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Abstract

Usually, intermittency in turbulence is studied by looking at the scaling of structure
functions of different orders versus time and space separation (Eulerian statistics)
or by looking at different moments of particles distance versus time (Lagrangian
statistics). Here, we discuss an alternative approach in which one analyses the
statistical properties of the time necessary to have a fixed velocity fluctuation in
the Eulerian case or a fixed distance separation in the Lagrangian case. This method
gives good results also at low Reynolds numbers, where the traditional approach
for both Eulerian or Lagrangian descriptions is not very accurate. In addition,
the approach here proposed is able to catch the statistical properties of laminar
fluctuations in turbulent flows.

1 Introduction

The understanding of Eulerian intermittency, i.e. the corrections to the pre-
diction obtained with dimensional arguments according to the Kolmogorov
1941 approach, is one of the main goals of theoretical investigation of fully
developed turbulence (Frisch 1995). A related problem is the effect of Eule-
rian intermittency on the Lagrangian properties, i.e. the corrections to the
Richardson’ law for the relative dispersion (Richardson 1926, Novikov 1989).
For a detailed introduction to the statistical mechanics of Eulerian and La-
grangian turbulence see Monin and Yaglom (1975), Frisch (1995), Bohr et al.
(1998). Eulerian turbulence has attracted most of the attention in the last 20
years, while there are relatively few studies for the corresponding Lagrangian
statistics (Novikov 1989, Borgas 1993, Boffetta et al. 1999a, Paret et al. 1998).

The standard way to characterize Eulerian intermittency is the investigation



of the scaling properties of the structure functions, i.e. the moments of the
velocity difference as function of the space separation (or time delay according
to the Taylor hypothesis, e.g. in the case of one point velocity measurament
by an anemometer). Similarly for the Lagrangian aspects one looks at the
moments of the relative particle pairs distance as function of time.

The above usual methods work very well in the cases of very extended in-
ertial range. Unfortunately, both in experimental and numerical context one
has to deal with a limitated scale separation which entails several practical
difficulties that may originate ambiguous results.

In the last few years, in order to characterize the non-asymptotic properties
of transport in realistic systems, e.g. closed basins where the typical Fule-
rian length is not very small compared with the domain size, an alternative
approach has been proposed (Artale et al. 1997, Boffetta et al. 1999a). The
basic idea is to fix a certain separation for a particle pair and to analyse the
statistical properties of the time necessary for doubling its separation. The
fixed scale method is able to give the proper description also in non-ideal
cases, while whenever large-scale separations are involved it coincides with
the usual analysis.

In Section 2 we introduce the concept of Finite Size Lyapunov Exponent
and we show its application to relative diffusion in finite domains and for fully
developed turbulence with the aid of synthetic velocity fields.

Section 3 is devoted to the investigation of the statistical properties of
the time necessary to have a fixed velocity fluctuation of a turbulent signal,
i.e. a sort of inverse structure function (Jensen 1999). This allows us for an
unambiguous detection of the intermediate dissipative range (Biferale et al.

1999).

For the sake of completeness in Appendix A we report the basic elements
of the multifractal model. Appendix B contains some details about the Finite
Size Lyapunov Exponent.

2 Exit times for Lagrangian dynamics

2.1 Finite Size Lyapunov Exponent

Understanding the statistics of particle pairs dispersion is of fundamental
interest in Lagrangian turbulence. At variance with absolute (one particle)
dispersion, which is dominated by large scale flow, relative (two particle) dis-
persion is driven by the local velocity difference. Relative dispersion thus gives
information on the velocity field structure at different scales. Nevertheless the
reconstruction of the Fulerian properties from Lagrangian measurements is
not a simple task (Monin and Yaglom 1975). This is due to the fact that,
even in presence of a simple Eulerian velocity field, Lagrangian trajectories
can display a very complex behaviour due to Lagrangian Chaos phenomenon



(Ottino 1989).

By definition, chaotic motion means exponential separation of close trajecto-
ries. Therefore, in presence of Lagrangian Chaos we expect that the relative
separation between advected tracers, R(t), typically grows exponentially in
time. The exponential regime is observed only for separation R < 1, where n
is the characteristic scale of the smallest Eulerian structures (i.e. dissipative
eddies in turbulence). For 3D homogeneous fully developed turbulence in the
inertial range, n < R(t) < Lo (being Lg the typical scale of energy injection),
one has the Richardson law, R?(¢) o t*. Hereafter (---) indicates the average
over many particle pairs. For very large separations (R > L), the behaviour

of R(t) depends on the structure of the velocity field and one has the usual
diffusive behaviour R2(t) ~ Dt, being D the diffusion coefficient.

In real settings, e.g. relatively small inertial range, the standard analysis at
fixed delay time, i.e. to look at Rz—(t) as a function of ¢, can lead to ambiguous
results. The possibility to have at the same time particles pairs in range of
scales having different dynamical and statistical properties, e.g. in turbulence
in the dissipative range and in the inertial one (or in the inertial range and
in the diffusive one), can produce long crossover effects which can be wrongly
interpretated (Artale et al. 1997).

In the last few year, in order to overcome such difficulties we have devel-
oped an alternative approach which is based on the study of the fixed-scale
statistics in spite of the fixed-time one. In particular, we have introduced an
indicator, the Finite Size Lyapunov Exponent (FSLE), which is an extension
of the Lyapunov exponent by computing averaged quantities at fixed scale
(Aurell et al. 1996, 1997). Let us now recall the basic idea.

We define a series of thresholds R, = p" Ry, (n = 1,..., N) and we measure
the “doubling times”, T'(R,,), it takes for the two particles separation, ini-
tially of size R(0) < Ry, to grow from R, to R,11, until it reaches the largest
scale under consideration Ry. The threshold rate, p, has to be larger than 1.
However, we choose p not too large in order to avoid contributions coming
from different scales.

Performing A" >> 1 experiments with different initial conditions, we define
the Finite Size Lyapunov Exponent as:

AR) = mlnp, (2.1)

((...))e is the average on the doubling time experiments, which is different
from the time average over a single realization (Appendix B). For very small
separation (i.e. R < n) from (2.1) one recovers the standard Lagrangian
Lyapunov exponent, i.e.

A= lim A(R). (2.2)

R—0

See Aurell et al. (1996, 1997) for a detailed discussion about these points. At
very large scales, if there is a standard diffusive regime (R?(t) ~ Dt), one



has:
D

Moreover, if the flow is turbulent, in the inertial range, between the two
regimes (2.2) and (2.3) one has the Richardson law, i.e.

MR) (2.3)

AR) ~ R, (2.4)

The fixed scale analysis allows us to extract physical information at dif-

ferent spatial scales avoiding some unpleasant consequences resulting from
working at a fixed delay time ¢, see Artale et al. (1997).
The FSLE analysis has been demonstrated an useful tool for the analysis of
Lagrangian data in several situations. For example, in experiments of particles
dispersion in closed basins of size Lg, the diffusive behaviour is observable
only if n < Lpg. Of course, this is not always the case (Boffetta et al. 1999b).
In the following we will describe the application of the FSLE analysis to the
study of relative dispersion in turbulent flow and to the analysis of experimen-
tal data in a non-turbulent flow, in which complex Lagrangian trajectories
appear due to chaotic advection.

2.2 Dispersion in synthetic turbulent fields

We consider now the relative dispersion of particles pairs advected by an
incompressible, homogeneous, isotropic, fully developed turbulent field. The
Eulerian statistics of velocity differences is characterised by the Kolmogorov
scaling dv(R) ~ R'3 in the inertial range (n < R < Lo). Due to incom-
pressibility, particles will typically diffuse away from each other (Cocke 1969,
Orszag 1970). For separations less than n we have exponential separation
of trajectories, whereas at separations larger than Ly normal diffusion takes
place. In the inertial range the average pair separation is not affected neither
by large scale components of the flow, which simply sweep the pair, nor by
small scale ones, which act incoherently and with low intensity. Accordingly,
the separation R(t) feels mainly the action of velocity differences dv(R(t)) at
scale R. As a consequence of the Kolmogorov scaling the separation grows

with the Richardson law (Richardson 1926, Monin and Yaglom 1975)
R2(t) ~ t°. (2.5)

However, some unclear behaviours are observed when the Reynolds number
is not large enough. As a matter of facts, even at very high Reynolds numbers,
the inertial range is still too small to observe the scaling (2.5) without any
ambiguity (Fung et al. 1992). On the other hand, we shall show that FSLE
statistics is effective already a relatively small Reynolds numbers.

In order to investigate the problem of relative dispersion in turbulent flows a
practical tool is the use of synthetic turbulent fields (Elliot and Majda 1996,



Fung et al. 1992, Fung and Vassilicos 1998). In fact, by means of stochastic
processes it is possible to build a velocity field which reproduces some of the
statistical properties of velocity differences observed in real fully developed
turbulence (Biferale et al. 1998). To overcome the difficulties related to the
sweeping, we limit ourselves to a correct representation of two-point velocity
differences. In this case, if one adopts the reference frame in which one of
the two tracers is at rest in the origin (the so called Quasi-Lagrangian frame
of reference), then the motion of the second particle is ruled by the velocity
difference in this frame of reference, which has the same single time statistics
of the Eulerian velocity differences (L'vov et al. 1997).
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Figure 1: Relative dispersion R(t) versus time. Synthetic turbulent simulation
averaged over 10* realizations. The line is the theoretical Richardson scaling %/2.

In Figure 1 we show the results of numerical simulations of pair disper-
sion in a synthetic turbulent field with the Kolmogorov scaling (i.e. with no
intermittency) at Reynolds number Re ~ 10° (Boffetta et al. 1999a). The
expected power-law (2.5) can be observed without ambiguity only for huge
Reynolds numbers. To explain the depletion of scaling range for the rela-
tive dispersion, let us consider a series of experiments, in which a couple of
particles is released at a separation Ry at time ¢t = 0. At a fixed time ¢,
as customarily is done, we perform an average over all different experiments
to compute Rz—(t) But, unless ¢ is large enough that all particle pairs have
“forgotten” their initial conditions, the average will be biased. This is at the
origin of the flattening of R2(t) for small times, which we can call a crossover
from initial condition to self similarity. In an analogous fashion there is a
crossover for large times (of the order of the integral time-scale) since some
couples might have reached a separation larger than the integral scale, and
thus diffuse normally, meanwhile other pairs still lie within the inertial range,

biasing the average and, again, flattening the curve R?(¢). This correction to
a pure power law is far from being negligible in experimental data, where



the inertial range is generally limited due to the relatively small value of the
Reynolds number and the experimental apparatus. For example, Fung and
Vassilicos (1998) and Fung (1992) show quite clearly the difficulties that may
arise even in numerical simulations with the standard approach.
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Figure 2: Average inverse doubling time 1/(1T'(R)). for the same simulation of the

Figure 1. Observe the enhanced scaling region. The line is the theoretical Richard-
2/3

son scaling R~

To overcome these difficulties we exploit the approach based on the fixed
scale statistics. The outstanding advantage of averaging at a fixed scale sep-
aration is that it removes all crossover effects, since all sampled pairs belong
to the inertial range. The expected scaling properties of the doubling times
is obtained by a simple dimensional argument. The time it takes for particle
separation to grow from R to 2R can be estimate as T(R) ~ R/§v(R); we

thus expect the scaling
1

(T(R)).
In Figure 2 the great enhancement of the scaling range achieved by using the
doubling times is evident. In addition, by using the FSLE it is possible to
study in details the effect of Eulerian intermittency on the Lagrangian statis-
tics of relative dispersion. See Boffetta et al. (1999a) for a detailed discussion
in the framework of the multifractal model.

~ R7*3 (2.6)

In conclusion we have that in this case doubling time statistics allows us a
much better estimate of the scaling exponents with respect to the standard
—fixed time— statistics.

2.3 Analysis of experimental data using the FSLE

Let us now discuss the use of the FSLE for the analysis of experimental La-
grangian data in a convective flow (Boffetta et al. 1999b). The experimental



apparatus is a rectangular convective tank L = 15.0 em wide, 10.4 ¢cm deep
and H = 6.0 em height filled with water. The upper and lower surfaces are
kept at constant temperature and the side walls can be considered as adia-
batic.
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Figure 3: An example of trajectories reconstructed by the PVT technique (unit in
pixels). The circle on the bottom represents the heater.

Convection is generated by an electrical circular heater, 0.8 em in diameter,
located in the mid-line of the tank, just above the lower surface (see Figure
3). The heather furnish a constant heat flux controlled by a feedback on the
power supply.

The control parameter of the experiment is the Rayleigh number, Ra, which
varies over a wide range of values. The geometrical configuration constrains
the convective pattern to two counter-rotating rolls divided by a oscillating
thermal plume (Miozzi et al. 1998). The Eulerian velocity field is thus, basi-
cally, two-dimensional and time periodic.

Lagrangian data are obtained by Particle Tracking Velocimetry (PTV) tech-
nique. Figure 3 shows an example of the output of the PTV analysis.

We report the result of the FSLE analysis applied to 6 different runs at dif-
ferent Rayleigh number. Each run consists of 22500 frames containing 900
simultaneous trajectories on average. In Figure 4 we show the FSLE for the
run at Ra = 2.3910%. In order to increases the statistics at large separations
we performed the analysis with different initial threshold Ry. For small R, we
observe the collapse of A(R) to the value of the Lyapunov exponent, indepen-
dent on Rp.

For larger separation A(R) decreases to smaller values, indicating a slowing
down in the separation growth due to the presence of boundaries. The be-
haviour of A(R) is well described by assuming exponential relaxation of R(t)
to the saturation value R, (uniform distribution in the tank). The predic-



tion is (Artale et al. 1997)
AMR) ~» — 22— (2.7)

where 7g is the characteristic relaxation time (see Appendix B).
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Figure 4: A(R) versus R for the run at Ra = 2.39 10® and different initial threshold
Ry = 0.4¢cm (o), Ry =0.6cm (A) and Ry = 0.8cm (7). The straight line is the
Lyapunov exponent A = (0.12 £ 0.01)s™! and the curve represents the saturation
regime (2.7).

We observe that in this experiment we cannot expect to observe diffusive
behaviour because the size of Eulerian structure is of the same order of the
tank size. Let us conclude by observing that in this case the FSLE analysis
has given a clear evidence of Lagrangian Chaos (i.e. A > 0) and, moreover, it
has given a good description of the separation evolution on all the observable
scales.

3 Exit times for turbulent signals and the In-
termediate dissipative range
The most studied statistical indicators for intermittency in homogeneous

isotropic turbulence are the longitudinal structure functions, i.e. moments
of the velocity increments at distance R in the direction of R:

Sy(R) = ([(v(x+ R) - v(x))- R]"). (3.1)

Basically in typical experiments one is forced to analyse one-dimensional
string of data, e.g. the output of hot-wire anemometer. In these cases the Tay-
lor Frozen-Turbulence Hypothesis is used to bridge measurements in space



with measurements in time. Within the Taylor Hypothesis, one has the large-
scale typical time, Ty = Lo/Up, and the dissipative time, t; = n/Uy, where
Uy is the large scale velocity field at the scale of the energy injection. As
a function of time increment, 7, structure functions (3.1) assume the form:
Sp(t) =<[(v(t+ 7) —v(t)]” >. Tt is well known that in the inertial range,
7, < 7 K Tp, the structure functions develop an anomalous scaling be-
haviour: S,(7) ~ 7¢®) where ((p) is a non linear function, while inside the
dissipative range, 7 < 74, they show the laminar scaling: S,(7) ~ 7°.

Beside the huge amount of theoretical, experimental and numerical studies
devoted to the understanding of velocity fluctuations in the inertial range
(Frisch 1995, Bohr et al. 1998), only few —mainly theoretical- attempts have
focused on the Intermediate Dissipation Range (IDR), we just mention Frisch
and Vergassola (1991), Jensen et al. (1991), Gagne and Castaing (1991), L’vov
et al. (1997), Benzi et al. (1999). By IDR we mean the range of scales, 7 ~ 74,
between the inertial and the dissipative range (see Appendix A).

The very existence of the IDR is relevant for the understanding of many
theoretical and practical issues. Among them we cite: the modelizations of
small scales for optimising Large Eddy Simulations and the validity of the
Refined Kolmogorov Hypothesis, i.e. the bridge between inertial and dissipa-
tive statistics.

Non-trivial IDR properties are connected to intermittent fluctuations in the
inertial range. Namely, anomalous scaling laws, can be explained by assuming
that velocity fluctuations in the inertial range are characterised by a spectrum
of different local scaling exponents: §,v = v(t+7) —v(t) ~ 7" with the prob-
ability to observe at scale 7 a value h given by P,(h) ~ 7°~P()_ This is the
celebrated multifractal picture of the energy cascade (see Appendix A) which
has been confirmed by many independent experiments (Frisch 1995, Bohr et
al. 1998). Non-trivial dissipative statistics is generated by fluctuations of the
dissipative cut-off 7; (see Appendix A):

Ta(h) ~ AN (3.2)

Here we present the measurement both in experimental and synthetic data
of a set of observable which are able to highlight the IDR properties. The
main idea is to take a one-dimensional string of turbulent data, v(¢), and
to analyse the statistical properties of the exit times from a set of defined
velocity-thresholds. Roughly speaking a kind of Inverse Structure Functions
(Jensen 1999). This approach is rather naturally related to the fixed scale
method discussed in section 2 to study the particle separation statistics.
This analysis allow us to give the first clear evidence of non-trivial intermittent
fluctuations of the dissipative cut-off in turbulent signals.

Fluctuations of viscous cut-off are particularly important for all those regions
in the fluid where the velocity field is locally smooth, i.e. the local fluctuating
Reynolds number is small. In this case, the matching between non-linear and
viscous terms happens at scales much larger than the Kolmogorov scale, 75 ~



v~3/* 1t is natural, therefore, to look for observable which feel mainly laminar
events. A possible choice is to measure the exit-time moments through a set
of velocity thresholds. More precisely, given a reference initial time ¢, with
velocity v(tg), we define 7(dv) as the first time necessary to have an absolute
variation equal to dv in the velocity data, i.e. |v(tg) — v(to + T(dv))| = dv. By
scanning the whole time series we recover the probability density functions of
7(év) at varying dv from the typical large scale values down to the smallest
dissipative values. Positive moments of 7(dv) are dominated by events with
a smooth velocity field, i.e. laminar bursts in the turbulent cascade. Let us
define the Inverse Structure Functions (Inverse-SF) as:

Y, (6v) =<rP(dv)> . (3.3)

It is necessary to perform the average over the time-statistics in a weighted
way. This is due to the fact that by looking at the exit-time statistics we are
not sampling the time-series uniformly, i.e. the higher the value of 7(dv) is,
the longer it is detectable in the time series.

It is easy to realize (Aurell et al. 1996, 1997 and Appendix B) that the sequen-
tial time average of any observable based on exit-time statistics, (77(dv))., is
connected to the uniformly-in-time multifractal average by the relation:

().

T)e

(TP(0v)) = (3.4)
According to the multifractal description we suppose that, for velocity thresh-
olds corresponding to inertial range values of the velocity differences, ¢,,v =
Uy K 0V L vy = O7,0, the following dimensional relation is valid:

h 1/h
2

S~ 1t = T(0v) ~ v

where the probability to observe a value 7 for the exit time is given by in-
verting the multifractal probability, i.e. P(1 ~ dv'/*) ~ §oB=PWI/A Made
this ansatz, the prediction for the Inverse-SF, ¥,(dv) evaluated for velocity
thresholds within the inertial range is:

hmax

¥, (80) ~ / dh §olP*3=DBI/E - 5x(p) (3.5)

hrmin

where the RHS has been obtained by a saddle point estimate :
\(p) = min {{p+ 3 — DRI/} (3.6)

Let us now consider the IDR properties.

For each p, the saddle point evaluation (3.6) selects a particular h = hy(p)
where the minimum is reached. Let us also remark that from (3.2) we have
an estimate for the minimum value assumed by the velocity in the inertial
range given a certain singularity h: vy, (h) = &, ,pnyv ~ " (+R)  Therefore, the



smallest velocity value at which the scaling (3.5) still holds depends on both
v and h. Namely, 6v,,(p) ~ vP@)/1+5:()  The most important consequence
is that for dv < dv,,(p) the integral (3.5) is not any more dominated by the
saddle point value but by the maximum h value still dynamically alive at that
velocity difference, 1/h(dv) = —1—log(v)/ log(dv). This leads for dv < §v,,(p)

to a pseudo-algebraic law:
S (50) ~ g0l + 3 = DIR(EO)/AGD), 5.7

The presence of this p-dependent velocity range, intermediate between the
inertial range, ¥,(dv) ~ §vX?) and the dissipative scaling, ¥,(dv) ~ §vP, is
the IDR signature.
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Figure 5: Inverse Structure Functions ¥ (dv). The straight lines shows the dissipa-
tive range behaviour (dashed) ¥ (édv) ~ dv, and the inertial range non intermittent
behaviour (dotted) 31 (dv) ~ (dv)>. The inset shows the direct structure function
S1(7) with superimposed the intermittent slope (1) = .39.

Then, it is easy to show that Inverse-SF should display an enlarged IDR.
Indeed, for the usual direct structure functions the saddle point hs(p) value
is reached for A < 1/3. This pushes the IDR to a range of scales very difficult
to observe experimentally (Gagne and Castaing 1991). On the other hand,
as regards the Inverse-SF, the saddle point estimate of positive moments is
always reached for hy(p) > 1/3. This is an indication that we are probing the
laminar part of the velocity statistics. Therefore, the presence of the IDR must
be felt much earlier in the range of available velocity fluctuations. Indeed, if
hs(p) > 1/3, the typical velocity field at which the IDR shows up is given

by §v,(p) ~ vhe@/(+2®) that is much larger than the Kolmogorov value

Ovy, ~ A,
In Figure 5 we plot ¥;(dv) evaluated on a string of high-Reynolds number

experimental data as a function of the available range of velocity thresholds



6v. This data set has been measured in a wind tunnel at Rey, ~ 2000. One
can see that the scaling is very poor. Indeed, it is not possible to extract any
quantitative prediction about the inertial range slope. For this reason, we
have only drawn the dimensional non-intermittent slope and the dissipative
slope as a possible qualitative references. On the other hand, (inset of Figure
5), the scaling behaviour of the direct structure functions < |dv(7)| >~ 7¢(1)
is quite clear in a wide range of scales. This is a clear evidence of IDR’s
contamination into the whole range of available velocity values for the Inverse-
SF cases. Similar results (not shown) are found for higher orders ¥, structure
functions.
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Figure 6: Inverse Structure Function X4 (v) versus év for the synthetic signals not
smoothed (N S) and smoothed with time windows: §T" = 4.8-107%, 3.1075, 2.107°,
the straight line is obtained from the inverse multifractal prediction (3.6).

In order to better understand the scaling properties of ¥,(dv) we investi-
gate a synthetic multiaffine field obtained by combining successive multipli-
cations of Langevin dynamics (Biferale et al. 1998). The advantage of using
a synthetic field is that one can control analytically the scaling properties
of direct structure functions in order to have the same scaling laws observed
in experimental data. An IDR can be introduced in the synthetic signals by
smoothing the original dynamics on a moving time-window of size 67". Im-
posing a smoothing time-window is equivalent to fix the Reynolds number,
Re ~ §T=%3. The purpose to introduce this stochastic multiaffine field is
twofold. First we want to reach Reynolds numbers high enough to test the
inverse-multifractal formula (3.6). Second, we want to test that the very ex-
tended IDR observed in the experimental data, see Figure 5, is also observed
in this stochastic field. This would support the claim that the experimental
result is the evidence of an extended IDR.

In Figure 6 we show the Inverse-SF, ¥;(dv), measured in the multiaffine syn-
thetic signal at high-Reynolds numbers. The observed scaling exponent, y(1),



is in agreement with the prediction (3.6). The same agreement also holds for
higher moments.

In Table 1, we compare the best fit to the ¥,(dv) measured on the synthetic
field with the inversion formula (3.6). As for the comparison between the the-
oretical expectation (3.6) and the synthetic data let us note the following
points. First, in Biferale et al. (1998), it was proved that the signal possesses
the correct direct-structure functions exponents for positive moments, i.e. the
((p) exponents are in a one-to-one correspondence with the D(h) curve for
h < 1/3. Nothing was proved for observable feeling the A > 1/3 interval.
Therefore the agreement between the inversion formula (3.6) and the numeri-
cal results cannot be found analytically. Second, because the synthetic signal
is defined by using Langevin processes, the less singular h-exponents expected
to contribute to the saddle-point (3.6) is h = 0.5. Therefore, the theoretical
prediction, y4(¢), in Table 1 has been obtained by imposing h,q, = 0.5.
Let us now go back to the most interesting question about the statistical
properties of the IDR. In order to study this question we have smoothed
the stochastic field, v(¢), by performing a running-time average over a time-
window, 67". Then we compare Inverse-SF obtained for different Reynolds
numbers, i.e. for different dissipative cut-off: Re ~ 6T ~4/3,

The expression (3.7) predicts the possibility to obtain a data collapse of all
curves with different Reynolds numbers by rescaling the Inverse-SF as follows

Frisch and Vergassola (1991) and Jensen et al. (1991):
—In(X,(0v))/In(6T/6Ty) vs. —In(dv/U)/In(6T/6Ty), (3.8)

where U and 7Ty are adjustable dimensional parameters.

Within the same experimental (or synthetic) set up they are Reynolds
number independent (i.e. 67" independent).
The rationale for the rescaling (3.8) stems from the observation that, in the
IDR, hs(p) is a function of In(dv)/ In(v) only. Therefore, identifying Re oc v~ 1,
the relation (3.8) directly follows from (3.7). This rescaling was originally
proposed as a possible test of IDR for direct structure functions in Frisch and
Vergassola (1991), but, as already discussed above, for the latter observable it
is very difficult to detect any IDR due to the extremely small scales involved,

L o [t [ 2 [ 3 | 4] 5 |
X (p) | 2.32(4) | 4.40(3) | 6.33(3) | 8.3(1) | 10.1(2)
xo(p) | 232 | 434 | 634 | 835 | 10.35

Table 1: Comparison between the Inverse-SF scaling exponents ys,,(p) measured
in the synthetic signal and the inversion of the theoretical multifractal prediction
(3.6), x¢1(p). The synthetic signal has been defined such has the D(h) function leads
to the same set of experimental ((p) exponents for the direct structure functions.



as in Gagne and Castaing (1991).
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Figure 7: Data collapse of the Inverse-SF, 3 (dv), obtained by the rescaling (3.8)
for the smoothed synthetic signals (with time windows: 7 = 4.8-107%, 3.107°, 2.
107%) and the experimental data (£ X P). The two straight lines have the dissipative
(solid line) and the inertial range (dashed) slope.

Figure 7 shows the rescaling (3.8) of the Inverse-SF, ¥;(dv), both for the
synthetic field at different Reynolds numbers and for the experimental signals.
As it is possible to see, the data-collapse is very good. This is a clear evidence
that the poor scaling range observed in Figure 5 for the experimental signal
can be explained as the signature of the IDR. The same behaviour holds for
higher moments (not shown). It is interesting to remark that for a self-affine
signal (D(h) = 6(h — 1/3)), the IDR is highly reduced and the Inverse-SF,

scaling trivially as ¥,(6v) ~ (6v)?, do not bring any new information.

4 Concluding remarks

A new approach to look at Lagrangian and Eulerian statistical properties of
turbulent flows has been reviewed. The main idea consists in looking at in-
verse scaling properties, i.e. looking at the time necessary to reach a certain
(fixed) separation between advected particles instead of fixing the time and
looking at the separations distribution for the Lagrangian aspects; or fixing
the velocity increments and looking at the distribution of spatial separations
where that fluctuations is detected for the Eulerian aspects.

In both cases some new and/or better statistical properties have been de-
tected. First, for the Lagrangian properties, we have shown that the inverse
statistics, based on the definition of “doubling-time” dramatically improves
the scaling properties characterising the statistics of multi-point particles cor-
relations in both ideal turbulent flows and realistic domain-bounded flows.



Second, for the Fulerian properties, the inverse statistics based on the con-
cept of Inverse Structure Functions has revealed to be able to highlight the
properties of the Intermediate-Dissipative-Range, a range of scales almost
unaccessible by the usual direct Structure Functions.

Many questions are still open. As far as the Lagrangian approach is con-

cerned, one can think to extend the preliminary attempts here presented to
investigate realistic flows in a variety of different cases, going from geophysical
flows to flows in closed laboratories. A sensible improvement in the quality of
data analysis must certainly be expected.
In the Eulerian case, the analysis of a wider set of experimental data could
make it possible to quantify the agreement of the data-collapse with the pre-
diction based on (3.2) and (3.7). Indeed, it is easy to realize that, by using
different parameterisation for the onset of the viscous range, one would have
predicted the existence of an extended IDR for ¥,(dv) but with a slightly
different rescaling procedure (Benzi et al. 1996). The quality of experimental
data available to us is not high enough to distinguish between the two different
predictions. Analysing different experimental data-sets, at different Reynolds
numbers, could also make it possible to better explore D(h) for h > 1/3 and
thus to inquire possible non universalities of these D(h) values. For example,
as discussed above, in the Langevin synthetic-data a good agreement between
the multifractal prediction and the numerical data is obtained by imposing
hmar = 0.5, similarly in true turbulent data other h,,,, values could appear
depending on the physical mechanism driving the energy transfer at large
scales.
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Appendix A: Multifractal model for Turbulence

In the Kolmogorov (1941) theory of fully developed turbulence a global in-
variance with a fixed exponent hyq = 1/3, is assumed:

(V(x 4+ R,t) — v(x,1)) - R| = dvp(x,t) ~ R (4.1)

Relaxing this restrictive hypothesis, in the framework of multifractal model
(Frisch 1995) one assumes that the velocity field possesses a local scale-
invariance with a continuous spectrum of exponents, each of which belonging



to a given fractal set, O, with dimension D(h):
Svp(x,t) ~ R" for x € Q, (4.2)

where h € (hmin, Pmax)-
The probability to have a given scaling exponent h at the scale R is Pr(h) ~
R3=PM 5o the scaling of the structure function assumes the form:

hmax
S,(R) = ((§vp)") x / R B3P0 y(h)dh ~ RE®) (4.3)
where (h) is a smooth function independent of R. If R < 1, using a saddle
point estimate one obtains

((p) = min {hp + 3 — D(h)} = h°p + 3 — D(i") (4.4)

being h* solution of the equation D'(h*(p)) = p and D"(h*(p)) < 0. Because
of the Kolmogorov four-fifth law, one has ((3) = min, {hp +3 — D(h)} = 1.
For the other moments, ((p), depends on the shape of D(h), which cannot be
obtained with simple arguments.

Frisch and Vergassola (1991), have shown that, in the context of the multi-
fractal model of fully developed turbulence, it exists a non trivial behaviour of
the structure functions in the region between the dissipative and the inertial
range. In this range of scale, called intermediate dissipative range (IDR), the
structure functions show a pseudo-algebraic scaling law, due to the fluctua-
tions of the viscous cut-off. For a given scaling exponent h we can find the
viscous cut-off, n(h), for which the local Reynolds number is of order of unity:

. R(SUR L

Re(R) ~ O(1) = n(h) ~ v T+ . (4.5)
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Taking into account the fluctuations of the cut-off the equation (4.3) assumes
the form

RiP+3=D0) 1y (h)dh (4.6)
and therefore:

R¢®)if R p

Sp(R) o { (4.7)

RMBp+3=DB) if p* > RS> nin

where 1™ is the length scale related to the h*(p) (given by the saddle point

1
evaluation) via n* = v T @), h(R) is the maximum exponent still present
1

at the scale R for n* > R > nun given by v+ &) = R and n,,;, 1s the
viscous cut-off related to the strongest singularity fhy,. If the saddle-point
estimation, h*(p), is between h(R) and Ay, then we have the usual scaling



relation. Vice versa if h(R) > h*(p) we are in the intermediate dissipative
range and we have the pseudo algebraic scaling law.
A simple calculation shows that one has a universal function both in the
inertial and in the IDR by introducing the multiscaling transformation. Let
us discuss this for the energy spectrum E(k) ~ k™'Sy(R = k~'). Introducing
the rescaled variables

In E(k) Ink

()—m an :m (4.8)

from eq. (4.7) one obtains

—(1+¢(2))¢ in the inertial range
F(0) (4.9)
—2—-204+60D(h=—-1+1/8) intheIDR

The presence of the multiscaling behaviour was first experimentally verified
by Gagne and Castaing (1991). However, since for S,(R) the extension of the
IDR is very small, it is extremely difficult to have a strong evidence.

Appendix B: Finite Size Lyapunov Exponent

In this appendix we discuss the practical method for computing the Finite Size
Lyapunov Exponent. Defined a norm for the distance R(?) between two trajec-
tories (two particles for relative dispersion), one defines a series of thresholds
R, =p"Ro (n=1,...,N). Then one measures the time T,(R,) that a per-
turbation of size R, takes to grow up to R,1;. The threshold rate p should
not be taken too large to avoid growth on different scales. On the other hand,
p cannot be too close to one, otherwise T,(R,) would be of the order of the
time step in the integration. Typically, one uses p = 2 or p = /2. For sim-
plicity T, is called “doubling time” even if p # 2.

The doubling times T,(R,) are measured by following the evolution of the
trajectories’ separation from its initial value R,,;,, < R up to the largest
threshold Ry. One must choose R,,;, < Ry in order to allow the direction
of the initial perturbation to align with the most unstable direction in the
phase-space. Moreover, one must pay attention to keep Ry smaller then the
saturation distance, Ry < Rsqut, so that all thresholds can be attained (R
is the typical distance of two uncorrelated trajectories).

The evolution of the error from the initial value, R,,;,, up to the largest
threshold, Ry, carries out a single error-doubling experiment. At the end of
each error-doubling experiment one rescales one trajectory at the initial dis-
tance R,,;, with respect to the other and starts another experiment. After '
error-doubling experiments, one can estimates the expectation value of some
quantity A as:

M=

(A)e = /iv > Ai (4.1)

1



The average < (...) >. is not a time average: different error doubling exper-
iments may takes different times. Indeed we have

e b o B

(4.2)

In the particular case in which A is the inverse of doubling time itself (as for
compute the Lyapunov exponent) we have from (4.2)

Inp. (4.3)

The above described method assumes that the distance between the two
trajectories is continuous in time. For maps or for discrete sampling in time
the method has to be slightly modified see Aurell et al. (1997).

Before concluding this Appendix, we discuss the behaviour of A(R) near the
saturation, i.e. for distance of the order of the domain size. This behaviour
mainly stems from the assumption that for large times the tracers tend to uni-
formly distribute in the domain and that small deviations from the asymptotic
uniform distribution relax exponentially to that. This assumption is usually
satisfied in generic chaotic dynamical systems even if it is difficult to prove.
In the language of dynamical systems exponential relaxation to asymptotic
distribution means that the second eigenvalue, o, of the Perron-Frobenius
operator is inside the unitary circle, the relaxation time is 7, = —In || (see
Ott (1993) for an introduction).

If the distribution relaxes exponentially to the uniform, the same should hold
for the moment of the distribution. Therefore, for the large time evolution of
the distance between two trajectories, R(), one expects:

R(t) & Rypop — Ae™HR (4.4)

being A and 7p system-dependent. For ¢t < 7 or equivalently for (Rq —
R(1))/R(t) < 1, one has:

d 1 R,.. — R
LR = MNR) = — fmex 1T 1.
g nft=AR) R (1.9)

For an exact computation of eqs. (4.4-4.5) in a particular system see the
appendix in Artale et al. (1997).
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