the dynamics.
Therefore, to quantify the predictability degree or entropy production, respectively, depending on the analysed
range of scales and frequencies, we need a more general tool [8–10,15]. In order to make a step to overcome
these difficulties, we consider a scale-dependent quantity, namely theε-entropy,h(ε), originally introduced by
Shannon [4,5] and Kolmogorov [16,17] to characterize continuous processes. It is remarkable that, in spite of its
deep relevance for the characterization of stochastic processes and non-trivial dynamical systems, theε-entropy is
not widely used in the physical community. Only recently, mainly after the review paper of Gaspard and Wang [8]
and the introduction of the finite size Lyapunov exponent [9,10], there appeared some attempts in the use of the
ε-entropy. For this reason, in Section 2 we give a brief pedagogical review, aimed to introduce the reader to the
ε-entropy and(ε, τ )-entropy. Practically the(ε, τ )-entropy,h(ε, τ ), is the Shannon-entropy of timeseries sampled at
frequencyτ−1 and measured with an accuracyε in the phase-space. We will see that the analysis of theε-dependence
of h(ε) is able to highlight many dynamical features of very high-dimensional systems like turbulence as well as of
stochastic processes [8,15]. The determination ofh(ε, τ ) is usually performed, as already stated, by looking at the
Shannon-entropy of the coarse-grained dynamics on a(ε, τ ) grid in phase-space. Unfortunately, this method suffers
of so many computational drawbacks that it is almost unusable in many interesting situations. In particular, it is
very inefficient when one investigates phenomena arising from the complex interplay of many different spatial and
temporal scales, the ones we are interested in. Therefore, here we resort to a recently proposed method [18] based
on theexit-timeanalysis, which has been demonstrated to be both practically and conceptually advantageous with
respect to the standard one. In a few words, the idea consists in looking at a sequence of data not at fixed sampling
time but at fixed fluctuation, i.e. when the signal is larger than some given threshold,ε. This procedure allows a
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noticeable improvement of the computational possibility to measure theε-entropy. We give an ample demonstration
of the advantages of this method in a number of examples ranging from one-dimensional dynamical systems, to
stochastic (affine and multi-affine) processes and turbulence.

As far as turbulence is concerned, we present both an application to experimental data analysis and a theoret-
ical remark. Namely, we will see that from the computation of theε-entropy of turbulent flows one has a deep
understanding of the spatial correlation induced by the sweeping of large scales on the smaller ones. In order to
understand these features we also introduce and discuss a new stochastic model of turbulent flows which takes into
account sweeping effects.

Theε-entropy, allows for a rather general and feasible analysis for the investigation of the dynamical properties
of systems characterized by the coexistence of many degrees of freedom and characteristic times. At variance with
other (more popular) quantities as Lyapunov exponents and KS-entropy, theε-entropy has a rather wide range of
applicability also in experimental data analysis, where arbitrary fine resolution cannot be reached. The exit-times
approach to theε-entropy is an efficient method to its computation.

The paper is organized as follows. In Section 2, we briefly define theε-entropy and discuss its properties; we
use a simple example which shows the conceptual relevance of this quantity together with the difficulties of its
computation. In Section 3, we introduce theexit-timeapproach to the calculation of theε-entropy discussing in
detail its theoretical and numerical advantages. In Section 4, we discuss the use of theε-entropy in characterizing
intermittent low-dimensional dynamical systems and stochastic (affine and multi-affine) processes. In Section 5, we
present a study of high-Reynolds experimental data and a theoretical analysis of theε-entropy in turbulence. Some
conclusions and remarks follow in Section 6. Details on the stochastic model of a turbulent field are discussed in
Appendices A and B.

2. Theεεε-entropy

Assume a given time-continuous record of one observable,x(t) ∈ R, over a total timeT long enough to ensure
a good statistics. For the sake of simplicity, we start consideringx as an observable of a one-dimensional system.

The estimate of the entropy of the time recordx(t) requires the construction of a symbolic dynamics [4–6,8]. With
this purpose, one considers, as a first step, a grid on the time axis, by introducing a small time interval,τ , so as to
obtain a sequence{xi = x(ti), i = 1, . . . , N} with N = [T/τ ] ([ ·] denotes the integer part). As a second operation,
one performs a coarse-graining of the phase-space, with a grid of mesh sizeε, and defines a set of symbols,{S} (the
letters of the alphabet), that biunivocally correspond to the so-formed cells. Then, one has to consider the different
words of lengthn, out of the complete sequence of symbols:

Wn
k (ε, τ ) = (Sk, Sk+1, . . . , Sk+n−1),

whereSj labels the cell containingxj . See Fig. 1, where the above codification is sketched. From the probability
distributionP(Wn(ε, τ )), estimated from the words frequencies, one calculates the block entropiesHn(ε, τ ):

Hn(ε, τ ) = −
∑

{Wn(ε,τ )}
P(Wn(ε, τ )) ln P(Wn(ε, τ )), (1)

where{Wn(ε, τ )} indicates the set of all possible words of lengthn. The(ε, τ )-entropy per unit time,h(ε, τ ), is
finally defined as

hn(ε, τ ) = 1

τ
[Hn+1(ε, τ ) − Hn(ε, τ )], (2)

h(ε, τ ) = lim
n→∞hn(ε, τ ) = 1

τ
lim

n→∞
1

n
Hn(ε, τ ). (3)
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Fig. 1. Sketch of the coding procedure described in Section 2. On the given(ε, τ )-grid the symbolic sequence is
W27

0 (ε, τ ) = (1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 4, 4, 5, 5, 5).

For practical reasons the dependence on the details of the partition is ignored, while the rigorous definition is given
in terms of the infimum over all possible partitions with elements of diameter smaller thanε [6,8]. As far as we
know, it is possible to carry out the computation of theε-entropy according to the rigorous mathematical definition
only in few peculiar systems, e.g., in stationary Gaussian processes [16,17]. Therefore, in practice, one is forced
to choose a certain feasibleε-partition, as, e.g., the previously described one. The above defined(ε, τ )-entropy is
nothing but the Shannon-entropy of the sequence of symbols{Si}. In the case of the time-continuous evolutions,
whose realizations are continuous functions of time, theτ dependence ofh(ε, τ ) does not exist [6,19]. When this
happens, one has a finiteε-entropy per unit time,h(ε). For genuine time-discrete systems, one can simply put
h(ε) ≡ h(ε, τ = 1). In all these cases,

hKS = lim
ε→0

h(ε). (4)

The determination ofhKS involves the study of the limitsn → ∞ andε → 0 which are in principle independent,
but in all practical cases one has to find an optimal choice of the parameters such that the estimated entropy is close
to the exact value [1,11].

For a genuine chaotic system, one has 0< hKS < ∞, i.e. the rate of information creation is finite. On the other
hand, for a continuous random process,hKS = ∞. Therefore, in order to distinguish between a purely deterministic
system and a stochastic system it is necessary to perform the limitε → 0. Unfortunately, from a physical or
numerical point of view this is extremely difficult. Nevertheless, by looking at the behaviour of theε-entropy of
the signal at varyingε one can have some qualitative and quantitative insights on the chaotic or stochastic nature
of the underlying process [11]. Moreover, for some stochastic processes one can explicitly give an estimate of the
entropy scaling behaviour ofε-entropy [8]. For instance, in the case of a stationary Gaussian process with spectrum
S(ω) ∝ ω−2, Kolmogorov [16,17] has rigorously derived

h(ε) ∼ 1

ε2
(5)

for smallε. However, as we show in the following simple but non-trivial example there are many practical difficulties
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Fig. 2. Numerically evaluated(ε, τ )-entropy for the map (6) withp = 0.8 computed with the Grassberger–Procaccia algorithm [7] atτ = 1
(◦), τ = 10 (4) andτ = 100 (5) and different block lengths (n = 4, 8, 12, 20). The boxes (h) give the entropy computed withτ = 1 by using
periodic boundary condition over 40 cells. The latter is necessary in order to compute the Lyapunov exponentλ = hKS = 1.15. The straight
lines correspond to the two asymptotic behaviours,h(ε) = hKS andh(ε) ∼ ε−2.

in the computation ofh(ε) [11,18]. Let us consider the chaotic map

xt+1 = xt + p sin 2πxt , (6)

which forp > 0.7326. . . produces large scale diffusive behaviour [20], i.e.

〈(xt − x0)
2〉 ' 2Dt for t → ∞, (7)

whereD is the diffusion coefficient. By computing theε-entropy of this system one expects [8,18]

h(ε) ' λ for ε . 1, h(ε) ∝ D

ε2
for ε & 1, (8)

whereλ is the Lyapunov exponent. In Fig. 2 we show that the numerical computation ofh(ε), using the standard
codification (Fig. 1) is highly non-trivial already in this simple system. Indeed the behaviour (8) in the diffusive
region is just poorly obtained by considering the envelope ofhn(ε, τ ) computed for different values ofτ ; while
looking at any single (small) value ofτ (one would like to putτ = 1) one obtains a rather inconclusive result. This
is due to the fact that one has to consider very large block lengths,n, in order to obtain a good convergence for
Hn+1(ε, τ ) − Hn(ε, τ ) in (3). In the diffusive regime, a dimensional argument shows that the characteristic time
of the system at scaleε is Tε ≈ ε2/D. If we consider, e.g.,ε = 10 and typical values of the diffusion coefficient
D ' 10−1, the characteristic time,Tε , is much larger than the elementary sampling timeτ = 1.

Concluding this section, we remind that for systems living ind > 1 dimensions, the procedure sketched above,
for the determination ofh(ε, τ ), goes unaltered, considering that the set of symbols{S} now identifies cells in the
d-dimensional space where the state-vectorx(t) evolves.

3. How to compute theεεε-entropy with exit-times

The approach we propose to calculateh(ε) differs from the usual one in the procedure to construct the coding
sequence of the signal at a given level of accuracy [18]. This is an important point because the quality of the coding
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Fig. 3. The same signal as in Fig. 1, with the exit-time coding of the same precisionε. The symbolic sequence obtained with the exit-time method
is Ω27

0 = [(t1, −1); (t2, −1); (t3, −1); (t4, −1); (t5, −1); (t6, −1); (t7, −1); (t8, −1)].

affects largely the result of theε-entropy computation. An efficient procedure reduces redundancy and improves the
quality of the results. The problem to encode signals efficiently is quite old and widely discussed in the literature
[3,21]. The most efficient compression or codification of a symbolic sequence is linked to its Shannon-entropy. The
Shannon’s compression theorem [4,5] states: given an alphabet withm symbols, and a sequence of these symbols,
{Si, i = 1, . . . , N} with entropyh, it is not possible to construct another sequence{S′

i , i = 1, . . . , N ′} — using
the same alphabet and containing the same information — whose lengthN ′ is smaller than(h/ ln m)N . That is
to say:h/ ln m is the maximum allowed compression rate. As a consequence, if one is able to map a sequence
{si, i = 1, . . . , Ns} of m symbols, into another sequence{σi, i = 1, . . . , Nσ }, with the same symbols, the ratio
(Nσ /Ns) ln m gives an upper bound for the entropy of{si}. More generally, if{σi} is a codification of{si} without
information loss, then the two sequences must have equal total entropy:Nsh(s) = Nσ h(σ).

Now we introduce the coding of the signal by the exit-time,t (ε), i.e. the time for the signal to undergo a
fluctuation of sizeε. To do so, we define an alternating grid of cell sizeε in the following way: we consider the
original continuous-time recordx(t) and a reference starting timet = t0. The first exit-time,t1, is then defined as
the first time necessary to have an absolute variation equal to1

2ε in x(t), i.e. |x(t0 + t1) − x(t0)| ≥ 1
2ε. This is the

time the signal takes to exit the actual cell of sizeε. Then we restart fromt1 to look for the next exit-timet2, i.e.
the first time such that|x(t0 + t1 + t2) − x(t0 + t1)| ≥ 1

2ε and so on, to obtain a sequence of exit-times:{ti (ε)}.
To distinguish the direction of the exit (up or down out of a cell), we introduce the labelki = ±1, depending on
whether the signal is exiting above or below. For clarifying the procedure see Fig. 3, where we sketch the coding
method for the signal shown in Fig. 1.

From Fig. 3 one recognizes the alternating structure of the grid: the starting point to findti+1 lies in the middle of
the cellx(ti)± 1

2ε, whereas it lies on the border of the cellx(ti−1)± 1
2ε. In this way one avoids the fast exit of a cell

due to small fluctuations (compare Figs. 1 and 3). At the end of this construction, the trajectory is coded without
ambiguity, with the required accuracy, by the sequence{(ti , ki), i = 1, . . . , M}, whereM is the total number of
exit-time events observed during the total timeT . A continuous signal, evolving in a continuous time, is now coded
in two sequences — a discrete-valued one{ki} and a continuous-valued one{ti}. Performing a coarse-graining of
the possible values assumed byt (ε) by the resolution timeτr, we accomplished the goal of obtaining a symbolic
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sequence. After that, one proceeds as usual, studying the “exit-time words” of various lengthsn. These are the
subsequences of couples of symbols

Ωn
i (ε, τr) = ((ηi, ki), (ηi+1, ki+1), . . . , (ηi+n−1, ki+n−1)), (9)

whereηj labels the cell (of widthτr) containing the exit-timetj . From the probabilities of these words one calculates
the block entropies at the given time resolution,HΩ

n (ε, τr), and then the exit-time(ε, τr)-entropies

hΩ(ε, τr) = lim
n→∞HΩ

n+1(ε, τr) − HΩ
n (ε, τr). (10)

The limit of infinite time resolution gives us theε-entropyper exit, i.e.

hΩ(ε) = lim
τr→0

hΩ(ε, τr). (11)

This result may be obtained also by arguing as follows. There is a one-to-one correspondence between the
(exit-time)-histories and the(ε, τ )-histories (in the limitτ → 0) originating from a givenε-cell. The Shannon–
McMillan theorem [22] assures that the number of the typical(ε, τ )-histories of lengthN , N (ε, N), is such that:
lnN (ε, N) ' h(ε)Nτ = h(ε)T . For the number of typical (exit-time)-histories of lengthM,M(ε, M), we have:
lnM(ε, M) ' hΩ(ε)M. If we considerT = M〈t (ε)〉 we must obtain the same number of (very long) histories.
Therefore, from the relationM = T/〈t (ε)〉, where〈t (ε)〉 = 1/M

∑M
i=1ti , we obtain finally for theε-entropy per

unit time

h(ε) = MhΩ(ε)

T
= hΩ(ε)

〈t (ε)〉 . (12)

Note that a relation similar to (12), without the dependence onε, has been previously proposed, in the particular
case of the stochastic resonance [23,24]. In such a case, wherex(t) effectively takes only the two values±1 and
the transition can be assumed to be instantaneous, the meaning of the equation is rather transparent.

At this point we have to remind that in almost all practical situations there exists a minimum time interval,τs,
a signal can be sampled with. Since there exists this minimum resolution time, we can at best estimatehΩ(ε) by
means ofhΩ(ε) = hΩ(ε, τs), instead of performing the limit (11); so that we may put

h(ε) ' hΩ(ε, τr)

〈t (ε)〉 (13)

for small enoughτr. In most of the cases, the leadingε-contribution toh(ε) in (13) is given by the mean exit-time
〈t (ε)〉 and not byhΩ(ε, τr). Anyhow, the computation ofhΩ(ε, τr) is compulsory in order to recover, e.g., a zero
entropy for regular (e.g., periodic) signals.

Now we discuss how one can estimate theε-entropy in practice. In particular, we introduce upper and lower bounds
for h(ε) which are very easy to compute in the exit-time scheme [18]. We use the following notation: for givenε

andτr, hΩ(ε, τr) ≡ hΩ({ηi, ki}), and we indicate withhΩ({ki}) andhΩ({ηi}), respectively, the Shannon-entropy
of the sequence{ki} and{ηi}. By applying standard results of information theory [4,5] one obtains:
1. hΩ({ki}) ≤ hΩ({ηi, ki}), since the mean uncertainty on the composed event{ηi, ki} cannot be smaller than that

on a partial one{ki} (or {ηi});
2. hΩ({ηi, ki}) ≤ hΩ({ηi}) + hΩ({ki}), since the uncertainty is maximal if{ki} and{ηi} are independent (correla-

tions can only decrease the uncertainty).
Moreover, we observe that, for a given finite resolutionτr, the associated sequence{ηi} satisfies the bound

hΩ({ηi}) ≤ HΩ
1 ({ηi}).
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Fig. 4. Numerically computed lower (h) and upper (◦) bounds (withτ = 1) of h(ε) according to Eq. (14), for the map (6) with the same
parameters as in Fig. 2. The two straight lines correspond to the asymptotic behaviours as in Fig. 2. The crosses (×) mark the values of the
(ε, τ )-entropyhΩ(ε, τ )/〈t (ε)〉 with τ = 0.1〈t (ε)〉.

In the above relationHΩ
1 ({ηi}) is the one-symbol entropy of{ηi} (i.e. the entropy of the probability distribution of

the exit-times measured on the scaleτr) which can be written as

HΩ
1 ({ηi}) = c(ε) + ln

( 〈t (ε)〉
τr

)
,

wherec(ε) = − ∫
P(z) ln P(z) dz, andP(z) is the probability distribution function of the rescaled exit-time

z(ε) = t (ε)/〈t (ε)〉. Finally, using the previous relations, one obtains the following bounds for theε-entropy:

hΩ({ki})
〈t (ε)〉 ≤ h(ε) ≤ hΩ({ki}) + c(ε) + ln(〈t (ε)〉/τr)

〈t (ε)〉 . (14)

Note that such bounds are relatively easy to compute and give a good estimate ofh(ε). Eqs. (12)–(14) allow for
a remarkable improvement of the computational efficiency. Especially as far as the scaling behaviour ofh(ε) is
concerned, one can see that the leading contribution is given by〈t (ε)〉, and thathΩ(ε, τr) introduces, at worst, a
sub-leading logarithmic contributionhΩ(ε, τr) ∼ ln(〈t (ε)〉/τr) (see Eq. (14)). This fact is evident in the case of
Brownian motion. In this case one has〈t (ε)〉 ∝ ε2/D, and
1. c(ε) is of O(1) and independent ofε (since the Brownian motion is a self-affine process);
2. hΩ({ki}) ≤ ln 2, is small compared with ln(〈t (ε)〉/τr), so that neglecting the logarithmic corrections,h(ε) ∼

1/〈t (ε)〉 ∝ Dε−2.
In Fig. 4 we show the numerical evaluation of the bounds (14) for the diffusive map (6). Fig. 4 has to be compared
with Fig. 2, where the usual approach has been used. While in Fig. 2, the expectedε-entropy scaling is just poorly
recovered as an envelope over many differentτ , within the exit-time method the predicted behaviour is easily
recovered in all the range ofε > 1 with a remarkable improvement in the quality of the result.

Since we code the originalW -words of lengthn into Ω-words of non-constant length, our approach is similar to
the Ziv–Lempel compression method [3]. A similar idea has also been exploited in symbolic dynamics of intermittent
maps [25,26].

We underline that the reason for which the exit-time approach is more efficient than the usual one is a posteriori
intuitive. Indeed, at fixedε, 〈t (ε)〉 automatically gives the typical time at that scale, and, as a consequence, it is not
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necessary to reach very large block sizes — at least ifε is not too small. Especially for largeε, we found that small
word lengths are enough to estimate theε-entropy accurately. Of course, for smallε (i.e. the plateau of Fig. 4) one
has to use larger block sizes: here the exit-time is O(1) and one falls back to the problems of the standard method.
For smallε in deterministic system one has to distinguish two situations:
1. ε → 0 for discrete-time systems. In this limit the exit-time approach coincides with the usual one. The exit-times

always coincide with the minimum sampling time, i.e.〈t (ε → 0)〉 ∼ 1 and we have to consider the possibility
to have jumps over more than one cell, i.e. theki symbols may take values±1, ±2, . . .

2. ε → 0 for continuous-time systems. At very smallε, due to the deterministic character of the system, one has
〈t (ε)〉 ∼ ε, and therefore one finds words composed with highly correlated symbols. So one has to treat very
large blocks in computing the entropy [27].

However, as far as high-dimensional systems are concerned, for some aspects, the points (1) and (2) are not of
practical interest. In these systems the analysis of theε → 0 limit is usually unattainable for several reasons [8,11],
and, moreover, in many cases one is more interested in the largeε scale behaviour. We believe that in these cases
the approach presented here, is practically unavoidable.

We conclude this section with two further remarks. First, up to now we considered a scalar signal as the output
of a one-dimensional system. This fact only entered in the two-valuedness of thek-variable. If we are given a
vectorial signalx(t), describing the evolution of ad-dimensional system, we have only to admit 2d values for
the direction-of-exit variablek. If the dynamics is discrete one has also to consider the possibility of jumps over
more than one cell (see previous discussion). Second, one can wonder about the dependence ofh(ε) on the used
observable. Rigorous results insure that the KS-entropy, i.e. the limitε → 0 of h(ε) is an intrinsic quantity of the
considered system, its value does not change under a smooth change of variables. In the case of(ε, τ )-entropy,
in principle there could be dependencies on the chosen function. However, one can see that at least the scaling
properties should not strongly depend on the choice of the observable. IfA(x) is a smooth function ofx, such that
the following property holds:

c1|δx| ≤ |A(x + δx) − A(x)| ≤ c2|δx| (15)

with c1 andc2 are finite constants, then there exist two constantsα1 andα2 such that

hx

(
ε

α1
, τ

)
≤ hA(ε, τ ) ≤ hx

(
ε

α2
, τ

)
, (16)

wherehA(ε, τ ) andhx(ε, τ ) are the(ε, τ )-entropies computed using the observableA andx, respectively. This result
implies that ifh(ε, τ ) shows a power-law behaviour as a function ofε, h(ε, τ ) ∼ ε−β , the same behaviour, with the
same exponentβ, must be seen when using another, smooth, observable in the determination of the(ε, τ )-entropy.

4. Application of the εεε-entropy to deterministic and stochastic processes

4.1. An intermittent deterministic mapping

We discuss the application of exit-time approach to the computation ofε-entropy in strongly intermittent
low-dimensional systems.

In the presence of intermittency, the dynamics is characterized by very long, almost quiescent (laminar) intervals
separating short intervals of very intense (bursting) activity (see Fig. 5). Already at a qualitative level, one realizes
that coding the trajectory shown in Fig. 5 at fixed sampling times (Section 2) is not very efficient compared with
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Fig. 5. Typical evolution of the intermittent map (17) forz = 2.5 anda = 0.5.

the exit-times method, where the information on the very long quiescent periods is typically stored using only one
symbol. To be more quantitative, let us consider the following one-dimensional intermittent map [28]:

xt+1 = (xt + axz
t ) mod 1 (17)

with z > 1 anda > 0. The invariant density is characterized by a power-law singularity nearx = 0, which is
a marginally stable fixed point, i.e.ρ(x) ∝ x1−z. For z ≥ 2, the density is not normalizable, and an interesting
dynamical regime, the so-calledsporadic chaos, appears [29,30]. Namely, forz ≥ 2 the separation between two
close trajectories behaves as

|δxn| ∼ δx0 exp[cnν0(ln n)ν1] (18)

with 0 < ν0 < 1 or ν0 = 1 andν1 < 0. In the sporadic chaos regime, nearby trajectories diverge with a
stretched exponential, even if the Lyapunov exponent is zero. Forz < 2 the system follows the usual chaotic
motion with ν0 = 1 andν1 = 0. Sporadic chaos is intermediate between chaotic motion and regular one. This
can be understood by computing the Kolmogorov–Chaitin–Solomonoff complexity [29,30], or, as we show in the
following, by studying the mean exit-time. By neglecting the contribution ofhΩ(ε), and considering only the mean
exit-time, we can estimate the total entropy,HN , of a trajectory of lengthN as

HN ∝ N

〈t (ε)〉N for largeN, (19)

where〈[. . . ]〉N indicates that the mean exit-time is computed on a sequence of lengthN . Due to the power-law
singularity atx = 0, 〈t (ε)〉N depends onN . In Eq. (19), we have dropped fromHN the dependence onε, which is
expected to be weak. Indeed, due to singularity near the origin, one has that the exit-times at scaleε are dominated
by the first exit from a region of sizeε around the origin, so that〈t (ε)〉N approximately gives the duration of the
laminar period (this is exact forε large enough).

In Fig. 6, the behaviour of〈t (ε)〉N is shown as a function ofN andz for two different choices ofε. For large
enoughN the behaviour is almost independent ofε, and forz ≥ 2 one has

〈t (ε)〉N ∝ Nα, where α = z − 2

z − 1
. (20)
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Fig. 6.〈t (ε)〉N versusN for the intermittent map (17) atε = 0.001 (left) andε = 0.243 (right) for differentz anda = 0.5. The straight lines
indicate the power law (20). The average〈t (ε)〉N has been obtained by averaging over 104 different trajectories of lengthN , this average is
necessary because of the poor statistics caused by the singularity near the origin. Forz < 2, 〈t (ε)〉N does not depend onN , ρ(x) is normalisable,
the motion is chaotic andHN/N is constant.

Forz < 2 one has〈t (ε)〉 ≈ constant at largeN . The value ofα is obtained by the following argument: the power-law
singularity leads toxt ≈ 0 most of the time, and moreover, near the origin the map (18) can be approximated by the
differential equation dx/dt = axz [28]. Therefore, denoting withx0 the initial condition, one solves the differential
equation obtaining

(x0 + ε)1−z − x1−z
0 = a(1 − z)t (ε).

Now, due to the singularity,x0 is typically much smaller thanx0+ε, and hence we can neglect the term(x0+ε)1−z,
so that the exit-time ist (ε) ∝ x1−z

0 . By the probability density ofx0, ρ(x0) ∝ x1−z
0 , one obtains the probability

distribution of the exit-timesρ(t) ∼ t1/(1−z)−1, the factort−1 takes into account the non-uniform sampling of the
exit-time statistics (see discussion after Eq. (25)). Finally the average exit-time on a trajectory of lengthN , which
is given by

〈t (ε)〉N ∼
∫ N

0
tρ(t) dt ∼ N(z−2)/(z−1). (21)

The total entropy is finally given by

HN ∼ N

N(z−2)/(z−1)
∼ N1/(z−1),

note that this is exactly the sameN -dependence found with the computation of the algorithmic complexity [29,30].
Let us underline that the entropy per unit time goes to zero very slowly, because of the sporadicity

HN

N
∼ 1

〈t (ε)〉N .

Let us note that we arrive at this results without any partitions of the phase-space of the system.



M. Abel et al. / Physica D 147 (2000) 12–35 23

4.2. Affine and multi-affine stochastic processes

Self- and multi-affine processes are fully characterized by the scaling laws of the moments of signal increments
[14,31,32],δtx = x(t0) − x(t0 + t):

〈〈|δtx(t0)|q〉〉 ∼ tζ(q), (22)

whereζ(q) is a linear function ofq, ζ(q) = ξq, for a self-affine signal (ξ is the Hölder exponent characterizing the
process) and a non-linear function ofq for a multi-affine signal. The average〈〈·〉〉 is defined as the average over
the process distributionP(t0, δtx(t0)), which gives the probability to have a fluctuation,δtx(t0), at the instantt0.
In the case of a stationary process, as it will be always assumed here, the probability distribution is time invariant
and the average〈〈·〉〉 is computed by invoking an ergodic hypothesis, as a time-average. Sometimes, with an abuse
of language, a multi-affine process is also called a multifractal process. While a self-affine process has a global
scaling-invariant probability distribution function, a multi-affine process can be constructed by requiring a local (in
time) scaling-invariant fluctuations [14]. In a nutshell, one assumes a spectrum of different local scaling exponents
ξ : δtx(t0) ∼ tξ(t0) with the probabilityPt(ξ) ∼ t1−D(ξ) to observe a given Hölder exponentξ at time incrementt .
The functionD(ξ) can be interpreted as the fractal dimension of the set where the Hölder exponentξ is observed
[31]. The scaling exponentsζ(q) are related toD(ξ) by a Legendre transform. Indeed, one may define the average
process as an average over all possible singularities,ξ , weighted by the probability to observe them:

〈〈(δtx)q〉〉 ∼
∫

dξ tξq t1−D(ξ),

which in the limit of smallt by a saddle point estimation becomes

〈〈(δtx)q〉〉 ∼ tζ(q) with ζ(q) = min
ξ

(qξ + 1 − D(ξ)). (23)

Eq. (23) can be generalized toζ(q) = minξ (qξ +d −D(ξ)) if the considered signal is embedded in ad-dimensional
space. Let us notice that in this language, the already discussed Brownian motion corresponds to a self-affine signal
with only one possible exponentξ = 1

2 with D(1
2) = 1. In Appendix A one finds how to construct arbitrary self- and

multi-affine stochastic processes.
Let us now investigate theε-entropy properties of these two important classes of stochastic signals by using

the exit-time approach. We will proceed by discussing the general case of multi-affine processes, noting that the
self-affine one is a particular case of them corresponding to have only one exponent in the spectrum. The exit-time
probability distribution function can be guessed by “inverting” the multifractal probability distribution functions
[33]. We expect that the following dimensional inversion should be correct (at least as far as leading scaling properties
are concerned). We argue that the probability to observe an exit of the signal through a barrier of heightδx in a
time t (δx) is given byPδx(t (δx)) ∼ (δx)(1−D(ξ))/ξ , where the height of the barrier and the exit-time are related by
the inversion of the previously introduced multi-affine scaling relationt (δx) ∼ (δx)1/ξ . In this framework we may
write down the “multifractal” estimate [33] of the exit-time moments, also called inverse structure functions [34]:

Σq(δx) ≡ 〈〈tq(δx)〉〉 ∼
∫

dξ(δx)(q+1−D(ξ))/ξ ∼ (δx)χ(q), (24)

whereχ(q) is obtained with a saddle point estimate in the limit of smallδx:

χ(q) = min
ξ

(
q + 1 − D(ξ)

ξ

)
. (25)
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Fig. 7. Numerically computed lower (h) and upper (◦) bounds for the(ε, τ )-entropy in the case of a self-affine signal withξ = 1
3 (left) and 1

4
(right), with τ = 0.1〈t (ε)〉. The two straight lines show the scalingε−3 andε−4 for the left and the right figure, respectively.

The averaging by counting the number of exit-time eventsM (as we did in the previous sections) and the averaging
with the uniform “multifractal” distribution are connected by the following relation [33]:

〈〈tq(δx)〉〉 = lim
M→∞

M∑
i=1

t
q
i

ti∑M
j=1tj

= 〈tq+1(δx)〉
〈t (δx)〉 ,

where the termti/
∑M

j=1tj takes into account the non-uniformity of the exit-time statistics. From the previous
relation evaluated forq = −1 we can easily deduce the estimate for the mean exit-time scaling law:

〈t (δx)〉 = 〈〈t−1(δx)〉〉−1 ∼ (δx)−χ(−1) (26)

and therefore, as in the previous sections, we may estimate the leading contribution to theε-entropy of a multi-affine
signal:

h(δx) ∼ (δx)χ(−1). (27)

Let us notice that in the simpler case of a self-affine signal with Hölder exponentξ , this is nothing but the dimensional
estimateh(δx) ∼ (δx)−1/ξ which is rigorous for Gaussian processes [16,17]. In this case the above argument is also
in agreement with the bounds (14): indeed for an affine signal the functionc(ε) entering in (14) does not depend
on ε (we note here thatδx plays the same role ofε).

In Fig. 7a and b, we show the numerical estimate of the bounds (14) on theε-entropy in two different self-affine
signals with Hölder exponentsξ = 1

3 and1
4, respectively (for details on the processes generation, see Appendix A).

The agreement with the expected result is very good. Let us notice that with the usual approach to the calculation of
theε-entropy for these simple signals the detection of the scaling behaviour is not so easy (see Figs. 15–17 of [8]).

In Fig. 8 we show the numerically computed lower and upper bounds for theε-entropy of a multi-affine signal
by using the mean exit-time estimate. The multi-affine signal here studied is characterized by havingζ(q) as the
scaling exponent measured in turbulence (see Section 5). In particular, this means thatζ(3) = 1, and using Eqs. (23)
and (25)χ(−1) = −3 independently on the shape ofD(ξ). This is theε-entropies counterpart of the Kolmogorov
4/5 law [14]. The agreement with the multifractal prediction (the straight lines in Fig. 8) is impressive. To our
knowledge this is the first direct estimate ofε-entropy in multi-affine signals. We stress that the non-trivial aspect
of such an estimate is contained in the derivation of the inverse multifractal formulas (24) and (25).
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Fig. 8. Numerically computed lower (h) and upper (◦) bounds, withτ = 0.1〈t (ε)〉 for the (ε, τ )-entropy in the case of a multi-affine signal
with ζ(3) = 1. The signal has been obtained with the method of Ref. [45] (see also Appendix A) using aD(ξ) which fits experimental data at
large Reynolds number. The two straight lines show the theoretical scalingε−3.

5. εεε-entropy and exit-times in turbulence

A turbulent flow is characterized by the presence of highly non-trivial chaotic fluctuations in space and time
[14]. The question we want to address here is to understand which kind of information can be captured by studying
theε-entropy of this important high-dimensional dynamical system. The main physical mechanism is the energy
transfer from large scales,L0, i.e. scales where forcing is active, down to the dissipation scale,η, where kinetic
energy is converted into heat [14,32]. The ratio between these two scales increases with the Reynolds number. Fully
developed turbulence corresponds to the limit of very high-Reynolds numbers. In this limit, a turbulent velocity field
develops scaling laws in the range of scale intermediate betweenL0 andη, the so-called inertial range. Kolmogorov
theory (1941) assumes a perfect self-similar behaviour for the velocity field in the inertial range. In other words,
the velocity field was thought to be a continuous self-affine field with Hölder exponentξ = 1

3 as a function of its
spatial coordinates:

|v(x + R, t) − v(x, t)| ∼ R1/3

(hereafter, for simplicity, we neglect the vectorial notation). In terms of an averaged observable, this implies that
the structure functions, i.e. the moments of simultaneous velocity differences at distanceR, have a pure power-law
dependency forη � R � L0

Sp(R) = 〈〈|v(x + R, t) − v(x, t)|p〉〉 ∼ Rζ(p) (28)

with ζ(p) = 1
3p. Experiments and numerical simulations have indeed shown that there are small (but important)

corrections to the Kolmogorov prediction (1941). This problem goes under the name of intermittency, the origin of
which is still one of the main open problem in the theory of Navier–Stokes equations [14,32,35,36]. In the language
of the previous section, an intermittent field is a multi-affine process.

As far as the time-dependency of a turbulent velocity field is concerned, one can distinguish between two different
time measurements. First, the standard one (actually used in most of the experimental investigation), consists in
measuring the time evolution by a probe fixed in some spatial location, sayxp, in the flow. The time evolution
obtained in this way is strongly affected by the spatial correlations induced by the large scales sweeping. As a
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result, one can apply the so-called frozen-turbulent hypothesis (Taylor hypothesis) [35,36], which connects a time
measurement with a spatial measurement by the following relation:

v(xp, t0 + t) − v(xp, t0) ∼ v(xp − R, t0) − v(xp, t0),

whereR = tU0 andU0 is the mean large scale sweeping velocity characteristic of the experiment. As a result of
the Taylor-hypothesis, one has that time measurements also show power-law behaviour with the same characteristic
exponents of the spatial measurements, namely, within the Kolmogorov theory

〈〈|v(xp, t0 + t) − v(xp, t0)|p〉〉 ∼ tζ(p).

A second interesting possibility to perform time measurements consists in the so-called Lagrangian measurements
[37]. In this case, one has to follow the trajectory of a single fluid particle and measuring the time properties locally
in the co-moving reference frame. The main characteristics of this method is that the sweeping is removed and
so one can probe in details the “proper” time-fluctuations induced by the nonlinear terms of the Navier–Stokes
equations (for recent theoretical and numerical investigations of similar issues, see [37–40]).

The phenomenological understanding of all these spatial and temporal properties are well summarized by the
Richardson-cascade. The cascade picture describes a turbulent flow in terms of a superposition of fluctuations
(eddies) hierarchically organized on a set of scales ranging from the largest one,L0, to the smallest one,η, say
`n = 2−nL0 with n = 0, . . . , Nmax andNmax = log2(L0/η). Each scale has its own typical evolution time,τn,
given in terms of the velocity difference at that scale,δnv = v(x + `n) − v(x), by the dimensional estimate:τn =
`n/δnv ∼ (`n)

2/3. The most relevant dynamical interactions are supposed to happen only between eddies of similar
size, while each eddy is also subject to the spatial sweeping from eddies at larger scales. The energy is transferred
down-scale from the largest-eddy (the mother) to its daughters and from the daughters to their grand-daughters and
so on in a multi-step process similar, quantitatively and qualitatively to a stochastic multiplicative process [41,42].

As a result of the previous picture, one can mimic a turbulent flow with a stochastic process hierarchically organized
in space, and with suitable time-dependence able to reproduce both the overall sweeping and the eddy-turn-over
times hierarchy [43–45]. In Appendices A and B, we briefly remind a possible choice for these stochastic process.

5.1. Experimental data analysis

Now we present the computation of theε-entropy for two sets of high-Reynolds number experimental data,
obtained from an experiment in Lyon (atReλ = 400) and from another experiment in Modane (atReλ = 2000).
The measurement in Lyon has been taken in a wind tunnel with a working section of 3.0 m and a cross section of
0.5×0.5 m2. Turbulence was generated by a cylinder placed inside the wind tunnel, its diameter was 0.1 m. The hot
wire was placed 2.0 m behind the cylinder. The separation between both probes was approximately 1 mm [51]. The
measurement in Modane has been taken in a wind tunnel where the integral scale wasL ∼ 20 m and the dissipative
scale wasrdiss = 0.3 mm.

Let us first make an important remark. Whenever one wants to apply the multifractal formalism to turbulence
there exist some analytical and phenomenological constraints on the shape of the functionD(ξ) entering in the
multifractal description. In particular, the most important constraint is the exact resultζ(3) = 1. This, in turn,
implies that independently of the possible multifractal spectrum of the turbulent field one hasχ(−1) = −3, so that
as stated in the previous section, one obtains

h(ε) ∼ εχ(−1) = ε−3, (29)

this is theε-entropy equivalent of theζ(3) = 1 result, i.e. of the 4/5 law of turbulence [14] (see Eqs. (26) and (27)).
This means that there are no intermittent corrections to theε-entropy. We have tested this prediction (here for the
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Fig. 9. Numerically computed lower (h) and upper (◦) bounds, withτ = 0.1〈t (ε)〉 for the (ε, τ )-entropy in the case of Lyon turbulent data
(left) and Modane turbulent data (right). We also show〈t (δv)〉−1 (+) and its trivial dissipative scalingδv−1 (dashed line). The full line follows
the scalingδv−3 for theε-entropy, as predicted in Eq. (29).

first time presented), which has been already confirmed in the analysis of the stochastic multi-affine signal in Section
4.2, in two different experimental data sets. In Fig. 9 we show theε-entropy computed for two different sets of
experimental data. As one can see, the theoretical predictionh(ε) ∼ ε−3 is well reproduced only for largeε values,
while for intermediate values the entropy shows a continuous bending without any clear scaling behaviour, only when
ε reaches values corresponding to dissipative velocity fluctuations we have the dissipative scaling〈t (ε)〉 ∼ ε. The
strong intermediate regime between the dissipative and the inertial scaling behaviours is not a simple out-of-control
finite Reynolds effect. In fact, within the multifractal model of turbulence, one can understand the large crossover
between the two power laws in terms of the so-called intermediate-dissipative-range (IDR). The existence of an IDR
was originally predicted in [46] and further analysed in [33,47,48]. The IDR brings the signature of the mechanism
stopping the turbulent energy cascade, i.e. how viscous mechanism are effective in dissipating turbulent energy. In
particular, it was shown that the IDR can be fully described within the multifractal description once one allows the
possibility to have different viscous cut-off depending on the local degree of velocity singularity, i.e. depending on
the local realization of theξ scaling exponent. The main idea consists in using again the multifractal superposition
(24) but considering that for velocity fluctuations at the edge between the inertial and the viscous range not all
possible scaling exponents contribute to the average [33,46]. It turns out that in the case of exit-time moments,
the extension of the IDR is much more important then what was previously measured for the velocity structure
functions (28). Therefore, the strong finite-range effects showed by the experimental data analysis of Fig. 9 can be
qualitatively and quantitatively understood as an effect of the IDR [33].

Let us conclude this section by comparing our results with a previous study of theε-entropy in turbulence [15].
There it was argued the following scaling behaviour:

h(ε) ∼ ε−2, (30)

which differs from our prediction. The behaviour (30) has been obtained assuming thath(ε) at scaleε is proportional
to the inverse of the typical eddy-turn-over time at that scale. We remind that hereε represents a velocity fluctuation
δv. Since the typical eddy-turn-over time for velocity fluctuations of orderδv ∼ ε is τ(ε) ∼ ε2, Eq. (30) follows.
Recalling the discussion of Section 5.1 about the two possible way of measuring a turbulent time signal it is clear
that the scaling (30) holds only in a Lagrangian reference frame (see also [9,10]). This explains the difference of
our prediction and (30).
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5.2. Anε-entropy analysis of the Taylor hypothesis in fully developed turbulence

By studying theε-entropy for the velocity field of turbulent flows in 3+1 dimension,hst(ε) (st indicatesspaceand
time), we argue that the usually accepted Taylor hypothesis implies a spatial correlation which can be quantitatively
characterized by an “entropy” dimensionD = 8

3. In this section, for the sake of simplicity, we neglect intermittency,
i.e. we assume a pure self-affine field with Hölder exponentξ = 1

3.
We discuss now how to construct a multi-affine field with the proper spatial and temporal scaling. The idea consists

in defining the signal as a dyadic three-dimensional superposition of wavelet-like functionsϕ((x − xn,k(t))/`n)

whose centres move according to a swept dynamics. The coefficients of the decompositionan,k(t) are stochastic
functions chosen with suitable self-affine scaling properties both in time and in space. In particular, the exact
definition for a field with spatial Hölder exponentξ in d dimensions is (see Appendix A for a brief review of some
existing results on synthetic turbulence, and Appendix B for a generalization which includes sweeping effects in
order to consider in a proper way the spatio-temporal correlations)

v(x, t) =
M∑

n=1

2d(n−1)∑
k=1

an,k(t) ϕ

(
x − xn,k(t)

`n

)
, (31)

wherexn,k is the centre of thekth wavelets at the leveln (for each dimension we consider one branching, i.e. two
variables, for passing to then+1 level, see Fig. 10). According to the Richardson–Kolmogorov cascade picture, one
assumes that sweeping is present, i.e.xn+1,k = xn,k′ +rn+1,k, where(n, k′) labels the “mother” of the(n+1, k)-eddy
andrn+1,k is a stochastic vector which depends onrn,k′ and evolves with characteristic timeτn ∝ (`n)

1−ξ . If the
coefficients{an,k} and{rn,k} have characteristic timeτn ∼ (`n)

1−ξ and{an,k} ∼ (`n)
ξ , it is possible to show (see

Appendices A and B for details) that the field (31) has the properties

|v(x + R, t0) − v(x, t0)| ∼ |R|ξ , (32)

|v(x, t0 + t) − v(x, t0)| ∼ tξ , (33)

in addition the proper Lagrangian sweeping is satisfied. Now we are ready for theε-entropy analysis of the field
(31). If one wants to look at the fieldv with a resolutionε, one has to taken up toN given by

(`N)ξ ∼ ε, (34)

Fig. 10. Branching process for the multiplicative model (we only show thed = 1 case), as described in the main text.
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in this way we are sure to consider velocity fluctuations of orderε. Then the number of terms contributing to (31) is

#(ε) ∼ (2d)N ∼ ε−d/ξ . (35)

By using a result of Shannon [4,5] one estimates theε-entropy of the processan,k(t) (and also ofrn,j ) as

hn(ε) ∼ 1

τn

log

(
1

ε

)
, (36)

where the above relation is rigorous if the processesan,k(t) are Gaussian and with a power spectrum different form
zero on a band of frequency∼ 1/τn. The terms which give the main contribution are those withn ∼ N with
τN ∼ (`N)1−ξ ∼ ε(1−ξ)/ξ . Collecting the above results, one finds

hst(ε) ∼ #(ε)

τN

∼ ε−(d−ξ+1)/ξ . (37)

For the physical cased = 3, ξ = 1
3, one obtains

hst(ε) ∼ ε−11. (38)

The above result, has already been obtained in [8] with a different consideration. By denoting withvk the typical
velocity at the Kolmogorov scaleη, one has that Eq. (38) holds in the inertial range, i.e.ε ≥ vk ∼ Re−1/4, while for
ε ≤ vk, hst(ε) = constant∼ Re11/4. Let us now discuss the physical implications of (37). Consider an alternative
way to compute theε-entropy of the fieldv(x, t): divide thed-volume in boxes of edge length̀(ε) ∼ ε1/ξ and look
at the signalsv(xα, t), where thexα are the centres of the boxes. In eachxα, we have a time record whoseε-entropy
is

h(α)(ε) ∼ ε−1/ξ (39)

because of the scaling (33). In (39) we use the symbolh(α) to denote the entropy of the temporal evolution of the
velocity field measured inxα. Therefore,hst(ε) will be obtained summing up all the “independent” contributions
(39), i.e.

hst(ε) ∼ N (ε)h(α)(ε) ∼ N (ε)ε−1/ξ , (40)

whereN (ε) is the number of independent cells. It is easy to understand that the simplest assumptionN (ε) ∼
l(ε)d ∼ εd/ξ gives a wrong result, indeed one obtains

hst(ε) ∼ ε−(d+1)/ξ , (41)

which is not in agreement with (37). In order to obtain the correct result (38) it is necessary to assume

N (ε) ∼ l(ε)D (42)

with D = d − ξ . In other words, one has to consider that the sweeping implies a non-trivial spatial correlation,
quantitatively measured by the exponentD, which can be considered as a sort of “entropy” dimension. Incidentally,
we note thatD has the same numerical value as the fractal dimensions of the iso-surfacesv = constant [49]. From
this observation, at first glance, one could conclude that the above result is somehow trivial since it is simply related
to a geometrical fact. However, a closer inspection reveals that this is not true. Indeed, one can construct a self-affine
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field with spatial scalingξ and thus with the fractal dimension of the iso-surfacesv = constant given byd − ξ for
geometrical reasons, whileD = d. Such a process can be simply obtained by eliminating the sweeping, i.e.

v(x, t) =
M∑

n=1

2d(n−1)∑
k=1

an,k(t) ϕ

(
x − xn,k

`n

)
, (43)

where now thexn,k are fixed and no longer time-dependent, whilean,k ∼ (`n)
ξ but τn ∼ `n. For a field described

by (43) one has that (32) and (33) hold buthst(ε) ∼ ε−(d+1)/ξ andD = d, while the fractal dimension of the
iso-surfacesv = constant isd −ξ . We conclude by noting that it is possible to obtain (see [8]) the scaling (37) using
Eq. (43), i.e. ignoring the sweeping, assumingτn ∼ (`n)

1−ξ andan,k ∼ (`n)
ξ , this corresponds to take separately

the proper temporal and spatial spectra. However, this is not completely satisfactory since one has not the proper
scaling in one fixed point (see Eq. (39) the only way to obtain this is through the sweeping).

6. Conclusion

In this paper, we have presented an investigation of deterministic mappings, stochastic processes and turbulence
in terms of theε-entropy. The major advantage of theε-entropy with respect to the KS-entropy (or usual Lya-
punov exponent) is the possibility to have information about the different temporal scales which are present in the
system.

The basic idea of our approach is to look at a sequence of data, not at fixed sampling time, but only when the
fluctuation in the signal is larger than some fixed threshold,ε. This procedure allows a remarkable improvement of
the possibility to compute(ε, τ )-entropy, which is well represented by the exact result (12) and the bounds (14).

This approach is particularly suitable in those systems without a unique characteristic time. In such cases the
method based on a coarse-grained dynamics on a fixed(ε, τ ) grid does not work very efficiently, words of very long
size being involved.

We recall that the mathematical definition of theε-entropy demands consideration of the infimum over all possible
partitions of the phase-space into elements with diameter not larger thanε [8]. Yet, in numerical investigations, one
is limited for choosing a limited number of partitions and then computing the entropy with the resulting symbolic
sequences. As far as the scaling behaviour of theε-entropy is concerned, one expects that the chosen partition will
only modify the prefactors and not the scaling exponents, at least if the system is not too inhomogeneous in the
range of scales in which one is interested in.

As far as we know, there are no rigorous results concerning the dependency of theε-entropy on the partitions
used, and there are no explicit examples where the scaling behaviour of theε-entropy is found to depend on the
choice of the partition (within a reasonable class). A rigorous study of the exit-time approach for the case of strongly
non-homogeneous systems and/or for systems where simple cubic partitions do not capture the correctε-dependency
of theε-entropy (if such systems exist) is beyond the scope of the present paper.

While the computational drawbacks of standard algorithms may obscure even theε-entropy scaling behaviour
(see Fig. 2), we have shown that the coding in terms of the exit-time events allows for a significant improvement in
detecting the scaling behaviour of theε-entropy, and, moreover, in estimating its lower and upper bounds.

We have applied the method to different systems: chaotic diffusive maps, intermittent maps showing sporadic
chaos, self- and multi-affine stochastic processes, and experimental turbulence data.

Applying the multifractal formalism one predicts the scalingh(ε) ∼ ε−3 for time measurement of velocity at
a given point in turbulent flows. This power law does not depend on the intermittent corrections and has been
confirmed by the experimental data analysis results. Moreover, we have shown the connection of the Taylor-frozen
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hypothesis and theε-entropy: the sweeping implies a non-trivial spatial correlation, quantitatively measured by an
“entropy” dimensionD = 8

3.
After the completion of our paper we became aware of Ref. [52] where an exit-time approach has been used to

characterize particle motion in supercooled liquids.
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Appendix A

In this appendix we recall some recently obtained results on the generation of multi-affine stochastic signals
[43–45]. The goal is to have a stochastic process whose scaling properties are fully under control. The first step
consists in generating a one-dimensional signal and the second in decorating it such as to build the most general
(d +1)-dimensional process,v(x, t), with given scaling properties in time and in space. As for the simplest case of a
one-dimensional system there are at least two different kind of algorithms. One is based on a dyadic decomposition
of the signal in a wavelet basis with a suitable assigned series of stochastic coefficients [43,44]. The second is based
on a multiplication of sequential Langevin processes with a hierarchy of different characteristic times [45]. The first
procedure suits particularly appealing for the modelization of spatial turbulent fluctuations, because of the natural
identification between wavelets and eddies in the physical space. The second one, on the other hand, looks more
appropriate for mimicking the turbulent time evolution in a fixed point of the space, because of its sequential nature.

Let us first summarize the main ingredient of both and then briefly explain how to merge them in order to have
a realistic spatial-temporal multi-affine signal. A non-sequential algorithm for one-dimensional multi-affine signal
in [0, 1], v(x), can be defined as [43,44]

v(x) =
N∑

n=1

2(n−1)∑
k=1

an,k ϕ

(
x − xn,k

`n

)
, (A.1)

where we have introduced a set of reference scales`n = 2−n and the functionϕ(x) is a wavelet-like function
[50], i.e. of zero mean and rapidly decaying in both real space and Fourier space. The signalv(x) is built in terms
of a superposition of fluctuations,ϕ((x − xn,k)/`n) of characteristic width̀ n and centred in different points of
[0, 1], xn,k = (2k + 1)/2n+1. In [45] it has been proved that provided the coefficientsan,k are chosen by a random
multiplicative process, i.e. the daughter is given in terms of the mother by a random process,an+1,k′ = Xan,k with
X a random number i.i.d. for any{n, k}, then the result of the superposition is a multi-affine function with given
scaling exponents, namely

〈〈|v(x + R) − v(x)|p〉〉 ∼ Rζ(p)

with ζ(p) = −1
2p − log2〈Xp〉 and`N ≤ R ≤ 1. In this appendix〈·〉 indicates the average over the probability

distribution of the multiplicative process. Besides the rigorous proof, the rationale for the previous result is simply
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that due to the hierarchical organization of the fluctuations one may easily estimate that the term dominating the
expression of a velocity fluctuation at scaleR, in (A.1) is given by the couple of indices{n, k} such thatn ∼ log2(R)

andx ∼ xn,k, i.e.v(x + R) − v(x) ∼ an,k. The generalization (A.1) tod-dimensional fields is given by

v(x) =
N∑

n=1

2d(n−1)∑
k=1

an,k ϕ

(
x − xn,k

`n

)
,

where now the coefficientan,k are given in terms of ad-dimensional dyadic multiplicative process. This class of
stochastic fields has been of great help in mimicking simultaneous spatial fluctuations of turbulent flows. On the
other hand, as previously said, sequential algorithms look more suitable for mimicking temporal fluctuations. Let
us now discuss how to construct these stochastic multi-affine fields. With the application to time-fluctuations in
mind, we will denote now the stochastic one-dimensional functions withu(t). The signalu(t) is obtained by a
superposition of functions with different characteristic times, representing eddies of various sizes [45]

u(t) =
N∑

n=1

un(t). (A.2)

The functionsun(t) are defined by the multiplicative process

un(t) = gn(t)x1(t)x2(t) · · · xn(t), (A.3)

wheregn(t) are independent stationary random processes, whose correlation times are supposed to beτn = (`n)
α,

whereα = 1 − ξ (i.e. τn are the eddy-turn-over time at scale`n) in the quasi-Lagrangian reference frame [37] and
α = 1 if one considersu(t) as the time signal in a given point, and〈g2

n〉 = (`n)
2ξ , whereξ is the Hölder exponent.

For a signal mimicking a turbulent flow, ignoring intermittency, we would haveξ = 1
3. Scaling will appear for all

time delays larger than the UV cut-offτN and smaller than the IR cut-offτ1. Thexj (t) are independent, positive
defined, identical distributed random processes whose time correlation decays with the characteristic timeτj . The
probability distribution ofxj determines the intermittency of the process.

The origin of (A.3) is fairly clear in the context of fully developed turbulence. Indeed we can identifyun with
the velocity difference at scalèn andxj with (εj /εj−1)

1/3, whereεj is the energy dissipation at scale`j .
The following arguments show, that the process defined according to (A.2) and (A.3), is multi-affine: because of

the fast decrease of the correlation timesτj = (`j )
α, the characteristic time ofun(t) is of the order of the shortest

one, i.e.τn = (`n)
α. Therefore, the leading contribution to the structure functionS̃q(τ ) = 〈〈|u(t + τ) − u(t)|q〉〉

with τ ∼ τn stems from thenth term in (A.2). This can be understood nothing that in the sumu(t + τ) − u(t) =∑N
k=1[uk(t + τ) − uk(t)] the terms withk ≤ n are negligible becauseuk(t + τ) ' uk(t) and the terms withk ≥ n

are sub-leading. Thus one has

S̃q(τn) ∼ 〈|un|q〉 ∼ 〈|gn|q〉〈xq〉n ∼ τ
(ξq/α)−(log2〈xq 〉)/α
n (A.4)

and therefore for the scaling exponents

ζq = ξq

α
− log2〈xq〉

α
. (A.5)

The limit of an affine function can be obtained when all thexj are equal to one. A proper proof of these result can
be found in [45]. Let us notice at this stage that the previous “temporal” signal forα = 1 − ξ is a good candidate
for a velocity measurements in a Lagrangian, co-moving, reference frame (see body of the paper). Indeed, in such a
reference frame the temporal decorrelation properties at scale`n are given by the eddy-turn-over timesτn = (`n)

1−ξ .
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On the other hand, in the laboratory reference frame the sweeping dominates the time evolution in a fixed point of
the space and we must use as characteristic times of the processesxn(t) the sweeping timesτ (s)

n = `n, i.e.α = 1.

Appendix B

We have now all the ingredients to perform a merging of temporal and spatial properties of a turbulent signal in
order to define stochastic processes able to reproduce in a realistic way both spatial and temporal fluctuations in
a Lagrangian reference frame. We just have to merge in a proper way the two previous algorithms. For example,
for ad-dimensional multi-affine field such as, say, one of the three components of a turbulent field in a Lagrangian
reference frame we can use the following model:

vL(x, t) =
N∑

n=1

2d(n−1)∑
k=1

an,k(t) ϕ

(
x − xn,k

`n

)
, (B.1)

where the temporal dependency ofan,k(t) is chosen following the sequential algorithm while its spatial part are
given by the dyadic structure of the non-sequential algorithm. In (B.1) we have used the notationvL(x, t) in order
to stress the typical Lagrangian character of such a field.

We are now also able to guess a good candidate for the same field measured in the laboratory-reference frame,
i.e. where the time properties are dominated by the sweeping of small scales by large scales. Indeed, it is enough to
physically reproduce the sweeping effects by allowing the centre of the wavelets-like functions used to mimic the
eddies-like turbulent structures to move according a swept-dynamics.

Fig. 11. Sketch of the construction of the synthetic turbulent field. Circles represent symbolically the eddies on the scalen, n − 1, n − 2. The
centres of the eddies are denoted byx, r indicates the distances between subsequent generations and the arrows hint to the sweeping motion.
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To do so, let us define the Eulerian model

vE(x, t) =
N∑

n=1

2d(n−1)∑
k=1

an,k(t) ϕ

(
x − xn,k(t)

`n

)
, (B.2)

where the difference with the previous definition is in the temporal dependency of the centres of the wavelets,
xn,k(t). According to the Richardson–Kolmogorov cascade picture, one assumes that sweeping is present, i.e.
xn,k = xn−1,k′ + rn,k, where(n, k′) labels the “mother” of the(n, k)-eddy andrn,k is a stochastic vector which
depends onrn−1,k′ and evolves with characteristic timeτn ∝ (`n)

1−ξ . See Fig. 11 for a sketch of the construction.
Furthermore, its norm is O(`n): c1 < |rn,k|/`n < c2, wherec1 andc2 are constants of order one.

We now see that if we measure in one fixed spatial point a fluctuations over a time delayδt , is like to measure a
simultaneous fluctuations at scale separationR = U0δt , i.e. due to the sweeping the main contribution to the sum
will be given by the terms with scale-indexn = log2(R = U0δt) while the temporal dependency of the coefficients
an,k(t) will be practically frozen on that timescale. This happens because in presence of the sweeping the main
contribution is given by the displacement of the centre at large scale, i.e.δr0 = |r0(t + δt) − r0(t)| ∼ U0δt , and
the eddy-turn-over time at scale`n is O((`n)

1−ξ ) always large that the sweeping time O(`n) at the same scale. In
the previous discussion, for sake of simplicity, we did not consider the incompressibility condition. However, one
can take into account this constraint by the projection on the solenoidal space.

In conclusion, we have a way to build up a synthetic signal with the proper Eulerian (laboratory) properties, i.e.
with sweeping, and also with the proper Lagrangian properties.
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