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Nonperturbative spectrum of anomalous scaling exponents in the anisotropic sectors
of passively advected magnetic fields
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We address the scaling behavior of the covariance of the magnetic field in the three-dimensional kinematic
dynamo problem when the boundary conditions and/or the external forcing are not isotropic. The velocity field
is Gaussian, space homogeneous, andd correlated in time, and its structure function scales with a positive
exponentj. The covariance of the magnetic field is naturally computed as a sum of contributions proportional
to the irreducible representations of the SO~3! symmetry group. The amplitudes are nonuniversal, determined
by boundary conditions. The scaling exponents are universal, forming a discrete, strictly increasing, spectrum
indexed by the sectors of the symmetry group. When the initial mean magnetic field is zero, no dynamo effect
is found, irrespective of the anisotropy of the forcing. The rate of isotropization with decreasing scales is fully
understood from these results.

PACS number~s!: 47.27.2i
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I. INTRODUCTION

The aims of this paper are twofold. First, we are interes
in the statistical properties of magnetic fields advected
turbulent velocity fields. Such magnetic fields posses
‘‘self-stretching’’ term that is absent in the context of a
vected passive scalars~for a general introduction, see Re
@1#!. Thus a dynamo effect may exist, and its relation
intermittency and anomalous scaling needs to be addres
Second, we want to focus on the anisotropic nature of tur
lence: generically turbulence is forced by agents that are
ther isotropic nor homogeneous, but most of the fundame
theories regarding universal scaling properties conside
ideal model of isotropic turbulence. In the case of a magn
field advected by a Gaussian, space homogene
d-correlated velocity field with nontrivial spatial scaling w
can present an exact~nonperturbative! solution of the full
spectrum of anomalous scaling exponents of all the an
tropic contributions to the covariance of the magnetic fie
We can thus offer a precise picture of the rate of isotropi
tion upon diminishing scales, assess the importance of
isotropy for ‘‘inertial range’’ scaling, etc.

The equation of motion of a magnetic fieldB(r,t) reads

] tB~r,t !1u~r,t !•“B~r,t !

5B~r,t !•“u~r,t !1k¹2B~r,t !1f~r,t !, ~1.1!

whereu is the advecting velocity field,f is the external forc-
ing, andk is the magnetic diffusivity. We address a model
which the velocity is taken Gaussian, space homogene
isotropic,d correlated in time, and its correlation function

^ua~r,t !ub~r8,t8!&5d~ t2t8!Dab~r2r8!

5d~ t2t8!@Dab~0!2Sab~r!#.

~1.2!

The structure functionS scales with exponentj, 0<j<2:
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Sab~R!5DRjF ~j12!dab2j
RaRb

R2 G , l!R!L.

~1.3!

On the other hand, the forcingf is taken here to be Gaussia
space homogeneous,d correlated in time, butnonisotropic.
The correlation function of the forcing has compact supp
in k space in an interval 0<k<1/L, whereL is the outer
scale of the forcingf. We denoteFab(R)[^ f a(R) f b(0)&.

We are interested in the properties of the covariance oB,
Cab(R,t),

Cab~R,t ![^Ba~R,t !Bb~0,t !&, ~1.4!

and eventually in the stationary quantityCab(R) which is
obtained in the stationary state if the forcing is balanced
dissipation. The calculation of this object in anisotropic en-
semble was presented by Vergassola@2#. The anisotropic
problem was addressed recently by Lanotte and Mazzino@3#.
In the latter study, the covariance@Eq. ~1.4!# was not prop-
erly expanded in terms of irreducible representation of
SO~3! symmetry group, and therefore an apparent mixing
the different sectors was found. As a result the authors ha
tackle an infinite set of equations for all the sectors of
symmetry group. We show below that this mixup is spurio
originating from an improper expansion. In order to solve t
infinite linear system the authors were forced to assume
existence of a hierarchy between exponents belonging to
ferent sectors, and then onlya posteriori to check the cor-
rectness of their assumption. In this way the calculation e
up with one correct set of exponents, as shown below
using the proper expansion. We compute additional ex
nents that were not considered in Ref.@3# because of their
choice of forcing. We will also concern ourselves with th
issues of the dynamo effect and the attainment of a station
solution for Eq.~1.4!.
2654 ©2000 The American Physical Society
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The structure of this paper is as follows: in Sec. II, af
presenting the equations of motion of the covariance,
expand the solutions in terms of basis functions of the SO~3!
symmetry group. In Sec. III the above expansion is used
obtain the matrix representation of the linear operator wh
determines the dynamics of the covariance. In Sec. IV
use this matrix representation to show the absence of a
namo effect in the anisotropic sectors of the covariance. S
tion V is devoted to a calculation of the anomalous scal
exponents in the anisotropic sectors, and Sec. VI offer
summary and a discussion.

II. BASIC EQUATIONS AND THE DECOMPOSITION
IN TERMS OF BASIS FUNCTIONS

The equation of motion of the covariance were derived
the authors of Ref.@3# with the final result

] tC
ab5Smn]m]nCab2@~]nSmb!]mCan1~]nSam!]mCnb#

1~]m]nSab!Cmn12k¹2Cab1Fab

[T̂sr
abCsr1Fab, ~2.1!

]aCab50, ~2.2!

where the last equation follows from the solenoidal condit
for the magnetic field. It is advantageous to decompose
covarianceCab in terms of basis functions that block diag
onalize the angular part of the operatorT̂. These basis func
tions are implied by the symmetries ofT̂. Since this operator
contains only isotropic differential operators and contr
tions with eitherdab or RaRb, it is invariant to all rotations
@4#. Accordingly, the natural basis functions should belong
irreducible representation of the SO~3! symmetry group, and
can be indexed by pairs of indicesj ,m, where j
50,1,2, . . . and2 j <m< j . We are going to refer to solu
tions of Eq. ~2.1! that belong to irreducible representatio
with a definite j ,m as the ‘‘j ,m sector.’’ The operatorT̂
leaves such sectors invariant. In addition,T̂ is invariant to
the parity transformationR→2R, and to the index permuta
tion (a,m)⇔(b,n). Accordingly,T̂ can be further block di-
agonalized into blocks with definite parity and symmetry u
der permutations.

In light of these consideration, we seek solutions of
form

Cab~R,t !5 (
q, j ,m

aq, jm~ uRu,t !Bq, jm
ab ~R̂!, ~2.3!

whereR̂[R/R andBq, jm
ab (R̂) are tensor functions on the un

sphere, which belong to the sectorj ,m of the SO~3! symme-
try group. The indexq enumerates different tensor function
belonging to the same sector. While for scalar functions
the sphere there exist only one spherical harmonicYjm in
each sector, for the second rank tensor functions on
sphere there exist nine different tensors@4#. The additional
symmetries under parity and index permutation group i
four subgroups with four tensors, two tensors, two tens
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and one tensor, respectively. WithF jm(R)[RjYjm(R̂), in
the notation of Ref.@4#, the 4-group~denoted below as sub
set I! is

B9,jm
ab ~R̂![R2 j 22RaRbF jm~R!,

B7,jm
ab ~R̂![R2 j~Ra]b1Rb]a!F jm~R!,

~2.4!
B1,jm

ab ~R̂![R2 jdabF jm~R!,

B5,jm
ab ~R̂![R2 j 12]a]bF jm~R!.

These are all symmetric ina,b, and have a parity of
(21) j . The 2-groups are denoted, respectively, as subse
and III:

B8,jm
ab ~R̂![R2 j 21@RaebmnRm]n1RbeamnRm]n#F jm~R!,

~2.5!

B6,jm
ab ~R̂![R2 j 11@ebmnRm]n]a1eamnRm]n]b#F jm~R!,

~2.6!

B4,jm
ab ~R̂![R2 j 21eabmRmF jm~R!, ~2.7!

B2,jm
ab ~R̂![R2 j 11eabm]mF jm~R!. ~2.8!

The first pair is symmetric toa,b exchange, and has a parit
(21) j 11. The second has the same parity but is antisymm
ric to a,b exchange. The remaining basis function
B3,jm

ab (R̂)[R2 j (Ra]b2Rb]a)F jm(R), which is antisymmet-
ric to a,b exchange, with parity (21) j . This will be denoted
as subset IV. In Ref.@4# it was proven that this basis i
complete, and indeed transforms under rotations as requ
for a j ,m sector.

It should be noted that not all subsets contribute for ev
value ofj. Space homogeneity implies the obvious symme
of the covariance:

Cab~R,t !5Cba~2R,t !. ~2.9!

Therefore, representations symmetric toa,b exchange must
also have even parity, while antisymmetric representati
must have odd parity. Accordingly, evenj ’s are associated
with subsets I and III, and oddj ’s are associated with subse
II. We show below that subset IV cannot contribute to th
theory due to the solenoidal constraint.

III. MATRIX REPRESENTATION OF THE OPERATOR T̂

Having the angular basis functions we seek the repres
tation of the operatorT̂ in this basis. In such a representatio
T̂ is a differential operator with respect touRu only. In Ap-
pendix A we demonstrate howT̂ mixes basis functions
within a given subset, but not between the subsets — a
expected in Sec. II. In finding the matrix representation oT̂
we are aided by the incompressibility constraint. Consi
first subset I with four basis functions@Eqs.~2.4!# in a given
j ,m sector. To simplify the notation we will denote the am
plitude uRu simply asR, and redenote thea coefficients ac-
cording to a(R)[a9,jm(R), b(R)[a7,jm(R), c(R)
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[a1,jm(R), and d(R)[a5,jm(R). Primes will denote differ-
entiation with respect toR.

In this basis the operatorT̂ takes on the form

T̂F S a

b

c

d

D G5T1S a9

b9

c9

d9

D 1T2S a8

b8

c8

d8

D 1T3S a

b

c

d

D . ~3.1!

On the right-hand side we have matrix products. In additi
the solenoidal condition implies the following two con
straints ona, b, c, andd ~cf. the Appendix of Ref.@4#!:

05a812
a

x
1 jb82 j 2

b

x
1c82 j

c

x
,

~3.2!

05b813
b

x
1

c

x
1~ j 21!d82~ j 21!~ j 22!

d

x
.

r
ri-
,

Using these conditions one can bringT1 andT2 to diagonal
forms:

T152~DRj1k!S 1

1

1

1

D ,

T25
4

R
@~DRj1k!1jDRj#S 1

1

1

1

D . ~3.3!

T3 can be written in the form

T35DRj22Q~ j ,j!1kR22Q~ j ,0! ~3.4!

where the four columns ofQ( j ,j) are
S 2~21j!~ j 12!~ j 13!12j@~ j 11!~21j!18#1j2~12j!

~21j!~22j!

~21j!~22j!~12j!

0

D , S 22 j ~ j 112j!j~22j!

2 j ~21j!~ j 11!12j~72j!

22 j j~21j!~22j!

2~21j!~22j!

D ,

S 2j~22j!~2 j 232j!

j~22j!

2 j ~21j!~ j 11!1j2~31j!

0

D , S 2 j ~ j 21!~22j!~42j!j

2j~ j 21!~22j!~ j 24!

2 j ~ j 21!~22j!~21j!j

2~21j!~ j 22!~ j 2112j!22j

D . ~3.5!
ime.

-
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In Appendix B we present the two remaining blocks~subsets
II and III!, in the matrix representation ofT̂ as a function of
j. The single basisB3,jm ~subset IV! cannot appear in the
theory sincea3,jm50 by the solenoidal condition~cf. the
Appendix of Ref.@4#!:

a3,jm8 2 jR21a3,jm50,

a3,jm8 1R21a3,jm50. ~3.6!

Finally, there are no solutions belonging to thej 51 sec-
tor. This is due to the fact that such solutions correspond
subset II. In this subset thej 51 solenoidal condition implies
the equation

a8,1m8 1
3a8,1m

R
50, ~3.7!

or a8,1m}R23 which is not an admissible solution.

IV. ABSENCE OF DYNAMO EFFECT

The first issue to clarify is the existence of a stationa
solution for t→`. A dynamo effect may cause the cova
ance to grow unboundedly. Vergassola@2# showed that this
to

y

is not the case in the isotropic sector as long asj,1. We
demonstrate that for these values ofj, the dynamo effect is
absent also in the anisotropic sectors.

Consider the forceless case of Eq.~2.1! with Fab50. In
addition, assume initial conditions such that^B&50. It is
easy to see that no mean magnetic field can appear in t
Accordingly our covarianceCab(R,t) tends to zero when
R→L sinceCab(R,t)→^B&2. We note that forj50, T̂mn

ab

52kDdm
adn

b . In the space of functionsCab(R,t), which
vanish outside the domainuRu<L, this operator is diagonal
izable due to its Hermiticity, with negative discrete spectru
$2El% due to the compactness of the domain. Thus the g
eral solution in this case is

Cab~R,t !5(
l

e2EltCl
ab~R!. ~4.1!

In a spherical domain the indexl contains the indicesj ,m
and an index specifying one of the three subsets discu
above. We will assume that forjÞ0 T̂ remains diagonaliz-
able. We will demonstrate that the eigenvaluesEl remain
positive for 0,j,1. This will imply that Cab(R,t) and in
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particular,^B2(t)&5dabCab(0,t), is a monotone decreasin
function of time, and hence will imply the absence of a d
namo effect.

To this end, we define the inner product

~C1 ,C2![E
R<L

~C1
ab!* C2

ab

2~DRj1k!
d3R, ~4.2!

and demonstrate that

2El~Cl ,Cl!5~Cl ,T̂Cl!,0, ~4.3!

indicating thatEl.0. We first consider the 434 block with
a given j ,m. In this caseCl is given by

Cl~R!5al~R!B9,jm~R̂!1bl~R!B7,jm~R̂!1cl~R!B1,jm~R̂!

1dl~R!B5,jm~R̂!. ~4.4!
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Using Eq.~3.1!, we obtain

~Cl ,T̂Cl!5E
0

L

dR
R2

2~DRj1k!
~al* bl* cl* dl* !M~ j !

3F T1S al9

bl9

cl9

dl9

D 1T2S al8

bl8

cl8

dl8

D 1T3S al

bl

cl

dl

D G , ~4.5!

where the matrixM( j ) arises from the angular integratio
over the spherical tensorsBq, jm . This matrix is obtained by a
direct calculation. For example M1,1( j )
[*dR̂B9,jm* (R̂)B9,jm(R̂). The full matrix reads
M~ j !5S 1 2j 1 j ~ j 21!

2 j 2 j ~3 j 11! 2 j 2 j ~ j 21!~2 j 11!

1 2j 3 0

j ~ j 21! 2 j ~ j 21!~2 j 11! 0 j ~ j 21!~2 j 21!~2 j 11!

D . ~4.6!
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We note thatM( j ) is symmetric and positive definite. B
integration by parts, using the fact that our covariances v
ish for R5L, we demonstrate in Appendix C that Eq.~4.3! is
true.

One important conclusion of this calculation is the re
tive rate of decay of the various anisotropic contributio
We see that upon increasingj the inner product~4.3! be-
comes more negative. Thus any anisotropic initial conditio
results in a rapid decay of the higherj contributions. Without
anisotropic forcing the covariance of the magnetic field
comes isotropic in time. We will show below that in th
~anisotropic! stationary state maintained by anisotropic fo
ing, the covariance also isotropizes on the smaller sca
The scaling exponents governing theR dependence are als
strictly increasing with increasingj. Thus, invariably, for
small enough scales and for long times one restores l
isotropy.

V. CALCULATION OF THE SCALING EXPONENTS

In the absence of a dynamo effect, we can conside
stationary state of the system, maintained by the forcing t
f(r,t). The covariance in such a case will obey the followi
equation:

05T̂sr
abCsr1Fab. ~5.1!

Deep in the inertial range we look for scale invariant so
tions, obtained as zero modes of Eq.~5.1!. Indeed, whenj
.0 and well within the inertial range we can take the ma
netic dissipation to zero, and as a result, the homogene
part of Eq.~5.1! ~without Fab) will be scale invariant, lead-
n-

-
.

s

-

-
s.

al

a
m

-

-
us

ing to scale invariant solutions. We will need to match the
zero modes to the appropriate zero modes computed in
dissipative range at the end. This will necessitate the disc
sion of zero modes whenj50, and see below.

The calculation of the scale-invariant solutions becom
rather immediate once we know the functional form of t
operatorT̂ in the basis of the angular tensorsBq, jm . Using
expansion~2.3!, and the fact thatT̂ is block diagonalized by
such an expansion, we obtain a set of second order cou
ODE’s for each block. To demonstrate this point, consid
the four dimensional block ofT̂, created by the four basi
tensorsBq, jm of subset I. According to the notation of the la
section, we denote the coefficients of these angular tenso
Eq. ~2.3!, by the four functionsa(R), b(R), c(R), and
d(R),

Cab~R![a~R!B9,jm
ab 1b~R!B7,jm

ab 1c~R!B1,jm
ab 1d~R!B5,jm

ab

1•••, ~5.2!

where (•••) stand for terms with otherj ,m and other sym-
metries with the samej ,m. Let us first consider the cas
wherej.0. According to Eq.~3.1!, well within the inertial
range, these functions obey

T1~k50!S a9

b9

c9

d9

D 1T2~k50!S a8

b8

c8

d8

D 1T3~k50!S a

b

c

d

D 50.

~5.3!
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Due to the scale invariance of these equations, we look
scale invariant solutions in the form

a~R!5aRz, b~R!5bRz, d~R!5cRz, d~R!5dRz,
~5.4!

wherea, b, c, andd are complex constants. Substituting E
~5.4! into Eq. ~5.3! results in a set of four linear homoge
neous equations for the unknownsa, b, c, andd:

@z~z21!T1~k50!1zT2~k50!1T3~k50!#S a

b

c

d

D 50.

~5.5!

The last equation admits nontrivial solutions only when

det@z~z21!T1~k50!1zT2~k50!1T3~k50!#50.
~5.6!

This solvability condition allows us to expressz as a func-
tion of j andj. Using MATHEMATICA we find eight possible
values ofz, out of which only four are in agreement with th
solenoidal condition:

z i
( j )52

1

2
j2

3

2
6

1

2
AH~j, j !62AK~j, j !,

K~j, j ![j422j312j3 j 12j3 j 224j2 j 23j224j2 j 2

28j j 228j j 14j116j 116j 214, ~5.7!

H~j, j ![2j228j12j j 212j j 14 j 214 j 15.

Not all of these solutions are physically acceptable, beca
not all of them can be matched to the zero-mode solution
the dissipative regime. To see why this is so, consider
zero-mode equation forj50:

~2k12D !¹2C50. ~5.8!

The main difference between thej50 case and thej.0
case is that in the former the same scale invariant equa
holdsboth for the inertial range and the dissipative range.
a result, forj50, the zero modes scale with the same ex
nents in the two regimes. These exponents are given sim
by Eq. ~5.7! with j50, because forj50 the zero-mode
equation withk50 is the same as Eq.~5.8! up to the overall
factor D/(D1k) which does not change the exponent. F
j50 our solutions should be valid for the dissipative regim
as well as for the inertial regime, ruling out the two solutio
or

.
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with negative exponents in Eq.~5.7!, for they will give a
nonphysical divergence asR→0. Assuming now that the
solutions~including the exponents! are continuous inj ~and
not necessarily analytic!, we find that also for finitej only
the positive exponents appear in the inertial range~an excep-
tion to that is thej 50, to be discussed below!. Finally there
exist two branches of solutions corresponding to the (2) and
(1) in the square root:

z I 6
( j )52

3

2
2

1

2
j1

1

2
AH~j, j !62AK~j, j !, subset I.

~5.9!

These exponents are in agreement with Refs.@3,2#. Note that
for j 50, only z I 1

(0) exists since the other exponent is n
admissible, being negative forj→0, and therefore excluded
by continuity. However,z I 1

(0) becomes negative asj in-
creases~see Fig. 1!. For j >2 both solutions are admissible
and the leading one isz I 2

(0) , which is smaller.
Let us find the behavior of the zero modes in the dissi

tive regime for j.0. Here the dissipation terms becom
dominant and we can neglect all other terms inT̂. The zero-
mode equation in this regime becomes 2k¹2Cab50, which
is again, up to an overall factor, identical to the zero-mo
equation withk50 andj50. The solutions in this region
are once again scale invariant with scaling expone
z I 6

( j ) uj505 j , j 22. As expected, the correlation functio
Cab(R) becomes smooth in the dissipative regime.

In addition to subset I, one needs to compute the ex
nents corresponding to subsets II and III. The computatio
the other two blocks follows the same lines. Since these
232 they furnish two solutions for the exponents, one
which is negative. We end up finding

FIG. 1. The leading exponents of the symmetric parts of
zero modes of the magnetic covariance.
z II
( j )52

3

2
2

1

2
j1

1

2
A1210j1j212 j 2j12 j j14 j 14 j 2, subset II, ~5.10!

z III
( j )52

3

2
2

1

2
j1

1

2
Aj212j1114 j 212 j 2j14 j 12j j , subset III. ~5.11!
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For j 50 there is no contribution from this subset, as t
exponent is negative. The dependence of the admissible l
ing exponents onj is displayed in Figs. 1 and 2. In Table
we summarize which are the leading exponents in each
tor.

After matching the zero modes to the dissipative ran
one has to guarantee matching at the outer scaleL. The con-
dition to be fulfilled is that the sum of the zero-modes w
the inhomogeneous solutions~whose exponents are 2-j)
must giveC(R)→0 as uRu→L. Obviously this means tha
the forcing must have a projection on any sectorBq, jm for
which aq, jm is nonzero.

VI. SUMMARY AND CONCLUSIONS

The results of this paper should be examined in light
the recent progress in understanding the effects of anisot
on the statistics of fully developed turbulence@4,8–10#.
Whereas in the Navier-Stokes case one cannot present
results, the present study affords exact calculations of
whole spectrum of scaling exponents that determine the
variance of a vector field in the presence of anisotropy.
have presented a detailed and systematic investigatio
scaling properties of the covariance of a magnetic field
vected by a Gaussian andd correlated in time velocity field.
We have extended the nonperturbative analysis presente
Vergassola in Ref.@2# for the isotropic sector to all the sec
tors of the SO~3! symmetry group. Our analysis leads to t
conclusions that the scaling exponents are strictly increa
with the index of j of the sector, meaning that there is
tendency toward isotropization upon decreasing the scale
observation. We also showed that as far as the dynamo p
lem is concerned, anisotropic sectors are less unstable
the isotropic sector: in the absence of an external forc
anisotropies decay in time faster then isotropic fluctuatio
In distinction with the expansion presented in Ref.@3#, our
results are free of any assumptions about the hierarch
scaling exponents belonging to different SO~3! sectors. This
is due to the employment of a proper basis set. The equat

FIG. 2. The leading exponents of the antisymmetric parts of
zero modes of the magnetic covariance.
d-

c-

,

f
py

act
e

o-
e
of
-

by

g

of
b-
an
g
s.

of

ns

for the magnetic covariance foliate into independent clo
equations for each set of irreducible representations of
SO~3! group.

In summary, we have shown that the covariance of
magnetic field is naturally computed as a sum of contrib
tions proportional to the irreducible representations of
SO~3! symmetry group. The amplitudes are nonunivers
determined by boundary conditions. The scaling expone
are universal, forming a discrete, strictly increasing spectr
indexed by the sectors of the symmetry group. Similar
sults were presented for passive scalar fluctuations in R
@5#, and for Navier-Stokes fluctuations in Refs.@4,8–10#. In
the present case anomalous scaling laws are found as
zero modes of the inertial operator governing the station
equation for the magnetic covariance@6,7#. Matching with
the UV boundary conditions selects the physically accepta
solutions. It now appears quite clear that the issue of ano
lous, universal scaling exponents in turbulence has ramifi
tions on the multitude of sectors of the appropriate symme
groups.
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APPENDIX A: DEMONSTRATION OF THE ACTION

OF T̂µn
ab

As an example of the operation ofT̂ on the basis function,
consider an explicit calculation of]2Cab. Such a term ap-

pears as a part ofSmn]m]n which is a part ofT̂, and also in
the magnetic dissipation term. Considering explicitly the p
a9,jm(R,t)B9,jm

ab (R̂):

TABLE I. The leading exponents in the various sectors.

Symmetric Antisymmetric

j 50 z I 1 –
Even j .0 z I 2 z III

Odd j .1 z II –

e
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ls
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]2a9,jmR2 j 22RaRbF jm5]m]ma9,jmR2 j 22RaRbF jm

5]m@a9,jm8 R2 j 232~ j 12!a9,jmR2 j 24#RmRaRbF jm1]aa9,jmR2 j 22RbF jm

1]ba9,jmR2 j 22RaF jm1]ma9,jmR2 j 22RaRb]mF jm

5Fa9,jm9 2~ j 13!
a9,jm8

R
2~ j 12!

a9,jm8

R
1~ j 12!~ j 14!

a9,jm

R2 GB9,jm
ab

1~ j 15!Fa9,jm8

R
2~ j 12!

a9,jm

R2 GB9,jm
ab 12Fa9,jm8

R
2~ j 12!

a9,jm

R2 GB9,jm
ab 12

a9,jm

R2
B1,jm

ab

1
a9,jm

R2
B7,jm

ab 1 j Fa9,jm8

R
2~ j 12!

a9,jm

R2 GB9,jm
ab 1

a9,jm

R2
B7,jm

ab

5Fa9,jm9 12
a9,jm8

R
2~ j 12!~ j 13!

a9,jm

R2 GB9,jm
ab 12

a9,jm

R2
B7,jm

ab 12
a

R2
B1,jm

ab . ~A1!

In performing the computation, we make use of the following basic identities that are employed repeatedly in
calculations:

]m]mF jm50, ~A2!

Rm]mF jm5 j F jm . ~A3!

The first identity follows from]2Yjm52 j ( j 11)R22Yjm . The second from the fact thatF jm are homogeneous polynomia
of degreej. As expected, the result remains in aj ,m sector, and mixes only basis functions with the same symmetry prope

APPENDIX B: T̂ AND THE SOLENOIDAL CONDITION IN THE TWO REMAINING SUBSETS

In this appendix we present the two blocks pertaining to the (21) j 11 parity. The part denoted in Eq.~3.1! asT1 andT2
remain unchanged except that the identity matrix is now two dimensional. For the case of invariance undera,b interchange
~subset II! we find the 232 matrix Q( j ,j):

S 2~ j 11!~21j!~ j 122j!12j~72j! 2j~ j 21!2~22j!

~22j!~21j! j ~ j 21!~21j!1j~ j 23!~21j!12j
D . ~B1!

The solenoidal condition reads in this case~cf. the Appendix of Ref.@4#!:

a8,jm8 13R21a8,jm1~ j 21!a6,jm8 2~ j 21!2R21a6,jm50. ~B2!

From this equation we learn that a contribution pertaining toj 51 cannot appear in this theory, since for this value ofj a8,jm8
must have a negative scaling exponent which is not admissible.

For the case of antisymmetry undera,b interchange~subset III! we find the 232 matrix Q( j ,j):

S j~412j14 j !2~ j 11!~ j 12!~21j! j j ~ j 21!~22j!

422j 2~ j 21!@ j ~21j!14j#
D ~B3!
e

ar

at

to

is
-
d

with the solenoidal condition~cf. Appendix of@4#!

R21a4,jm2a2,jm8 1~ j 21!R21a2,jm50. ~B4!

APPENDIX C: PROOF OF EQ. „4.3…

To demonstrate Eq.~4.3! we noteT̂ as well asM( j ) arem
independent. We can therefore consider them50 case with-
out loss of generality. In this case the basis functions as w
as the coefficientsa, b, c, andd are real. For nonzerom the
imaginary components have to cancel with the imagin
ll

y

components of2m since the covariance is real. We tre
separately the contributions associated withT1 , T2, andT3.
showing that they are all negative definite.

1. Integrals of T1 and T2

For the evaluation of these integrals it is convenient
work in the basis that diagonalizesM( j ). SinceM( j ) is a
real and symmetric matrix, it is diagonalizable, and as it
nonnegative its eigenvaluesm i , i 51, 2, 3, and 4, are non
negative.T1 andT2 are proportional to the unit matrix, an
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therefore they remain so in any basis, and in particular in
diagonal basis ofM. In that basis,a, b, c, andd are replaced
by a1 , a2 , a3, anda4, and the contributions ofT1, andT2 is

(
i 51

4

m iE
0

L

dx
x2

Dxj1k
ai

3F2~Dxj1k!ai914~Dxj1k!
ai8

x
14jDxj

ai8

x G . ~C1!

This integral is negative definite for all values ofi, since it is
the sum of two negative definite integralsI 1 and I 2:

I 15E
0

L

dx
x2

Dxj1k
aiF2~Dxj1k!ai914~Dxj1k!

ai8

x G
52E

0

L

dx~xai !
d2

dx2
~xai !

522E
0

L

dxF d

dx
~xai !G2

,0, ~C2!

I 254DE
0

L

dx
x2

Dxj1k
aix

j
ai8

x

524DE
0

L

dx
d

dxF xj11

Dxj1k
Gai

22I 2. ~C3!

Accordingly,

I 2522DE
0

L

dx
d

dxF xj11

Dxj1k
Gai

2

522DE
0

L

dx
Dx2j1k~11j!xj

~Dxj1k!2
ai

2,0. ~C4!

2. Integral of T3

The contribution ofT3 has two parts: One which is pro
portional tok, and one which is proportional toD. We shall
analyze each of them separately and show thatM( j )•T3 is a
nonpositive matrix for everyj >2 and every 0<j<2.

~1! The part involvingk is

I 35E
0

L

dx
x2

Dxj1k
~a b c d!M~ j !kx22Q~ j ,0!S a

b

c

d

D
~C5!

5kE
0

L

dx
1

Dxj1k
~a b c d!

1

2

3@M~ j !Q~ j ,0!1„M~ j !Q~ j ,0!…T#S a

b

c

d

D ~C6!
e

[kE
0

L

dx
1

Dxj1k
~a b c d!X~ j ,0!S a

b

c

d

D ,

~C7!

whereX( j ,j) is the symmetric matrix

X~ j ,j![
M~ j !Q~ j ,j!1„M~ j !Q~ j ,j!…T

2
. ~C8!

For j 52 andj50, X( j ,j) is given by

X~2,0!5S 220 232 212 0

232 2176 248 0

212 248 236 0

0 0 0 0

D , ~C9!

with the eigenvalues (212.97 . . . ,2196.43 . . . ,
221.59 . . . ,0), so theexpression is obviously nonpositive
For higherj ’s, we can look at the determinant ofX( j ,0):

detX~ j ,0!5~ j 13!~ j 12!2~ j 11!4 j 4~ j 21!2~ j 22!;
~C10!

this function is positive for everyj .2, which means that we
have 4 negative eigenvalues whenj .2.

~2! The part involvingD is

I 5DE
0

L

dx
x2

Dxj1k
~a b c d!M~ j !xj22Q~ j ,j!S a

b

c

d

D
5DE

0

L

dx
xj

Dxj1k
~a b c d!X~ j ,j!S a

b

c

d

D . ~C11!

The proof of the nonpositivity of this expression follows th
same lines of the previous discussion. We know that foj
50 and j 52 X( j ,j) has three negative eigenvalues and o
zero. Therefore, It is sufficient to show that detX( j ,j) is
positive for every 0,j,2 andj >2 to ensure thatX( j ,j) is
indeed nonpositive. This is indeed the case, as can be
fied explicitly usingMATHEMATICA .
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