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Abstract

We present an investigation efentropy,i (¢), in dynamical systems, stochastic processes and turbulence. This tool allows
for a suitable characterization of dynamical behaviours arising in systems with many different scales of motion. Particular
emphasis is put on a recently proposed approach to the calculation efetiteopy based on the exit-time statistics. The
advantages of this method are demonstrated in examples of deterministic diffusive maps, intermittent maps, stochastic self- and
multi-affine signals and experimental turbulent data. Concerning turbulence, the multifractal formalism applied to the exit-time
statistics allows us to predict thiage) ~ ¢~ for velocity—time measurement. This power law is independent of the presence
of intermittency and has been confirmed by the experimental data analysis. Moreover, we showetieattthpy density of
a three-dimensional velocity field is affected by the correlations induced by the sweeping of large scales. © 2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Many sciences, ranging from geophysics to economics, share the crucial problem of extracting information about
the underlying dynamics of a system through the analysis of data time series [1]. In these investigations, a central
role is played by the evaluation of the complexity degree of a string of data as a way to probe the underlying
dynamics [2,3]. Since the pioneering works of Shannon on information theory [4,5], entropy has been proposed as
the proper mathematical tool to quantitatively address such a question. Nowadays, entropy constitutes a key-concept
to answer questions ranging from the more conceptual aim to distinguish a pure stochastic evolution from a chaotic
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deterministic one to the more applied goal of quantifying the degree of predictability at varying the space—time
resolution [6—11]. The latter question is evidently of primary importance, e.g., to set the proper resolution of the data
accumulation rate in experimental settings or to efficiently compress data which have to be stored or transmitted.
The distinction between stochastic and deterministic chaotic evolution can be formalized by introducing the
Kolmogorov—Sinai (KS) entropyiks [12,13]. Let us consider a time series(with z = 1,..., T) where, for
simplicity, the time is discretized but is a continuous variable. By defining a finite partition of the phase-space,
where each element of the partition has diameter smaller¢hand by recording for eachthe symbol (letter)
identifying the cellx, belongs to, one can code the time series into a sequence of symbols out of a finite alphabet.
Then, from the probabilities of words of length (m-words) one can compute thwe-block entropy. Finally, one
measures the information-gain in going fremwords to(m + 1)-words: in the limit of infinitely long wordsig —
0o0) and of arbitrary fine partitione(— 0) one obtaingiks, i.e. an entropy per unit time [6]. Naturally, this limit
cannot be carried out for any real data due to the finite sampling time and resolution of any experimental set-up. The
value ofhks characterizes the process which has generated the time series. For example, in a continuous stochastic
evolution, which reveals more and more unpredictable outcomes at increasing the resolution, the KS-entropy is
infinite. On the other hand, a regular deterministic signal is characterized by a zero KS-entropy, since itis completely
predictable after a finite number of observations, at any given resolution. Between these two limiting cases, a finite
positive value ofiks is the signature of a deterministic chaotic dynamics. The KS-entropy measures the growth
rate of unpredictability of the evolution, which coincides with the rate of information acquisition necessary to
unambiguously reconstruct the signal. However, the distinction between chaotic and stochastic dynamics can be
troublesome in practical application (see [11] for a related discussion). Indeed, only in simple, low-dimensional,
dynamical systems thigcs evaluation can be properly carried out. As soon as one has to cope with realistic systems,
e.g., geophysical flows, the number of degrees of freedom is so large that it inhibits any definite statement based
on the KS-entropy evaluation. Moreover, even if one were able to compute the KS-entropy of those systems, many
interesting features cannot be answered by only knowigg As a relevant example we mention the case of
turbulence, the dynamics of which is characterized by a hierarchy of fluctuations with different characteristic times
and spatial scales [14]. In this respect the KS-entropy is related only to the fastest timescale present in the dynamics.
Therefore, to quantify the predictability degree or entropy production, respectively, depending on the analysed
range of scales and frequencies, we need a more general tool [8-10,15]. In order to make a step to overcome
these difficulties, we consider a scale-dependent quantity, namebkréh&opy, s (¢), originally introduced by
Shannon [4,5] and Kolmogorov [16,17] to characterize continuous processes. It is remarkable that, in spite of its
deep relevance for the characterization of stochastic processes and non-trivial dynamical systesrsrtpy is
not widely used in the physical community. Only recently, mainly after the review paper of Gaspard and Wang [8]
and the introduction of the finite size Lyapunov exponent [9,10], there appeared some attempts in the use of the
e-entropy. For this reason, in Section 2 we give a brief pedagogical review, aimed to introduce the reader to the
e-entropy ande, t)-entropy. Practically thé:, t)-entropy/ (e, t), is the Shannon-entropy of timeseries sampled at
frequencyr —1 and measured with an accuraay the phase-space. We will see that the analysis aof-thependence
of h(¢) is able to highlight many dynamical features of very high-dimensional systems like turbulence as well as of
stochastic processes [8,15]. The determinatiol(ef ) is usually performed, as already stated, by looking at the
Shannon-entropy of the coarse-grained dynamics(en® grid in phase-space. Unfortunately, this method suffers
of so many computational drawbacks that it is almost unusable in many interesting situations. In particular, it is
very inefficient when one investigates phenomena arising from the complex interplay of many different spatial and
temporal scales, the ones we are interested in. Therefore, here we resort to a recently proposed method [18] based
on theexit-timeanalysis, which has been demonstrated to be both practically and conceptually advantageous with
respect to the standard one. In a few words, the idea consists in looking at a sequence of data not at fixed sampling
time but at fixed fluctuation, i.e. when the signal is larger than some given threghdldis procedure allows a
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noticeable improvement of the computational possibility to measure ¢émeropy. We give an ample demonstration
of the advantages of this method in a number of examples ranging from one-dimensional dynamical systems, to
stochastic (affine and multi-affine) processes and turbulence.

As far as turbulence is concerned, we present both an application to experimental data analysis and a theoret-
ical remark. Namely, we will see that from the computation of dkentropy of turbulent flows one has a deep
understanding of the spatial correlation induced by the sweeping of large scales on the smaller ones. In order to
understand these features we also introduce and discuss a new stochastic model of turbulent flows which takes into
account sweeping effects.

Thee-entropy, allows for a rather general and feasible analysis for the investigation of the dynamical properties
of systems characterized by the coexistence of many degrees of freedom and characteristic times. At variance with
other (more popular) quantities as Lyapunov exponents and KS-entropyethteopy has a rather wide range of
applicability also in experimental data analysis, where arbitrary fine resolution cannot be reached. The exit-times
approach to the-entropy is an efficient method to its computation.

The paper is organized as follows. In Section 2, we briefly define thetropy and discuss its properties; we
use a simple example which shows the conceptual relevance of this quantity together with the difficulties of its
computation. In Section 3, we introduce t&xit-timeapproach to the calculation of tlkeentropy discussing in
detail its theoretical and numerical advantages. In Section 4, we discuss the use-ehthepy in characterizing
intermittent low-dimensional dynamical systems and stochastic (affine and multi-affine) processes. In Section 5, we
present a study of high-Reynolds experimental data and a theoretical analysigs-@frttnepy in turbulence. Some
conclusions and remarks follow in Section 6. Details on the stochastic model of a turbulent field are discussed in
Appendices A and B.

2. Thee-entropy

Assume a given time-continuous record of one observaljig,c R, over a total time&l” long enough to ensure
a good statistics. For the sake of simplicity, we start consideriag an observable of a one-dimensional system.
The estimate of the entropy of the time rece(d) requires the construction of a symbolic dynamics [4—6,8]. With
this purpose, one considers, as a first step, a grid on the time axis, by introducing a small time intsovak to
obtain a sequende; = x(t;),i = 1,..., N}with N = [T /7] ([-] denotes the integer part). As a second operation,
one performs a coarse-graining of the phase-space, with a grid of meshamkdefines a set of symbols} (the
letters of the alphabet), that biunivocally correspond to the so-formed cells. Then, one has to consider the different
words of lengthz, out of the complete sequence of symbols:

Wi (e, T) = (Sks Skt -+ s Skn—1),

whereS; labels the cell containing;. See Fig. 1, where the above codification is sketched. From the probability
distribution P(W" (¢, 1)), estimated from the words frequencies, one calculates the block entipiesr):

Hye,1)=— Y P(W'(1)InPW"(E 1), )
(W"(e.0))

where{W" (¢, t)} indicates the set of all possible words of lengthThe (¢, T)-entropy per unit timek(e, t), is
finally defined as

1
hu(e, v) = ;[Hn+l(6» 7) — Hy(€, 7)], 2

1 1
h(e, ) = lim h,(e, ) = — lim —H, (¢, 7). 3)
n—00 Tn—>oop
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Fig. 1. Sketch of the coding procedure described in Section 2. On the gi¢em)-grid the symbolic sequence is
W§7(e,r):(1,2, 2,2,3,3,3,3,3,3,3,33,3,3,323,3,3,3,3,445,5,5).

For practical reasons the dependence on the details of the partition is ignored, while the rigorous definition is given
in terms of the infimum over all possible partitions with elements of diameter smalleetf@8]. As far as we

know, it is possible to carry out the computation of ¢hentropy according to the rigorous mathematical definition

only in few peculiar systems, e.g., in stationary Gaussian processes [16,17]. Therefore, in practice, one is forced
to choose a certain feasibdepartition, as, e.g., the previously described one. The above dgfinegtentropy is

nothing but the Shannon-entropy of the sequence of synilSglsin the case of the time-continuous evolutions,
whose realizations are continuous functions of time,tthiependence df (¢, t) does not exist [6,19]. When this
happens, one has a finiteentropy per unit timek(e). For genuine time-discrete systems, one can simply put
h(e) = h(e, T = 1). In all these cases,

hks = |imoh(€). 4)

The determination ofiks involves the study of the limits — oo ande — 0 which are in principle independent,
but in all practical cases one has to find an optimal choice of the parameters such that the estimated entropy is close
to the exact value [1,11].

For a genuine chaotic system, one has ks < oo, i.e. the rate of information creation is finite. On the other
hand, for a continuous random procégsss = oo. Therefore, in order to distinguish between a purely deterministic
system and a stochastic system it is necessary to perform theelimit 0. Unfortunately, from a physical or
numerical point of view this is extremely difficult. Nevertheless, by looking at the behaviour eféné¢ropy of
the signal at varying one can have some qualitative and quantitative insights on the chaotic or stochastic nature
of the underlying process [11]. Moreover, for some stochastic processes one can explicitly give an estimate of the
entropy scaling behaviour efentropy [8]. For instance, in the case of a stationary Gaussian process with spectrum
S(w) x w2, Kolmogorov [16,17] has rigorously derived

1
h(e) ~ 6—2 5)

for smalle. However, as we show in the following simple but non-trivial example there are many practical difficulties
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Fig. 2. Numerically evaluate¢, t)-entropy for the map (6) witlp = 0.8 computed with the Grassberger—Procaccia algorithm [7]-at1
(o), T =10 (A) andr = 100 (v) and different block lengths:(= 4, 8, 12, 20). The boxesl()) give the entropy computed with= 1 by using
periodic boundary condition over 40 cells. The latter is necessary in order to compute the Lyapunov expenig@ = 1.15. The straight
lines correspond to the two asymptotic behaviolits) = hks andh(e) ~ e 2.

in the computation of(¢) [11,18]. Let us consider the chaotic map

Xi41 = X¢ + p Sin 2t x;, (6)
which for p > 0.7326. .. produces large scale diffusive behaviour [20], i.e.

((x; — x0)%) ~ 2Dt for t — oo, 7

whereD is the diffusion coefficient. By computing tkeentropy of this system one expects [8,18]

D
h(e) ~ 1 fore <1, h(e) « — fore 2 1, (8)
€

where is the Lyapunov exponent. In Fig. 2 we show that the numerical computatib¢epfusing the standard
codification (Fig. 1) is highly non-trivial already in this simple system. Indeed the behaviour (8) in the diffusive
region is just poorly obtained by considering the envelop#,@¢, ) computed for different values af, while
looking at any single (small) value of(one would like to put = 1) one obtains a rather inconclusive result. This
is due to the fact that one has to consider very large block lengttis,order to obtain a good convergence for
Hy11(e, ) — Hy (e, T) in (3). In the diffusive regime, a dimensional argument shows that the characteristic time
of the system at scaleis T, ~ €2/D. If we consider, e.g¢ = 10 and typical values of the diffusion coefficient
D ~ 1071, the characteristic timdy, is much larger than the elementary sampling time 1.

Concluding this section, we remind that for systems living is 1 dimensions, the procedure sketched above,
for the determination of (¢, 7), goes unaltered, considering that the set of sym{gjisiow identifies cells in the
d-dimensional space where the state-veg{oy evolves.

3. How to compute thee-entropy with exit-times

The approach we propose to calculate) differs from the usual one in the procedure to construct the coding
sequence of the signal at a given level of accuracy [18]. This is an important point because the quality of the coding
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Fig. 3. The same signal as in Fig. 1, with the exit-time coding of the same preeisitie symbolic sequence obtained with the exit-time method
is 287 = [(t1, —1; (t2. = 1): (13, —=1); (ta, —1); (15, —1); (1. —1);: (17, —D); (18, —D)].

affects largely the result of theentropy computation. An efficient procedure reduces redundancy and improves the
quality of the results. The problem to encode signals efficiently is quite old and widely discussed in the literature
[3,21]. The most efficient compression or codification of a symbolic sequence is linked to its Shannon-entropy. The
Shannon’s compression theorem [4,5] states: given an alphabetsigmbols, and a sequence of these symbols,
{Si.i = 1,..., N} with entropy?, it is not possible to construct another sequeffei = 1,... , N'} — using

the same alphabet and containing the same information — whose I8nhdshsmaller than(z/Inm)N. That is

to say:h/Inm is the maximum allowed compression rate. As a consequence, if one is able to map a sequence
{s;,i = 1,..., Ny} of m symbols, into another sequenge,i = 1, ..., N,}, with the same symbols, the ratio

(N, /Ny) Inm gives an upper bound for the entropy{ef}. More generally, ifo;} is a codification ofs;} without
information loss, then the two sequences must have equal total en¥epg:) = N, h(o).

Now we introduce the coding of the signal by the exit-timg;), i.e. the time for the signal to undergo a
fluctuation of sizes. To do so, we define an alternating grid of cell sizim the following way: we consider the
original continuous-time record(z) and a reference starting time= 7. The first exit-timey1, is then defined as
the first time necessary to have an absolute variation eq@l tox(z), i.e.|x(tg + t1) — x(t0)| > %e. This is the
time the signal takes to exit the actual cell of sizé'hen we restart frony to look for the next exit-times,, i.e.
the first time such thatc (1o + t1 + 2) — x(t0 + 11)| > %e and so on, to obtain a sequence of exit-timese)}.

To distinguish the direction of the exit (up or down out of a cell), we introduce the kabel+1, depending on
whether the signal is exiting above or below. For clarifying the procedure see Fig. 3, where we sketch the coding
method for the signal shown in Fig. 1.

From Fig. 3 one recognizes the alternating structure of the grid: the starting point to fitiés in the middle of
the cellx(¢;) £ %e, whereas it lies on the border of the cefl; _1) + %e. In this way one avoids the fast exit of a cell
due to small fluctuations (compare Figs. 1 and 3). At the end of this construction, the trajectory is coded without
ambiguity, with the required accuracy, by the sequefigek;),i = 1,... , M}, whereM is the total number of
exit-time events observed during the total tilfieA continuous signal, evolving in a continuous time, is how coded
in two sequence— a discrete-valued or{é;} and a continuous-valued ofg}. Performing a coarse-graining of
the possible values assumedgy) by the resolution time;, we accomplished the goal of obtaining a symbolic
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sequence. After that, one proceeds as usual, studying the “exit-time words” of various lengtiese are the
subsequences of couples of symbols

Ql'n(e’ Tr) - ((Ui» ki)v (ni—i-la ki+l)7 cr (77i+n—1’ ki+n—l))v (9)

wheren ; labels the cell (of widthy) containing the exit-time;. From the probabilities of these words one calculates
the block entropies at the given time resolutiﬁlf(e, 7r), and then the exit-timée, 1;)-entropies

W (e.m) = lim H(e w) — H (e, m). (10)
The limit of infinite time resolution gives us tkeentropyper exit i.e.

W (e) = Iimohg(e, ). (11)
T
This result may be obtained also by arguing as follows. There is a one-to-one correspondence between the
(exit-time)-histories and thé&e, t)-histories (in the limitt — 0) originating from a givere-cell. The Shannon—
McMillan theorem [22] assures that the number of the typieat)-histories of lengthv, A/ (e, N), is such that:
INN(e, N) =~ h(e)Nt = h(e)T. For the number of typical (exit-time)-histories of length M (e, M), we have:
In M(e, M) ~ h¥? (e)M. If we considerl = M (t(e)) we must obtain the same number of (very long) histories.
Therefore, from the relatioM = T/{t(¢)), where(t(¢)) = 1/MZi"ilz,-, we obtain finally for the:-entropy per
unit time
2 2
hioy < MhE© _hfe) (12)
r (t(e))
Note that a relation similar to (12), without the dependence,dras been previously proposed, in the particular
case of the stochastic resonance [23,24]. In such a case, whemffectively takes only the two valuesl and
the transition can be assumed to be instantaneous, the meaning of the equation is rather transparent.
At this point we have to remind that in almost all practical situations there exists a minimum time intgrval,
a signal can be sampled with. Since there exists this minimum resolution time, we can at best ésti@ptey
means ofi? (¢) = h¥ (e, 1s), instead of performing the limit (11); so that we may put

h2 (e, o)
M= @ (13)
for small enough;. In most of the cases, the leadiageontribution tok(¢) in (13) is given by the mean exit-time
(t(e)) and not byn* (¢, 7). Anyhow, the computation df* (¢, 7;) is compulsory in order to recover, e.g., a zero
entropy for regular (e.g., periodic) signals.

Now we discuss how one can estimatedtentropy in practice. In particular, we introduce upper and lower bounds
for h(e) which are very easy to compute in the exit-time scheme [18]. We use the following notation: fokgiven
andty, ¥ (e, v) = h ({n;, k;i}), and we indicate wittk’ ({k;}) andh** ({n;}), respectively, the Shannon-entropy
of the sequencgk; } and{n;}. By applying standard results of information theory [4,5] one obtains:

1. W2 ({k;i}) < h® ({n;, k;}), since the mean uncertainty on the composed gvgnt; } cannot be smaller than that

on a partial onék;} (or {n;});

2. W2 ({ni, ki) < h2 ;) + h¥ ({k;}), since the uncertainty is maximal{if;} and{»;} are independent (correla-
tions can only decrease the uncertainty).
Moreover, we observe that, for a given finite resolutiprthe associated sequeneg} satisfies the bound

R (i) < HE (ni)).
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Fig. 4. Numerically computed lowef{) and upper €) bounds (witht = 1) of 4(¢) according to Eq. (14), for the map (6) with the same
parameters as in Fig. 2. The two straight lines correspond to the asymptotic behaviours as in Fig. 2. Thexcrosadsttie values of the
(€, T)-entropyh* (e, T) /{t(€)) with T = 0.1(¢ (€)).

In the above relatiom{io({n,-}) is the one-symbol entropy @f);} (i.e. the entropy of the probability distribution of
the exit-times measured on the scalewhich can be written as

HE (1)) = c(e) +In (““”) ,

Tr

wherec(e) = — [ P(z)In P(z)dz, and P(z) is the probability distribution function of the rescaled exit-time
z(e) = t(e)/{t(¢)). Finally, using the previous relations, one obtains the following bounds far-érropy:

h* ({ki}) < hie) < he ({ki}) + c(€) + In((t(e))/rr).
(t(e)) (t(e))

Note that such bounds are relatively easy to compute and give a good estimate. digs. (12)—(14) allow for
a remarkable improvement of the computational efficiency. Especially as far as the scaling behaki@)rief
concerned, one can see that the leading contribution is givén(by, and that:¥ (¢, 7) introduces, at worst, a
sub-leading logarithmic contribution® (e, 7;) ~ In((z(€))/7) (see Eq. (14)). This fact is evident in the case of
Brownian motion. In this case one hasge)) « €2/D, and
1. c(e) is of O(1) and independent ef(since the Brownian motion is a self-affine process);
2. W ({k;}) < In2, is small compared with Iitr(€))/7), So that neglecting the logarithmic correctiohgs) ~

1/(t(€)) x De2.
In Fig. 4 we show the numerical evaluation of the bounds (14) for the diffusive map (6). Fig. 4 has to be compared
with Fig. 2, where the usual approach has been used. While in Fig. 2, the expestgdpy scaling is just poorly
recovered as an envelope over many differgntvithin the exit-time method the predicted behaviour is easily
recovered in all the range ef> 1 with a remarkable improvement in the quality of the result.

Since we code the origind¥-words of length: into §2-words of non-constant length, our approach is similar to
the Ziv—Lempel compression method [3]. A similar idea has also been exploited in symbolic dynamics of intermittent
maps [25,26].

We underline that the reason for which the exit-time approach is more efficient than the usual one is a posteriori
intuitive. Indeed, at fixed, (¢ (¢)) automatically gives the typical time at that scale, and, as a consequence, it is not

(14)
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necessary to reach very large block sizes — at leassifhot too small. Especially for large we found that small

word lengths are enough to estimate ¢hentropy accurately. Of course, for smalli.e. the plateau of Fig. 4) one

has to use larger block sizes: here the exit-time is O(1) and one falls back to the problems of the standard method.

For smalle in deterministic system one has to distinguish two situations:

1. ¢ — Ofor discrete-time systems. In this limit the exit-time approach coincides with the usual one. The exit-times
always coincide with the minimum sampling time, i{et¢ — 0)) ~ 1 and we have to consider the possibility
to have jumps over more than one cell, i.e. theaymbols may take valuesl, £2, ...

2. ¢ — 0 for continuous-time systems. At very smalldue to the deterministic character of the system, one has
(t(e)) ~ €, and therefore one finds words composed with highly correlated symbols. So one has to treat very
large blocks in computing the entropy [27].

However, as far as high-dimensional systems are concerned, for some aspects, the points (1) and (2) are not of

practical interest. In these systems the analysis of the 0 limit is usually unattainable for several reasons [8,11],

and, moreover, in many cases one is more interested in thedacge behaviour. We believe that in these cases

the approach presented here, is practically unavoidable.

We conclude this section with two further remarks. First, up to now we considered a scalar signal as the output
of a one-dimensional system. This fact only entered in the two-valuedness bfveimable. If we are given a
vectorial signalx(r), describing the evolution of d-dimensional system, we have only to admit alues for
the direction-of-exit variablé. If the dynamics is discrete one has also to consider the possibility of jumps over
more than one cell (see previous discussion). Second, one can wonder about the deperdenandhe used
observable. Rigorous results insure that the KS-entropy, i.e. thedimit0 of z(¢) is an intrinsic quantity of the
considered system, its value does not change under a smooth change of variables. In th&ecagesnfropy,
in principle there could be dependencies on the chosen function. However, one can see that at least the scaling
properties should not strongly depend on the choice of the observafleo)lis a smooth function of, such that
the following property holds:

c1|8x] < |[A(x + 6x) — A(x)| < c2|éx]| (15)

with ¢1 andcs are finite constants, then there exist two constan@ndas, such that

hy (i, z) < ha(e. 1) < hy (i, r), (16)
o1 o2

whereh 4 (e, T) andhy, (¢, T) are thee, T)-entropies computed using the observabbndx, respectively. This result
implies that ifk (e, 7) shows a power-law behaviour as a functior ol (¢, ) ~ ¢ ~#, the same behaviour, with the
same exponerg, must be seen when using another, smooth, observable in the determinatioofhentropy.

4. Application of the e-entropy to deterministic and stochastic processes
4.1. An intermittent deterministic mapping

We discuss the application of exit-time approach to the computatiofnresftropy in strongly intermittent
low-dimensional systems.

In the presence of intermittency, the dynamics is characterized by very long, almost quiescent (laminar) intervals
separating short intervals of very intense (bursting) activity (see Fig. 5). Already at a qualitative level, one realizes
that coding the trajectory shown in Fig. 5 at fixed sampling times (Section 2) is not very efficient compared with



M. Abel et al./ Physica D 147 (2000) 12-35 21

1 T T T v T T T T T

0.9
0.8

T

0.7
0.6
05 F
04
03

SO

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
t

x(t)

Fig. 5. Typical evolution of the intermittent map (17) foe= 2.5 anda = 0.5.

the exit-times method, where the information on the very long quiescent periods is typically stored using only one
symbol. To be more quantitative, let us consider the following one-dimensional intermittent map [28]:

Xi+1 = (x; +axf)mod 1 (17)

with z > 1 anda > 0. The invariant density is characterized by a power-law singularity mear0, which is

a marginally stable fixed point, i.@.(x) o x17%. Forz > 2, the density is not normalizable, and an interesting
dynamical regime, the so-calleghoradic chaosappears [29,30]. Namely, far> 2 the separation between two
close trajectories behaves as

|8x,| ~ 8xo explecn’(In n)*1] (18)

with 0 < vg < 1 oryy = 1 andv; < 0. In the sporadic chaos regime, nearby trajectories diverge with a
stretched exponential, even if the Lyapunov exponent is zeroz Fer2 the system follows the usual chaotic
motion withvg = 1 andv; = 0. Sporadic chaos is intermediate between chaotic motion and regular one. This
can be understood by computing the Kolmogorov—Chaitin—Solomonoff complexity [29,30], or, as we show in the
following, by studying the mean exit-time. By neglecting the contributioh‘6fe), and considering only the mean
exit-time, we can estimate the total entroply, of a trajectory of lengttv as

Hy for largeN, (29)

(t(e))n
where([...])n indicates that the mean exit-time is computed on a sequence of Idhdilue to the power-law
singularity atx = 0, (¢(¢))y depends oV. In Eq. (19), we have dropped frokfiy the dependence an which is
expected to be weak. Indeed, due to singularity near the origin, one has that the exit-timescasedeminated
by the first exit from a region of size around the origin, so that(¢))y approximately gives the duration of the
laminar period (this is exact ferlarge enough).

In Fig. 6, the behaviour oft (¢)) 5 is shown as a function oV andz for two different choices oé. For large
enoughN the behaviour is almost independenkofind forz > 2 one has
7—2

(t(e))y x N*, wherea = P (20)
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indicate the power law (20). The averagié<))y has been obtained by averaging ovef tiiferent trajectories of lengttv, this average is
necessary because of the poor statistics caused by the singularity near the origia. Edr (¢)) y does not depend oM, p(x) is normalisable,
the motion is chaotic anély /N is constant.

Forz < 2one hagr(¢)) ~ constant atlarg®&'. The value ot is obtained by the following argument: the power-law
singularity leads ta; ~ 0 most of the time, and moreover, near the origin the map (18) can be approximated by the
differential equation d/dr = axt [28]. Therefore, denoting witlg the initial condition, one solves the differential
equation obtaining

(xo+ )Y — x5 = a(l - 2t (e).

Now, due to the singularity is typically much smaller thaxy + ¢, and hence we can neglect the temg+ €)1 72,

so that the exit-time is(e) o xé_z. By the probability density ofo, p(xo0) o x5~ °, one obtains the probability
distribution of the exit-timew (r) ~ r/A~9-1 the factor—* takes into account the non-uniform sampling of the
exit-time statistics (see discussion after Eq. (25)). Finally the average exit-time on a trajectory oiNemgilth

is given by

N
(t(€)n ~/ tp(t)dr ~ NG=D/E=D, (21)
0

The total entropy is finally given by

N

~ ' NYED
~NeoeD N )

Hy
note that this is exactly the samedependence found with the computation of the algorithmic complexity [29,30].
Let us underline that the entropy per unit time goes to zero very slowly, because of the sporadicity

Hy 1

—_—~

N (t@N

Let us note that we arrive at this results without any partitions of the phase-space of the system.



M. Abel et al./Physica D 147 (2000) 12-35 23

4.2. Affine and multi-affine stochastic processes

Self- and multi-affine processes are fully characterized by the scaling laws of the moments of signal increments
[14,31,32],6;x = x(tg) — x(t0 + 1):

({[8:x(t0)] 7)) ~ 5@, (22)

where¢ (¢) is a linear function of;, ¢ (¢) = &4, for a self-affine signalg(is the Holder exponent characterizing the
process) and a non-linear functiongfor a multi-affine signal. The averadgé)) is defined as the average over

the process distributio® (¢g, 3,;x(t9)), which gives the probability to have a fluctuatidpy (rg), at the instanty.

In the case of a stationary process, as it will be always assumed here, the probability distribution is time invariant
and the averagg-)) is computed by invoking an ergodic hypothesis, as a time-average. Sometimes, with an abuse
of language, a multi-affine process is also called a multifractal process. While a self-affine process has a global
scaling-invariant probability distribution function, a multi-affine process can be constructed by requiring a local (in
time) scaling-invariant fluctuations [14]. In a nutshell, one assumes a spectrum of different local scaling exponents
£: 8;x(tg) ~ 1510 with the probabilityP, (¢) ~ r1=P® to observe a given Holder exponenat time increment.

The functionD (&) can be interpreted as the fractal dimension of the set where the Holder exgasatiserved

[31]. The scaling exponentgq) are related ta (¢) by a Legendre transform. Indeed, one may define the average
process as an average over all possible singularitjeseighted by the probability to observe them:

(((8ix)7)) ~ / dg 154117 PE),
which in the limit of smallr by a saddle point estimation becomes
((8,x)7)) ~ 159 with ¢(q) = min(g +1 - D()). (23)

Eq. (23) can be generalizedd@y) = ming (¢ +d — D(£)) if the considered signal is embedded it-dimensional

space. Let us notice that in this language, the already discussed Brownian motion corresponds to a self-affine signal
with only one possible exponefit= % with D(%) = 1. In Appendix A one finds how to construct arbitrary self- and
multi-affine stochastic processes.

Let us now investigate the-entropy properties of these two important classes of stochastic signals by using
the exit-time approach. We will proceed by discussing the general case of multi-affine processes, noting that the
self-affine one is a particular case of them corresponding to have only one exponent in the spectrum. The exit-time
probability distribution function can be guessed by “inverting” the multifractal probability distribution functions
[33]. We expect that the following dimensional inversion should be correct (at least as far as leading scaling properties
are concerned). We argue that the probability to observe an exit of the signal through a barrier ofh@ight
timer(8x) is given by Ps, (¢ (8x)) ~ (8x)A=PE)/& 'where the height of the barrier and the exit-time are related by
the inversion of the previously introduced multi-affine scaling relatién) ~ (5x)Y%. In this framework we may
write down the “multifractal” estimate [33] of the exit-time moments, also called inverse structure functions [34]:

2, (8x) = ((19(8x))) ~ / dg (5x) A FTI=PENE ~ (5x)x @), (24)

wherey (¢) is obtained with a saddle point estimate in the limit of small

q+1—D(€))

: (25)

x(q) = mélﬂ(
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Fig. 7. Numerically computed loweE{) and upper¢) bounds for thee, t)-entropy in the case of a self-affine signal with= % (left) and;l1
(right), with T = 0.1(z (¢)). The two straight lines show the scaliag® ande—* for the left and the right figure, respectively.

The averaging by counting the number of exit-time eveitéas we did in the previous sections) and the averaging
with the uniform “multifractal” distribution are connected by the following relation [33]:

M . qg+1 $
((t1(8x))) = A}iLnooZtiqZ i U(;(a(x));»’
i=1

]
j=1%j

where the termi/zy:l[j takes into account the non-uniformity of the exit-time statistics. From the previous
relation evaluated faf = —1 we can easily deduce the estimate for the mean exit-time scaling law:

(1(8x)) = ((t71(8x))) "t ~ (8x) 2D (26)

and therefore, as in the previous sections, we may estimate the leading contributionémth@py of a multi-affine
signal:

h(8x) ~ (8x)* D, (27)

Letus notice thatin the simpler case of a self-affine signal with Holder expéniig is nothing but the dimensional
estimaté:(8x) ~ (8x)~¢ which is rigorous for Gaussian processes [16,17]. In this case the above argument is also
in agreement with the bounds (14): indeed for an affine signal the funetigrentering in (14) does not depend

one (we note here thatx plays the same role @f).

In Fig. 7a and b, we show the numerical estimate of the bounds (14) erehiopy in two different self-affine
signals with Holder exponengs= % and3, respectively (for details on the processes generation, see Appendix A).
The agreement with the expected result is very good. Let us notice that with the usual approach to the calculation of
the e-entropy for these simple signals the detection of the scaling behaviour is not so easy (see Figs. 15-17 of [8]).

In Fig. 8 we show the numerically computed lower and upper bounds far-&mropy of a multi-affine signal
by using the mean exit-time estimate. The multi-affine signal here studied is characterized by¢liayiag the
scaling exponent measured in turbulence (see Section 5). In particular, this meg3)tkat, and using Egs. (23)
and (25)x (—1) = —3 independently on the shape bf£). This is thee-entropies counterpart of the Kolmogorov
4/5 law [14]. The agreement with the multifractal prediction (the straight lines in Fig. 8) is impressive. To our
knowledge this is the first direct estimatees€&ntropy in multi-affine signals. We stress that the non-trivial aspect
of such an estimate is contained in the derivation of the inverse multifractal formulas (24) and (25).
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5. e-entropy and exit-times in turbulence

A turbulent flow is characterized by the presence of highly non-trivial chaotic fluctuations in space and time
[14]. The question we want to address here is to understand which kind of information can be captured by studying
the e-entropy of this important high-dimensional dynamical system. The main physical mechanism is the energy
transfer from large scaleg,, i.e. scales where forcing is active, down to the dissipation sgal@here kinetic
energy is converted into heat [14,32]. The ratio between these two scales increases with the Reynolds number. Fully
developed turbulence corresponds to the limit of very high-Reynolds numbers. In this limit, a turbulent velocity field
develops scaling laws in the range of scale intermediate betiygandy, the so-called inertial range. Kolmogorov
theory (1941) assumes a perfect self-similar behaviour for the velocity field in the inertial range. In other words,
the velocity field was thought to be a continuous self-affine field with Holder exp@nené as a function of its
spatial coordinates:

lv(x + R, 1) — v(x, )| ~ RY3

(hereafter, for simplicity, we neglect the vectorial notation). In terms of an averaged observable, this implies that
the structure functions, i.e. the moments of simultaneous velocity differences at diRidrmee a pure power-law
dependency forp <« R < Lo

Sp(R) = (([u(x + R, 1) — v(x, 0)|")) ~ R*P) (28)

with ¢(p) = %p. Experiments and numerical simulations have indeed shown that there are small (but important)
corrections to the Kolmogorov prediction (1941). This problem goes under the name of intermittency, the origin of
which is still one of the main open problem in the theory of Navier—Stokes equations [14,32,35,36]. In the language
of the previous section, an intermittent field is a multi-affine process.

As far as the time-dependency of a turbulent velocity field is concerned, one can distinguish between two different
time measurements. First, the standard one (actually used in most of the experimental investigation), consists in
measuring the time evolution by a probe fixed in some spatial locationy,say the flow. The time evolution
obtained in this way is strongly affected by the spatial correlations induced by the large scales sweeping. As a
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result, one can apply the so-called frozen-turbulent hypothesis (Taylor hypothesis) [35,36], which connects a time
measurement with a spatial measurement by the following relation:

v(xp7 fo + t) - v(xp’ tO) ~ v(xp - R’ tO) - v(xp7 t0)7

whereR = tUg andUy is the mean large scale sweeping velocity characteristic of the experiment. As a result of
the Taylor-hypothesis, one has that time measurements also show power-law behaviour with the same characteristic
exponents of the spatial measurements, namely, within the Kolmogorov theory

({[v@xp. t0+ 1) = v(xp, 10)|7)) ~ 15,

A second interesting possibility to perform time measurements consists in the so-called Lagrangian measurements
[37]. In this case, one has to follow the trajectory of a single fluid particle and measuring the time properties locally
in the co-moving reference frame. The main characteristics of this method is that the sweeping is removed and
so one can probe in details the “proper” time-fluctuations induced by the nonlinear terms of the Navier—Stokes
equations (for recent theoretical and numerical investigations of similar issues, see [37-40]).

The phenomenological understanding of all these spatial and temporal properties are well summarized by the
Richardson-cascade. The cascade picture describes a turbulent flow in terms of a superposition of fluctuations
(eddies) hierarchically organized on a set of scales ranging from the largest gre,the smallest one;, say
£y =2""Lowithn =0, ..., Nmaxand Nmax = 10g,(Lo/n). Each scale has its own typical evolution timg,
given in terms of the velocity difference at that scdlg; = v(x + ¢,) — v(x), by the dimensional estimate; =
0, /8,v ~ (£,)%/3. The most relevant dynamical interactions are supposed to happen only between eddies of similar
size, while each eddy is also subject to the spatial sweeping from eddies at larger scales. The energy is transferred
down-scale from the largest-eddy (the mother) to its daughters and from the daughters to their grand-daughters and
so on in a multi-step process similar, quantitatively and qualitatively to a stochastic multiplicative process [41,42].

As aresult of the previous picture, one can mimic a turbulent flow with a stochastic process hierarchically organized
in space, and with suitable time-dependence able to reproduce both the overall sweeping and the eddy-turn-over
times hierarchy [43—-45]. In Appendices A and B, we briefly remind a possible choice for these stochastic process.

5.1. Experimental data analysis

Now we present the computation of theentropy for two sets of high-Reynolds number experimental data,
obtained from an experiment in Lyon (Be, = 400) and from another experiment in ModaneRat = 2000).

The measurement in Lyon has been taken in a wind tunnel with a working section of 3.0 m and a cross section of
0.5x 0.5 m?. Turbulence was generated by a cylinder placed inside the wind tunnel, its diameter was 0.1 m. The hot

wire was placed 2.0 m behind the cylinder. The separation between both probes was approximately 1 mm [51]. The
measurement in Modane has been taken in a wind tunnel where the integral scalevZism and the dissipative

scale waggiss= 0.3 mm.

Let us first make an important remark. Whenever one wants to apply the multifractal formalism to turbulence
there exist some analytical and phenomenological constraints on the shape of the fi&ti@ntering in the
multifractal description. In particular, the most important constraint is the exact igQylt= 1. This, in turn,
implies that independently of the possible multifractal spectrum of the turbulent field on&-+has = —3, so that
as stated in the previous section, one obtains

hie) ~ XD =73, (29)

this is thee-entropy equivalent of the(3) = 1 result, i.e. of the 4/5 law of turbulence [14] (see Egs. (26) and (27)).
This means that there are no intermittent corrections te t@etropy. We have tested this prediction (here for the
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Fig. 9. Numerically computed lowel{) and upper ¢) bounds, withr = 0.1(z(¢)) for the (¢, T)-entropy in the case of Lyon turbulent data
(left) and Modane turbulent data (right). We also sho@v)) ~* (+) and its trivial dissipative scalingy—* (dashed line). The full line follows
the scalingsv—2 for thee-entropy, as predicted in Eq. (29).

firsttime presented), which has been already confirmed in the analysis of the stochastic multi-affine signal in Section
4.2, in two different experimental data sets. In Fig. 9 we showetkatropy computed for two different sets of
experimental data. As one can see, the theoretical prediction~ « 2 is well reproduced only for largevalues,
while for intermediate values the entropy shows a continuous bending without any clear scaling behaviour, only when
€ reaches values corresponding to dissipative velocity fluctuations we have the dissipative(s¢aling . The
strong intermediate regime between the dissipative and the inertial scaling behaviours is not a simple out-of-control
finite Reynolds effect. In fact, within the multifractal model of turbulence, one can understand the large crossover
between the two power laws in terms of the so-called intermediate-dissipative-range (IDR). The existence of an IDR
was originally predicted in [46] and further analysed in [33,47,48]. The IDR brings the signature of the mechanism
stopping the turbulent energy cascade, i.e. how viscous mechanism are effective in dissipating turbulent energy. In
particular, it was shown that the IDR can be fully described within the multifractal description once one allows the
possibility to have different viscous cut-off depending on the local degree of velocity singularity, i.e. depending on
the local realization of thé scaling exponent. The main idea consists in using again the multifractal superposition
(24) but considering that for velocity fluctuations at the edge between the inertial and the viscous range not all
possible scaling exponents contribute to the average [33,46]. It turns out that in the case of exit-time moments,
the extension of the IDR is much more important then what was previously measured for the velocity structure
functions (28). Therefore, the strong finite-range effects showed by the experimental data analysis of Fig. 9 can be
qualitatively and quantitatively understood as an effect of the IDR [33].

Let us conclude this section by comparing our results with a previous study efehtopy in turbulence [15].
There it was argued the following scaling behaviour:

h(e) ~ e 2, (30)

which differs from our prediction. The behaviour (30) has been obtained assumingdhat scale: is proportional

to the inverse of the typical eddy-turn-over time at that scale. We remind that hegpeesents a velocity fluctuation

Sv. Since the typical eddy-turn-over time for velocity fluctuations of ogler ¢ is t(¢) ~ €2, Eq. (30) follows.
Recalling the discussion of Section 5.1 about the two possible way of measuring a turbulent time signal it is clear
that the scaling (30) holds only in a Lagrangian reference frame (see also [9,10]). This explains the difference of
our prediction and (30).
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5.2. Ane-entropy analysis of the Taylor hypothesis in fully developed turbulence

By studying thes-entropy for the velocity field of turbulent flows i3l dimensionkSi(¢) (st indicatespaceand
time), we argue that the usually accepted Taylor hypothesis implies a spatial correlation which can be quantitatively
characterized by an “entropy” dimensith= g. In this section, for the sake of simplicity, we neglect intermittency,
i.e. we assume a pure self-affine field with Hoélder exposeﬁt%.

We discuss now how to construct a multi-affine field with the proper spatial and temporal scaling. The idea consists
in defining the signal as a dyadic three-dimensional superposition of wavelet-like fungtions- x, «(1))/£,)
whose centres move according to a swept dynamics. The coefficients of the decompggitiorare stochastic
functions chosen with suitable self-affine scaling properties both in time and in space. In particular, the exact
definition for a field with spatial Holder exponenin d dimensions is (see Appendix A for a brief review of some
existing results on synthetic turbulence, and Appendix B for a generalization which includes sweeping effects in
order to consider in a proper way the spatio-temporal correlations)

M 2d(n—1)

v ) =D Y ank(t) g (%"(”) : (31)

n=1 k=1

wherex, ; is the centre of théth wavelets at the level (for each dimension we consider one branching, i.e. two
variables, for passing to tlwet 1 level, see Fig. 10). According to the Richardson—Kolmogorov cascade picture, one
assumes that sweeping is presentxi,@1 x = X, x' +n+1.k, Where(n, k) labels the “mother” of thér + 1, k)-eddy

andr 41« is a stochastic vector which dependsrgrn and evolves with characteristic timg o )5, If the
coefficients{a, ¢} and{r, x} have characteristic timg, ~ (L)Y 5 and{a, r} ~ (£,)%, it is possible to show (see
Appendices A and B for details) that the field (31) has the properties

lu(x + R, 10) — v(X, to)| ~ [R|%, (32)
lu(X, 10 + 1) — v(X, 10)| ~ 1°, (33)

in addition the proper Lagrangian sweeping is satisfied. Now we are ready ferahiopy analysis of the field
(31). If one wants to look at the fiekdwith a resolutione, one has to take up to N given by

(en)* ~e, (34)

=1 (1,1)

(CAY) @2 @3 @4 @5 @6 4,7) (2]

Fig. 10. Branching process for the multiplicative model (we only showithel case), as described in the main text.
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in this way we are sure to consider velocity fluctuations of oed@hen the number of terms contributing to (31) is
#e) ~ 2HN ~ 79/E, (35)

By using a result of Shannon [4,5] one estimatesctiemtropy of the process, «(¢) (and also of,, ;) as

1 1

where the above relation is rigorous if the procesgsgsr) are Gaussian and with a power spectrum different form
zero on a band of frequeney 1/t,. The terms which give the main contribution are those with N with
v ~ (L) ~ 178/8 Collecting the above results, one finds

hS(e) ~ @ ~ e~ d=E+D)/E (37)
N

For the physical cas¢ = 3,& = :—13 one obtains
B (e) ~ e 1L (38)

The above result, has already been obtained in [8] with a different consideration. By denoting thightypical
velocity at the Kolmogorov scalg one has that Eq. (38) holds in the inertial rangegi.e. vy ~ Re /4, while for

€ <y, hSY(e) = constant~ Re'Y4, Let us now discuss the physical implications of (37). Consider an alternative
way to compute the-entropy of the field (x, 7): divide thed-volume in boxes of edge lengtlie) ~ /¢ and look

at the signals (x,, t), where thex,, are the centres of the boxes. In eaghwe have a time record whosesntropy

is

h(a)(E) ~ V5 (39)

because of the scaling (33). In (39) we use the symbgito denote the entropy of the temporal evolution of the
velocity field measured ir, . Therefore iSi(¢) will be obtained summing up all the “independent” contributions
(39), i.e.

hSY(e) ~ N(e)h @ () ~ N(e)e V%, (40)

whereN (¢) is the number of independent cells. It is easy to understand that the simplest assuli@tjorr
1(e)? ~ €4/5 gives a wrong result, indeed one obtains

hSt(é) ~ 6—(d+l)/5’ (42)
which is not in agreement with (37). In order to obtain the correct result (38) it is necessary to assume
N(e) ~1(e)P (42)

with D = d — &. In other words, one has to consider that the sweeping implies a non-trivial spatial correlation,
guantitatively measured by the expon&ntwhich can be considered as a sort of “entropy” dimension. Incidentally,

we note tha® has the same numerical value as the fractal dimensions of the iso-surfacesnstant [49]. From

this observation, at first glance, one could conclude that the above result is somehow trivial since it is simply related
to a geometrical fact. However, a closer inspection reveals that this is not true. Indeed, one can construct a self-affine
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field with spatial scaling and thus with the fractal dimension of the iso-surfages constant given by — & for
geometrical reasons, whif2 = d. Such a process can be simply obtained by eliminating the sweeping, i.e.

M 2d(n—1)

vOGH =Y Y ank() g <X ;X"’k) : (43)

n=1 k=1

where now the, ; are fixed and no longer time-dependent, whilg ~ (£,)% butt, ~ ¢,. For a field described

by (43) one has that (32) and (33) hold ift(e) ~ ¢~ @+D/¢ andD = d, while the fractal dimension of the
iso-surface® = constant i/ — &£. We conclude by noting that it is possible to obtain (see [8]) the scaling (37) using

Eq. (43), i.e. ignoring the sweeping, assuming~ (¢,)1~¢ anda, r ~ (¢,)%, this corresponds to take separately

the proper temporal and spatial spectra. However, this is not completely satisfactory since one has not the proper
scaling in one fixed point (see Eq. (39) the only way to obtain this is through the sweeping).

6. Conclusion

In this paper, we have presented an investigation of deterministic mappings, stochastic processes and turbulence
in terms of thee-entropy. The major advantage of theentropy with respect to the KS-entropy (or usual Lya-
punov exponent) is the possibility to have information about the different temporal scales which are present in the
system.

The basic idea of our approach is to look at a sequence of data, not at fixed sampling time, but only when the
fluctuation in the signal is larger than some fixed threshal@his procedure allows a remarkable improvement of
the possibility to computée, 7)-entropy, which is well represented by the exact result (12) and the bounds (14).

This approach is particularly suitable in those systems without a unique characteristic time. In such cases the
method based on a coarse-grained dynamics on aféxed grid does not work very efficiently, words of very long
size being involved.

We recall that the mathematical definition of thentropy demands consideration of the infimum over all possible
partitions of the phase-space into elements with diameter not larges {Baret, in numerical investigations, one
is limited for choosing a limited number of partitions and then computing the entropy with the resulting symbolic
sequences. As far as the scaling behaviour oéthatropy is concerned, one expects that the chosen partition will
only modify the prefactors and not the scaling exponents, at least if the system is not too inhomogeneous in the
range of scales in which one is interested in.

As far as we know, there are no rigorous results concerning the dependencyceéittr®py on the partitions
used, and there are no explicit examples where the scaling behaviour ektiteopy is found to depend on the
choice of the partition (within a reasonable class). A rigorous study of the exit-time approach for the case of strongly
non-homogeneous systems and/or for systems where simple cubic partitions do not capture thedeperaiency
of thee-entropy (if such systems exist) is beyond the scope of the present paper.

While the computational drawbacks of standard algorithms may obscure everettimpy scaling behaviour
(see Fig. 2), we have shown that the coding in terms of the exit-time events allows for a significant improvement in
detecting the scaling behaviour of thentropy, and, moreover, in estimating its lower and upper bounds.

We have applied the method to different systems: chaotic diffusive maps, intermittent maps showing sporadic
chaos, self- and multi-affine stochastic processes, and experimental turbulence data.

Applying the multifractal formalism one predicts the scaling) ~ 2 for time measurement of velocity at
a given point in turbulent flows. This power law does not depend on the intermittent corrections and has been
confirmed by the experimental data analysis results. Moreover, we have shown the connection of the Taylor-frozen
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hypothesis and the-entropy: the sweeping implies a non-trivial spatial correlation, quantitatively measured by an
“entropy” dimensiorD = 3.

After the completion of our paper we became aware of Ref. [52] where an exit-time approach has been used to
characterize particle motion in supercooled liquids.
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Appendix A

In this appendix we recall some recently obtained results on the generation of multi-affine stochastic signals
[43—-45]. The goal is to have a stochastic process whose scaling properties are fully under control. The first step
consists in generating a one-dimensional signal and the second in decorating it such as to build the most general
(d +1)-dimensional process(x, ), with given scaling properties in time and in space. As for the simplest case of a
one-dimensional system there are at least two different kind of algorithms. One is based on a dyadic decomposition
of the signal in a wavelet basis with a suitable assigned series of stochastic coefficients [43,44]. The second is based
on a multiplication of sequential Langevin processes with a hierarchy of different characteristic times [45]. The first
procedure suits particularly appealing for the modelization of spatial turbulent fluctuations, because of the natural
identification between wavelets and eddies in the physical space. The second one, on the other hand, looks more
appropriate for mimicking the turbulent time evolution in a fixed point of the space, because of its sequential nature.

Let us first summarize the main ingredient of both and then briefly explain how to merge them in order to have
a realistic spatial-temporal multi-affine signal. A non-sequential algorithm for one-dimensional multi-affine signal
in [0, 1], v(x), can be defined as [43,44]

N 2(11 -1)

v(x) = Z Z an k ¢ (x ;:nk> , (A1)

n=1 k=1

where we have introduced a set of reference scgles 27" and the functionp(x) is a wavelet-like function
[50], i.e. of zero mean and rapidly decaying in both real space and Fourier space. The &igigbuilt in terms

of a superposition of fluctuationg((x — x, x)/¢,) of characteristic widtt¢,, and centred in different points of
[0, 1], x,.k = (2k 4+ 1)/2"*1. In [45] it has been proved that provided the coefficients are chosen by a random
multiplicative process, i.e. the daughter is given in terms of the mother by a random pegGess,= Xa, x with

X arandom number i.i.d. for anfy, k}, then the result of the superposition is a multi-affine function with given
scaling exponents, namely

({lv(x + R) — v(x)|F)) ~ REP

with ¢(p) = —%p —log,(X?) and¢y < R < 1. In this appendix-) indicates the average over the probability
distribution of the multiplicative process. Besides the rigorous proof, the rationale for the previous result is simply
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that due to the hierarchical organization of the fluctuations one may easily estimate that the term dominating the
expression of a velocity fluctuation at sc&ein (A.1) is given by the couple of indicés, k} such thak ~ l0g,(R)
andx ~ x, ¢, i.e.v(x + R) — v(x) ~ ay . The generalization (A.1) td-dimensional fields is given by

N 2d(n—1)

000 =3 3 anee ()

n=1 k=1

where now the coefficient, ; are given in terms of d-dimensional dyadic multiplicative process. This class of
stochastic fields has been of great help in mimicking simultaneous spatial fluctuations of turbulent flows. On the
other hand, as previously said, sequential algorithms look more suitable for mimicking temporal fluctuations. Let
us now discuss how to construct these stochastic multi-affine fields. With the application to time-fluctuations in
mind, we will denote now the stochastic one-dimensional functions mith The signalu(z) is obtained by a
superposition of functions with different characteristic times, representing eddies of various sizes [45]

N
u(t) =Y un(t). (A.2)
n=1

The functionsy, (¢) are defined by the multiplicative process

un(t) = gn()x1(t)x2(1) - - - x, (1), (A.3)

whereg, (t) are independent stationary random processes, whose correlation times are supposgetéde”,
wherea = 1 — £ (i.e. 7, are the eddy-turn-over time at scdlg in the quasi-Lagrangian reference frame [37] and
o = 1if one considers(¢) as the time signal in a given point, a(‘gf) = (¢,)%, wheret is the Holder exponent.
For a signal mimicking a turbulent flow, ignoring intermittency, we would have % Scaling will appear for all
time delays larger than the UV cut-off, and smaller than the IR cut-offi. Thex;(r) are independent, positive
defined, identical distributed random processes whose time correlation decays with the characteristicTtmae
probability distribution ofx; determines the intermittency of the process.

The origin of (A.3) is fairly clear in the context of fully developed turbulence. Indeed we can idemntifyith
the velocity difference at scalg, andx; with (¢, /¢;-1)%/3, wheres; is the energy dissipation at scdlg

The following arguments show, that the process defined according to (A.2) and (A.3), is multi-affine: because of
the fast decrease of the correlation times= (¢;)“, the characteristic time of, (z) is of the order of the shortest
one, i.e.t, = (¢,)*. Therefore, the leading contribution to the structure funcﬁ@(’r) = {{lu(t + ) — u(@®)|?))
with T ~ 1, stems from theith term in (A.2). This can be understood nothing that in the s@mt+ t) — u(r) =
Z,’(V:l[uk(t + 1) — uk (¢)] the terms withk < n are negligible because. (t + t) >~ ux(¢) and the terms witlk > n
are sub-leading. Thus one has

~ —( q
Sa(tn) ~ (ual) ~ (|gul®) (x7)" ~ g1/~ 10RIN/ (A4)
and therefore for the scaling exponents

§q  logy(x)
gy = — =221 (A.5)
o o
The limit of an affine function can be obtained when all theare equal to one. A proper proof of these result can
be found in [45]. Let us notice at this stage that the previous “temporal” signal forl — & is a good candidate
for a velocity measurements in a Lagrangian, co-moving, reference frame (see body of the paper). Indeed, in such a

reference frame the temporal decorrelation properties at&cate given by the eddy-turn-over timgs= (¢,,)17¢.
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On the other hand, in the laboratory reference frame the sweeping dominates the time evolution in a fixed point of
the space and we must use as characteristic times of the progg&3dhe sweeping times,fs) ={,,i.e.a=1.

Appendix B

We have now all the ingredients to perform a merging of temporal and spatial properties of a turbulent signal in
order to define stochastic processes able to reproduce in a realistic way both spatial and temporal fluctuations in
a Lagrangian reference frame. We just have to merge in a proper way the two previous algorithms. For example,
for ad-dimensional multi-affine field such as, say, one of the three components of a turbulent field in a Lagrangian
reference frame we can use the following model:

N 2d(n—1)

WD =33 auye (%) , (8.1)

n=1 k=1

where the temporal dependencyafy (¢) is chosen following the sequential algorithm while its spatial part are
given by the dyadic structure of the non-sequential algorithm. In (B.1) we have used the nqt&tion in order
to stress the typical Lagrangian character of such a field.

We are now also able to guess a good candidate for the same field measured in the laboratory-reference frame,
i.e. where the time properties are dominated by the sweeping of small scales by large scales. Indeed, it is enough to
physically reproduce the sweeping effects by allowing the centre of the wavelets-like functions used to mimic the
eddies-like turbulent structures to move according a swept-dynamics.

%
x(n-1,k")

?—
K3
%

1(n-1)

Fig. 11. Sketch of the construction of the synthetic turbulent field. Circles represent symbolically the eddies on the:sedlen — 2. The
centres of the eddies are denoteddyy indicates the distances between subsequent generations and the arrows hint to the sweeping motion.
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To do so, let us define the Eulerian model

N zd(n—l)

)= Y ane (%) , (8.2)

n=1 k=1

where the difference with the previous definition is in the temporal dependency of the centres of the wavelets,
Xn.k(t). According to the Richardson—Kolmogorov cascade picture, one assumes that sweeping is present, i.e.
Xnk = Xn—1k + I'nk, Where(n, k') labels the “mother” of theén, k)-eddy andr,  is a stochastic vector which
depends om,_1 ; and evolves with characteristic timg o< (€,)Y%. See Fig. 11 for a sketch of the construction.
Furthermore, its norm is @,,): c1 < |rn.k|/€n < c2, Wherec1 andc are constants of order one.

We now see that if we measure in one fixed spatial point a fluctuations over a timeSdetaljke to measure a
simultaneous fluctuations at scale separaftes Upét, i.e. due to the sweeping the main contribution to the sum
will be given by the terms with scale-index= log,(R = Upét) while the temporal dependency of the coefficients
an.k(t) will be practically frozen on that timescale. This happens because in presence of the sweeping the main
contribution is given by the displacement of the centre at large scalérg.es [ro(t + §t) — ro(t)| ~ Uopét, and
the eddy-turn-over time at scalg is O((¢,)1 %) always large that the sweeping timé#)) at the same scale. In
the previous discussion, for sake of simplicity, we did not consider the incompressibility condition. However, one
can take into account this constraint by the projection on the solenoidal space.

In conclusion, we have a way to build up a synthetic signal with the proper Eulerian (laboratory) properties, i.e.
with sweeping, and also with the proper Lagrangian properties.
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