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Exit Time approach for Lagrangianand Eulerian TurbulenceA. Vulpiani 1, L. Biferale 2, G. Bo�etta 3,A. Celani 3, M. Cencini 1 and D. Vergni 11Dipartimento di Fisica and INFM, Universit�a di Roma \La Sapienza",Piazzale Aldo Moro 2, I-00185, Roma, Italy2Dipartimento di Fisica and INFM, Universit�a di Roma \Tor Vergata",Via della Ricerca Scienti�ca 1, I-00133 Roma, Italy3Dipartimento di Fisica Generale and INFM, Universit�a di Torino,Via Pietro Giuria 1, I-10125 Torino, ItalyAbstractUsually, intermittency in turbulence is studied by looking at the scaling of structurefunctions of di�erent orders versus time and space separation (Eulerian statistics)or by looking at di�erent moments of particles distance versus time (Lagrangianstatistics). Here, we discuss an alternative approach in which one analyses thestatistical properties of the time necessary to have a �xed velocity 
uctuation inthe Eulerian case or a �xed distance separation in the Lagrangian case. This methodgives good results also at low Reynolds numbers, where the traditional approachfor both Eulerian or Lagrangian descriptions is not very accurate. In addition,the approach here proposed is able to catch the statistical properties of laminar
uctuations in turbulent 
ows.1 IntroductionThe understanding of Eulerian intermittency, i.e. the corrections to the pre-diction obtained with dimensional arguments according to the Kolmogorov1941 approach, is one of the main goals of theoretical investigation of fullydeveloped turbulence (Frisch 1995). A related problem is the e�ect of Eule-rian intermittency on the Lagrangian properties, i.e. the corrections to theRichardson' law for the relative dispersion (Richardson 1926, Novikov 1989).For a detailed introduction to the statistical mechanics of Eulerian and La-grangian turbulence see Monin and Yaglom (1975), Frisch (1995), Bohr et al.(1998). Eulerian turbulence has attracted most of the attention in the last 20years, while there are relatively few studies for the corresponding Lagrangianstatistics (Novikov 1989, Borgas 1993, Bo�etta et al. 1999a, Paret et al. 1998).The standard way to characterize Eulerian intermittency is the investigation1



2 A. Vulpiani et al.of the scaling properties of the structure functions, i.e. the moments of thevelocity di�erence as function of the space separation (or time delay accordingto the Taylor hypothesis, e.g. in the case of one point velocity measuramentby an anemometer). Similarly for the Lagrangian aspects one looks at themoments of the relative particle pairs distance as function of time.The above usual methods work very well in the cases of very extended in-ertial range. Unfortunately, both in experimental and numerical context onehas to deal with a limitated scale separation which entails several practicaldi�culties that may originate ambiguous results.In the last few years, in order to characterize the non-asymptotic propertiesof transport in realistic systems, e.g. closed basins where the typical Eule-rian length is not very small compared with the domain size, an alternativeapproach has been proposed (Artale et al. 1997, Bo�etta et al. 1999a). Thebasic idea is to �x a certain separation for a particle pair and to analyse thestatistical properties of the time necessary for doubling its separation. The�xed scale method is able to give the proper description also in non-idealcases, while whenever large-scale separations are involved it coincides withthe usual analysis.In Section 2 we introduce the concept of Finite Size Lyapunov Exponentand we show its application to relative di�usion in �nite domains and for fullydeveloped turbulence with the aid of synthetic velocity �elds.Section 3 is devoted to the investigation of the statistical properties ofthe time necessary to have a �xed velocity 
uctuation of a turbulent signal,i.e. a sort of inverse structure function (Jensen 1999). This allows us for anunambiguous detection of the intermediate dissipative range (Biferale et al.1999).For the sake of completeness in Appendix A we report the basic elementsof the multifractal model. Appendix B contains some details about the FiniteSize Lyapunov Exponent.2 Exit times for Lagrangian dynamics2.1 Finite Size Lyapunov ExponentUnderstanding the statistics of particle pairs dispersion is of fundamentalinterest in Lagrangian turbulence. At variance with absolute (one particle)dispersion, which is dominated by large scale 
ow, relative (two particle) dis-persion is driven by the local velocity di�erence. Relative dispersion thus givesinformation on the velocity �eld structure at di�erent scales. Nevertheless thereconstruction of the Eulerian properties from Lagrangian measurements isnot a simple task (Monin and Yaglom 1975). This is due to the fact that,even in presence of a simple Eulerian velocity �eld, Lagrangian trajectoriescan display a very complex behaviour due to Lagrangian Chaos phenomenon



Exit Time approach ... 3(Ottino 1989).By de�nition, chaotic motion means exponential separation of close trajecto-ries. Therefore, in presence of Lagrangian Chaos we expect that the relativeseparation between advected tracers, R(t), typically grows exponentially intime. The exponential regime is observed only for separation R� �, where �is the characteristic scale of the smallest Eulerian structures (i.e. dissipativeeddies in turbulence). For 3D homogeneous fully developed turbulence in theinertial range, �� R(t)� L0 (being L0 the typical scale of energy injection),one has the Richardson law, R2(t) / t3. Hereafter (� � �) indicates the averageover many particle pairs. For very large separations (R� L0), the behaviourof R(t) depends on the structure of the velocity �eld and one has the usualdi�usive behaviour R2(t) � Dt, being D the di�usion coe�cient.In real settings, e.g. relatively small inertial range, the standard analysis at�xed delay time, i.e. to look at R2(t) as a function of t, can lead to ambiguousresults. The possibility to have at the same time particles pairs in range ofscales having di�erent dynamical and statistical properties, e.g. in turbulencein the dissipative range and in the inertial one (or in the inertial range andin the di�usive one), can produce long crossover e�ects which can be wronglyinterpretated (Artale et al. 1997).In the last few year, in order to overcome such di�culties we have devel-oped an alternative approach which is based on the study of the �xed-scalestatistics in spite of the �xed-time one. In particular, we have introduced anindicator, the Finite Size Lyapunov Exponent (FSLE), which is an extensionof the Lyapunov exponent by computing averaged quantities at �xed scale(Aurell et al. 1996, 1997). Let us now recall the basic idea.We de�ne a series of thresholds Rn = �nR0, (n = 1; :::; N) and we measurethe \doubling times", T (Rn), it takes for the two particles separation, ini-tially of size R(0) � R0, to grow from Rn to Rn+1, until it reaches the largestscale under consideration RN . The threshold rate, �, has to be larger than 1.However, we choose � not too large in order to avoid contributions comingfrom di�erent scales.Performing N � 1 experiments with di�erent initial conditions, we de�nethe Finite Size Lyapunov Exponent as:�(R) = 1hT (R)ie ln � ; (2.1)h(: : :)ie is the average on the doubling time experiments, which is di�erentfrom the time average over a single realization (Appendix B). For very smallseparation (i.e. R � �) from (2.1) one recovers the standard LagrangianLyapunov exponent, i.e. � = limR!0�(R) : (2.2)See Aurell et al. (1996, 1997) for a detailed discussion about these points. Atvery large scales, if there is a standard di�usive regime (R2(t) � Dt), one



4 A. Vulpiani et al.has: �(R) � DR2 : (2.3)Moreover, if the 
ow is turbulent, in the inertial range, between the tworegimes (2.2) and (2.3) one has the Richardson law, i.e.�(R) � R�2=3 : (2.4)The �xed scale analysis allows us to extract physical information at dif-ferent spatial scales avoiding some unpleasant consequences resulting fromworking at a �xed delay time t, see Artale et al. (1997).The FSLE analysis has been demonstrated an useful tool for the analysis ofLagrangian data in several situations. For example, in experiments of particlesdispersion in closed basins of size LB, the di�usive behaviour is observableonly if �� LB. Of course, this is not always the case (Bo�etta et al. 1999b).In the following we will describe the application of the FSLE analysis to thestudy of relative dispersion in turbulent 
ow and to the analysis of experimen-tal data in a non-turbulent 
ow, in which complex Lagrangian trajectoriesappear due to chaotic advection.2.2 Dispersion in synthetic turbulent �eldsWe consider now the relative dispersion of particles pairs advected by anincompressible, homogeneous, isotropic, fully developed turbulent �eld. TheEulerian statistics of velocity di�erences is characterised by the Kolmogorovscaling �v(R) � R1=3, in the inertial range (� � R � L0). Due to incom-pressibility, particles will typically di�use away from each other (Cocke 1969,Orszag 1970). For separations less than � we have exponential separationof trajectories, whereas at separations larger than L0 normal di�usion takesplace. In the inertial range the average pair separation is not a�ected neitherby large scale components of the 
ow, which simply sweep the pair, nor bysmall scale ones, which act incoherently and with low intensity. Accordingly,the separation R(t) feels mainly the action of velocity di�erences �v(R(t)) atscale R. As a consequence of the Kolmogorov scaling the separation growswith the Richardson law (Richardson 1926, Monin and Yaglom 1975)R2(t) � t3 : (2.5)However, some unclear behaviours are observed when the Reynolds numberis not large enough. As a matter of facts, even at very high Reynolds numbers,the inertial range is still too small to observe the scaling (2.5) without anyambiguity (Fung et al. 1992). On the other hand, we shall show that FSLEstatistics is e�ective already a relatively small Reynolds numbers.In order to investigate the problem of relative dispersion in turbulent 
ows apractical tool is the use of synthetic turbulent �elds (Elliot and Majda 1996,



Exit Time approach ... 5Fung et al. 1992, Fung and Vassilicos 1998). In fact, by means of stochasticprocesses it is possible to build a velocity �eld which reproduces some of thestatistical properties of velocity di�erences observed in real fully developedturbulence (Biferale et al. 1998). To overcome the di�culties related to thesweeping, we limit ourselves to a correct representation of two-point velocitydi�erences. In this case, if one adopts the reference frame in which one ofthe two tracers is at rest in the origin (the so called Quasi-Lagrangian frameof reference), then the motion of the second particle is ruled by the velocitydi�erence in this frame of reference, which has the same single time statisticsof the Eulerian velocity di�erences (L'vov et al. 1997).
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tFigure 1: Relative dispersion R(t) versus time. Synthetic turbulent simulationaveraged over 104 realizations. The line is the theoretical Richardson scaling t3=2.In Figure 1 we show the results of numerical simulations of pair disper-sion in a synthetic turbulent �eld with the Kolmogorov scaling (i.e. with nointermittency) at Reynolds number Re ' 106 (Bo�etta et al. 1999a). Theexpected power-law (2.5) can be observed without ambiguity only for hugeReynolds numbers. To explain the depletion of scaling range for the rela-tive dispersion, let us consider a series of experiments, in which a couple ofparticles is released at a separation R0 at time t = 0. At a �xed time t,as customarily is done, we perform an average over all di�erent experimentsto compute R2(t). But, unless t is large enough that all particle pairs have\forgotten" their initial conditions, the average will be biased. This is at theorigin of the 
attening of R2(t) for small times, which we can call a crossoverfrom initial condition to self similarity. In an analogous fashion there is acrossover for large times (of the order of the integral time-scale) since somecouples might have reached a separation larger than the integral scale, andthus di�use normally, meanwhile other pairs still lie within the inertial range,biasing the average and, again, 
attening the curve R2(t). This correction toa pure power law is far from being negligible in experimental data, where



6 A. Vulpiani et al.the inertial range is generally limited due to the relatively small value of theReynolds number and the experimental apparatus. For example, Fung andVassilicos (1998) and Fung (1992) show quite clearly the di�culties that mayarise even in numerical simulations with the standard approach.
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RFigure 2: Average inverse doubling time 1=hT (R)ie for the same simulation of theFigure 1. Observe the enhanced scaling region. The line is the theoretical Richard-son scaling R�2=3.To overcome these di�culties we exploit the approach based on the �xedscale statistics. The outstanding advantage of averaging at a �xed scale sep-aration is that it removes all crossover e�ects, since all sampled pairs belongto the inertial range. The expected scaling properties of the doubling timesis obtained by a simple dimensional argument. The time it takes for particleseparation to grow from R to 2R can be estimate as T (R) � R=�v(R); wethus expect the scaling 1hT (R)ie � R�2=3 (2.6)In Figure 2 the great enhancement of the scaling range achieved by using thedoubling times is evident. In addition, by using the FSLE it is possible tostudy in details the e�ect of Eulerian intermittency on the Lagrangian statis-tics of relative dispersion. See Bo�etta et al. (1999a) for a detailed discussionin the framework of the multifractal model.In conclusion we have that in this case doubling time statistics allows us amuch better estimate of the scaling exponents with respect to the standard{�xed time{ statistics.2.3 Analysis of experimental data using the FSLELet us now discuss the use of the FSLE for the analysis of experimental La-grangian data in a convective 
ow (Bo�etta et al. 1999b). The experimental



Exit Time approach ... 7apparatus is a rectangular convective tank L = 15:0 cm wide, 10:4 cm deepand H = 6:0 cm height �lled with water. The upper and lower surfaces arekept at constant temperature and the side walls can be considered as adia-batic.
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ux controlled by a feedback on thepower supply.The control parameter of the experiment is the Rayleigh number, Ra, whichvaries over a wide range of values. The geometrical con�guration constrainsthe convective pattern to two counter-rotating rolls divided by a oscillatingthermal plume (Miozzi et al. 1998). The Eulerian velocity �eld is thus, basi-cally, two-dimensional and time periodic.Lagrangian data are obtained by Particle Tracking Velocimetry (PTV) tech-nique. Figure 3 shows an example of the output of the PTV analysis.We report the result of the FSLE analysis applied to 6 di�erent runs at dif-ferent Rayleigh number. Each run consists of 22500 frames containing 900simultaneous trajectories on average. In Figure 4 we show the FSLE for therun at Ra = 2:39 108. In order to increases the statistics at large separationswe performed the analysis with di�erent initial threshold R0. For small R, weobserve the collapse of �(R) to the value of the Lyapunov exponent, indepen-dent on R0.For larger separation �(R) decreases to smaller values, indicating a slowingdown in the separation growth due to the presence of boundaries. The be-haviour of �(R) is well described by assuming exponential relaxation of R(t)to the saturation value Rmax (uniform distribution in the tank). The predic-



8 A. Vulpiani et al.tion is (Artale et al. 1997) �(R) ' 1�R Rmax �RR ; (2.7)where �R is the characteristic relaxation time (see Appendix B).
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RFigure 4: �(R) versus R for the run at Ra = 2:39 108 and di�erent initial thresholdR0 = 0:4 cm (�), R0 = 0:6 cm (4) and R0 = 0:8 cm (5). The straight line is theLyapunov exponent � = (0:12� 0:01)s�1 and the curve represents the saturationregime (2.7).We observe that in this experiment we cannot expect to observe di�usivebehaviour because the size of Eulerian structure is of the same order of thetank size. Let us conclude by observing that in this case the FSLE analysishas given a clear evidence of Lagrangian Chaos (i.e. � > 0) and, moreover, ithas given a good description of the separation evolution on all the observablescales.3 Exit times for turbulent signals and the In-termediate dissipative rangeThe most studied statistical indicators for intermittency in homogeneousisotropic turbulence are the longitudinal structure functions, i.e. momentsof the velocity increments at distance R in the direction of R̂:Sp(R) = hh(v(x+R)� v(x)) � R̂ipi : (3.1)Basically in typical experiments one is forced to analyse one-dimensionalstring of data, e.g. the output of hot-wire anemometer. In these cases the Tay-lor Frozen-Turbulence Hypothesis is used to bridge measurements in space



Exit Time approach ... 9with measurements in time. Within the Taylor Hypothesis, one has the large-scale typical time, T0 = L0=U0, and the dissipative time, td = �=U0, whereU0 is the large scale velocity �eld at the scale of the energy injection. Asa function of time increment, � , structure functions (3.1) assume the form:Sp(� ) =< [(v(t+ � )� v(t)]p>. It is well known that in the inertial range,�d � � � T0, the structure functions develop an anomalous scaling be-haviour: Sp(� ) � � �(p), where �(p) is a non linear function, while inside thedissipative range, � � �d, they show the laminar scaling: Sp(� ) � � p.Beside the huge amount of theoretical, experimental and numerical studiesdevoted to the understanding of velocity 
uctuations in the inertial range(Frisch 1995, Bohr et al. 1998), only few {mainly theoretical{ attempts havefocused on the Intermediate Dissipation Range (IDR), we just mention Frischand Vergassola (1991), Jensen et al. (1991), Gagne and Castaing (1991), L'vovet al. (1997), Benzi et al. (1999). By IDR we mean the range of scales, � � �d,between the inertial and the dissipative range (see Appendix A).The very existence of the IDR is relevant for the understanding of manytheoretical and practical issues. Among them we cite: the modelizations ofsmall scales for optimising Large Eddy Simulations and the validity of theRe�ned Kolmogorov Hypothesis, i.e. the bridge between inertial and dissipa-tive statistics.Non-trivial IDR properties are connected to intermittent 
uctuations in theinertial range. Namely, anomalous scaling laws, can be explained by assumingthat velocity 
uctuations in the inertial range are characterised by a spectrumof di�erent local scaling exponents: ��v = v(t+ � )� v(t) � � h with the prob-ability to observe at scale � a value h given by P� (h) � � 3�D(h). This is thecelebrated multifractal picture of the energy cascade (see Appendix A) whichhas been con�rmed by many independent experiments (Frisch 1995, Bohr etal. 1998). Non-trivial dissipative statistics is generated by 
uctuations of thedissipative cut-o� �d (see Appendix A):�d(h) � �1=(1+h) : (3.2)Here we present the measurement both in experimental and synthetic dataof a set of observable which are able to highlight the IDR properties. Themain idea is to take a one-dimensional string of turbulent data, v(t), andto analyse the statistical properties of the exit times from a set of de�nedvelocity-thresholds. Roughly speaking a kind of Inverse Structure Functions(Jensen 1999). This approach is rather naturally related to the �xed scalemethod discussed in section 2 to study the particle separation statistics.This analysis allow us to give the �rst clear evidence of non-trivial intermittent
uctuations of the dissipative cut-o� in turbulent signals.Fluctuations of viscous cut-o� are particularly important for all those regionsin the 
uid where the velocity �eld is locally smooth, i.e. the local 
uctuatingReynolds number is small. In this case, the matching between non-linear andviscous terms happens at scales much larger than the Kolmogorov scale, �d �



10 A. Vulpiani et al.��3=4. It is natural, therefore, to look for observable which feel mainly laminarevents. A possible choice is to measure the exit-time moments through a setof velocity thresholds. More precisely, given a reference initial time t0 withvelocity v(t0), we de�ne � (�v) as the �rst time necessary to have an absolutevariation equal to �v in the velocity data, i.e. jv(t0)� v(t0+ � (�v))j = �v. Byscanning the whole time series we recover the probability density functions of� (�v) at varying �v from the typical large scale values down to the smallestdissipative values. Positive moments of � (�v) are dominated by events witha smooth velocity �eld, i.e. laminar bursts in the turbulent cascade. Let usde�ne the Inverse Structure Functions (Inverse-SF) as:�p(�v) �<� p(�v)> : (3.3)It is necessary to perform the average over the time-statistics in a weightedway. This is due to the fact that by looking at the exit-time statistics we arenot sampling the time-series uniformly, i.e. the higher the value of � (�v) is,the longer it is detectable in the time series.It is easy to realize (Aurell et al. 1996, 1997 and Appendix B) that the sequen-tial time average of any observable based on exit-time statistics, h� p(�v)ie, isconnected to the uniformly-in-time multifractal average by the relation:h� p(�v)i = h� p+1ieh� ie : (3.4)According to the multifractal description we suppose that, for velocity thresh-olds corresponding to inertial range values of the velocity di�erences, ��dv �vm � �v� vM � �T0v, the following dimensional relation is valid:��v � � h ! � (�v) � �v1=h ;where the probability to observe a value � for the exit time is given by in-verting the multifractal probability, i.e. P (� � �v1=h) � �v[3�D(h)]=h. Madethis ansatz, the prediction for the Inverse-SF, �p(�v) evaluated for velocitythresholds within the inertial range is:�p(�v) � Z hmaxhmin dh �v[p+3�D(h)]=h � �v�(p) (3.5)where the RHS has been obtained by a saddle point estimate :�(p) = minh f[p+ 3 �D(h)]=hg : (3.6)Let us now consider the IDR properties.For each p, the saddle point evaluation (3.6) selects a particular h = hs(p)where the minimum is reached. Let us also remark that from (3.2) we havean estimate for the minimum value assumed by the velocity in the inertialrange given a certain singularity h: vm(h) = ��d(h)v � �h=(1+h). Therefore, the



Exit Time approach ... 11smallest velocity value at which the scaling (3.5) still holds depends on both� and h. Namely, �vm(p) � �hs(p)=1+hs(p). The most important consequenceis that for �v < �vm(p) the integral (3.5) is not any more dominated by thesaddle point value but by the maximum h value still dynamically alive at thatvelocity di�erence, 1=h(�v) = �1�log(�)= log(�v). This leads for �v < �vm(p)to a pseudo-algebraic law:�p(�v) � �v[p+ 3 �D(h(�v))]=h(�v) : (3.7)The presence of this p-dependent velocity range, intermediate between theinertial range, �p(�v) � �v�(p), and the dissipative scaling, �p(�v) � �vp, isthe IDR signature.
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Figure 5: Inverse Structure Functions �1(�v). The straight lines shows the dissipa-tive range behaviour (dashed) �1(�v) � �v, and the inertial range non intermittentbehaviour (dotted) �1(�v) � (�v)3. The inset shows the direct structure functionS1(�) with superimposed the intermittent slope �(1) = :39.Then, it is easy to show that Inverse-SF should display an enlarged IDR.Indeed, for the usual direct structure functions the saddle point hs(p) valueis reached for h < 1=3. This pushes the IDR to a range of scales very di�cultto observe experimentally (Gagne and Castaing 1991). On the other hand,as regards the Inverse-SF, the saddle point estimate of positive moments isalways reached for hs(p) > 1=3. This is an indication that we are probing thelaminar part of the velocity statistics. Therefore, the presence of the IDRmustbe felt much earlier in the range of available velocity 
uctuations. Indeed, ifhs(p) > 1=3, the typical velocity �eld at which the IDR shows up is givenby �vm(p) � �hs(p)=(1+hs(p)), that is much larger than the Kolmogorov value�v�d � �1=4.In Figure 5 we plot �1(�v) evaluated on a string of high-Reynolds numberexperimental data as a function of the available range of velocity thresholds



12 A. Vulpiani et al.�v. This data set has been measured in a wind tunnel at Re� � 2000. Onecan see that the scaling is very poor. Indeed, it is not possible to extract anyquantitative prediction about the inertial range slope. For this reason, wehave only drawn the dimensional non-intermittent slope and the dissipativeslope as a possible qualitative references. On the other hand, (inset of Figure5), the scaling behaviour of the direct structure functions < j�v(� )j>� � �(1)is quite clear in a wide range of scales. This is a clear evidence of IDR'scontamination into the whole range of available velocity values for the Inverse-SF cases. Similar results (not shown) are found for higher orders �p structurefunctions.
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Exit Time approach ... 13is in agreement with the prediction (3.6). The same agreement also holds forhigher moments.In Table 1, we compare the best �t to the �p(�v) measured on the synthetic�eld with the inversion formula (3.6). As for the comparison between the the-oretical expectation (3.6) and the synthetic data let us note the followingpoints. First, in Biferale et al. (1998), it was proved that the signal possessesthe correct direct-structure functions exponents for positive moments, i.e. the�(p) exponents are in a one-to-one correspondence with the D(h) curve forh < 1=3. Nothing was proved for observable feeling the h > 1=3 interval.Therefore the agreement between the inversion formula (3.6) and the numeri-cal results cannot be found analytically. Second, because the synthetic signalis de�ned by using Langevin processes, the less singular h-exponents expectedto contribute to the saddle-point (3.6) is h = 0:5. Therefore, the theoreticalprediction, �th(q), in Table 1 has been obtained by imposing hmax = 0:5.Let us now go back to the most interesting question about the statisticalproperties of the IDR. In order to study this question we have smoothedthe stochastic �eld, v(t), by performing a running-time average over a time-window, �T . Then we compare Inverse-SF obtained for di�erent Reynoldsnumbers, i.e. for di�erent dissipative cut-o�: Re � �T�4=3.The expression (3.7) predicts the possibility to obtain a data collapse of allcurves with di�erent Reynolds numbers by rescaling the Inverse-SF as followsFrisch and Vergassola (1991) and Jensen et al. (1991):�ln(�p(�v))=ln(�T=�T0) vs: � ln(�v=U)=ln(�T=�T0) ; (3.8)where U and �T0 are adjustable dimensional parameters.Within the same experimental (or synthetic) set up they are Reynoldsnumber independent (i.e. �T independent).The rationale for the rescaling (3.8) stems from the observation that, in theIDR, hs(p) is a function of ln(�v)= ln(�) only. Therefore, identifyingRe / ��1,the relation (3.8) directly follows from (3.7). This rescaling was originallyproposed as a possible test of IDR for direct structure functions in Frisch andVergassola (1991), but, as already discussed above, for the latter observable itis very di�cult to detect any IDR due to the extremely small scales involved,p 1 2 3 4 5�syn(p) 2.32(4) 4.40(8) 6.38(8) 8.3(1) 10.1(2)�th(p) 2.32 4.34 6.34 8.35 10.35Table 1: Comparison between the Inverse-SF scaling exponents �syn(p) measuredin the synthetic signal and the inversion of the theoretical multifractal prediction(3.6), �th(p). The synthetic signal has been de�ned such has theD(h) function leadsto the same set of experimental �(p) exponents for the direct structure functions.



14 A. Vulpiani et al.as in Gagne and Castaing (1991).
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ows has been reviewed. The main idea consists in looking at in-verse scaling properties, i.e. looking at the time necessary to reach a certain(�xed) separation between advected particles instead of �xing the time andlooking at the separations distribution for the Lagrangian aspects; or �xingthe velocity increments and looking at the distribution of spatial separationswhere that 
uctuations is detected for the Eulerian aspects.In both cases some new and/or better statistical properties have been de-tected. First, for the Lagrangian properties, we have shown that the inversestatistics, based on the de�nition of \doubling-time" dramatically improvesthe scaling properties characterising the statistics of multi-point particles cor-relations in both ideal turbulent 
ows and realistic domain-bounded 
ows.



Exit Time approach ... 15Second, for the Eulerian properties, the inverse statistics based on the con-cept of Inverse Structure Functions has revealed to be able to highlight theproperties of the Intermediate-Dissipative-Range, a range of scales almostunaccessible by the usual direct Structure Functions.Many questions are still open. As far as the Lagrangian approach is con-cerned, one can think to extend the preliminary attempts here presented toinvestigate realistic 
ows in a variety of di�erent cases, going from geophysical
ows to 
ows in closed laboratories. A sensible improvement in the quality ofdata analysis must certainly be expected.In the Eulerian case, the analysis of a wider set of experimental data couldmake it possible to quantify the agreement of the data-collapse with the pre-diction based on (3.2) and (3.7). Indeed, it is easy to realize that, by usingdi�erent parameterisation for the onset of the viscous range, one would havepredicted the existence of an extended IDR for �p(�v) but with a slightlydi�erent rescaling procedure (Benzi et al. 1996). The quality of experimentaldata available to us is not high enough to distinguish between the two di�erentpredictions. Analysing di�erent experimental data-sets, at di�erent Reynoldsnumbers, could also make it possible to better explore D(h) for h > 1=3 andthus to inquire possible non universalities of these D(h) values. For example,as discussed above, in the Langevin synthetic-data a good agreement betweenthe multifractal prediction and the numerical data is obtained by imposinghmax = 0:5, similarly in true turbulent data other hmax values could appeardepending on the physical mechanism driving the energy transfer at largescales.AcknowledgementsWe thank U. Frisch, M.H. Jensen and M. Vergassola for useful suggestions anddiscussions. This work has been partly supported by INFM (PRA-TURBO)and by the European Network Intermittency in Turbulent Systems (contractnumber FMRX-CT98-0175).Appendix A: Multifractal model for TurbulenceIn the Kolmogorov (1941) theory of fully developed turbulence a global in-variance with a �xed exponent hk41 = 1=3, is assumed:j(v(x+R; t)� v(x; t)) �Rj � �vR(x; t) � Rhk41 : (4.1)Relaxing this restrictive hypothesis, in the framework of multifractal model(Frisch 1995) one assumes that the velocity �eld possesses a local scale-invariance with a continuous spectrum of exponents, each of which belonging



16 A. Vulpiani et al.to a given fractal set, 
h, with dimension D(h):�vR(x; t) � Rh for x 2 
h (4.2)where h 2 (hmin, hmax).The probability to have a given scaling exponent h at the scale R is PR(h) �R3�D(h), so the scaling of the structure function assumes the form:Sp(R) = h(�vR)pi / Z hmaxhmin RhpR3�D(h)�(h)dh � R�(p) (4.3)where �(h) is a smooth function independent of R. If R� 1, using a saddlepoint estimate one obtains�(p) ' minh fhp + 3�D(h)g = h�p + 3�D(h�) (4.4)being h� solution of the equation D0(h�(p)) = p and D00(h�(p)) < 0. Becauseof the Kolmogorov four-�fth law, one has �(3) = minh fhp + 3 �D(h)g = 1.For the other moments, �(p), depends on the shape of D(h), which cannot beobtained with simple arguments.Frisch and Vergassola (1991), have shown that, in the context of the multi-fractal model of fully developed turbulence, it exists a non trivial behaviour ofthe structure functions in the region between the dissipative and the inertialrange. In this range of scale, called intermediate dissipative range (IDR), thestructure functions show a pseudo-algebraic scaling law, due to the 
uctua-tions of the viscous cut-o�. For a given scaling exponent h we can �nd theviscous cut-o�, �(h), for which the local Reynolds number is of order of unity:Re(R) = R�vR� � O(1)) �(h) � � 1(1+h) : (4.5)Taking into account the 
uctuations of the cut-o� the equation (4.3) assumesthe form Sp(R) � Z h(R)hmin Rhp+3�D(h) �(h)dh (4.6)and therefore:Sp(R) / 8><>: R�(p) if R� ��Rh(R)p+3�D(h(R)) if �� � R� �min (4.7)where �� is the length scale related to the h�(p) (given by the saddle pointevaluation) via �� = � 1(1+h�(p)) , h(R) is the maximum exponent still presentat the scale R for �� � R � �min given by � 1(1+h(R)) = R and �min is theviscous cut-o� related to the strongest singularity hmin. If the saddle-pointestimation, h�(p), is between h(R) and hmin then we have the usual scaling



Exit Time approach ... 17relation. Vice versa if h(R) > h�(p) we are in the intermediate dissipativerange and we have the pseudo algebraic scaling law.A simple calculation shows that one has a universal function both in theinertial and in the IDR by introducing the multiscaling transformation. Letus discuss this for the energy spectrum E(k) � k�1S2(R = k�1). Introducingthe rescaled variables F (�) = lnE(k)ln 1=� and � = ln kln 1=� (4.8)from eq. (4.7) one obtainsF (�) / 8><>: �(1 + �(2))� in the inertial range�2� 2� + �D(h = �1 + 1=�) in the IDR (4.9)The presence of the multiscaling behaviour was �rst experimentally veri�edby Gagne and Castaing (1991). However, since for Sp(R) the extension of theIDR is very small, it is extremely di�cult to have a strong evidence.Appendix B: Finite Size Lyapunov ExponentIn this appendix we discuss the practical method for computing the Finite SizeLyapunov Exponent. De�ned a norm for the distanceR(t) between two trajec-tories (two particles for relative dispersion), one de�nes a series of thresholdsRn = �nR0 (n = 1; : : : ; N). Then one measures the time T�(Rn) that a per-turbation of size Rn takes to grow up to Rn+1. The threshold rate � shouldnot be taken too large to avoid growth on di�erent scales. On the other hand,� cannot be too close to one, otherwise T�(Rn) would be of the order of thetime step in the integration. Typically, one uses � = 2 or � = p2. For sim-plicity T� is called \doubling time" even if � 6= 2.The doubling times T�(Rn) are measured by following the evolution of thetrajectories' separation from its initial value Rmin � R0 up to the largestthreshold RN . One must choose Rmin � R0 in order to allow the directionof the initial perturbation to align with the most unstable direction in thephase-space. Moreover, one must pay attention to keep RN smaller then thesaturation distance, RN < Rsat, so that all thresholds can be attained (Rsatis the typical distance of two uncorrelated trajectories).The evolution of the error from the initial value, Rmin, up to the largestthreshold, RN , carries out a single error-doubling experiment. At the end ofeach error-doubling experiment one rescales one trajectory at the initial dis-tance Rmin with respect to the other and starts another experiment. After Nerror-doubling experiments, one can estimates the expectation value of somequantity A as: hAie = 1N NXi=1 Ai : (4.1)



18 A. Vulpiani et al.The average < (: : :) >e is not a time average: di�erent error doubling exper-iments may takes di�erent times. Indeed we havehAit = 1T Z T0 A(t)dt = PiAi�iPi �i = hA� ieh� ie : (4.2)In the particular case in which A is the inverse of doubling time itself (as forcompute the Lyapunov exponent) we have from (4.2)�(Rn) = 1hTr(Rn)ie ln � : (4.3)The above described method assumes that the distance between the twotrajectories is continuous in time. For maps or for discrete sampling in timethe method has to be slightly modi�ed see Aurell et al. (1997).Before concluding this Appendix, we discuss the behaviour of �(R) near thesaturation, i.e. for distance of the order of the domain size. This behaviourmainly stems from the assumption that for large times the tracers tend to uni-formly distribute in the domain and that small deviations from the asymptoticuniform distribution relax exponentially to that. This assumption is usuallysatis�ed in generic chaotic dynamical systems even if it is di�cult to prove.In the language of dynamical systems exponential relaxation to asymptoticdistribution means that the second eigenvalue, �, of the Perron-Frobeniusoperator is inside the unitary circle, the relaxation time is �k = � ln j�j (seeOtt (1993) for an introduction).If the distribution relaxes exponentially to the uniform, the same should holdfor the moment of the distribution. Therefore, for the large time evolution ofthe distance between two trajectories, R(t), one expects:R(t) � Rmax �Ae�t=�R (4.4)being A and �R system-dependent. For t � �R or equivalently for (Rmax �R(t))=R(t)� 1, one has:ddt lnR = �(R) = 1�R Rmax �RR : (4.5)For an exact computation of eqs. (4.4-4.5) in a particular system see theappendix in Artale et al. (1997).ReferencesArtale, V., Bo�etta, G., Celani, A., Cencini, M., Vulpiani, A. (1997) \Dispersion ofpassive tracers in closed basins: Beyond the di�usion coe�cient", Phys. Fluids9, 3162.
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