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Abstract. -We propose a simple argument to compute intermittency correction to the Obukhov- 
Corrsin inertial range scaling for the passive scalar, We find that the intermittency correction is 
of the opposite sign with respect to the intermittency correction of the Kolmogorov energy spec- 
trum of fully developed turbulence. Our result is in qualitative and quantitative agreement with 
experimental data. 

The dynamics of a passive scalar Q is described by the equation 

4Q + VaQ = x A Q ,  (1) 

where x is the molecular diffusivity of Q and V is the three-dimensional fluid velocity satisfy- 
ing the Navier-Stokes equation 

v being the kinematic viscosity. It has been pointed out long time ago that when the fluid is 
fully turbulent the small-scale statistics of Q display universal properties independent of x, v 
and the forcing mechanism for Q or V. In particular Obukhov and Corrsin [l] theory predicts 
that the correlation function C2(r)  = ((Q(z + r) - Q(Z)))~ is given by 

similarly to Kolmogorov [2] scaling of the two-point correlation function of the velocity field. 
The argument which justifies (3) is based on the <(&-cascade>> from large to small scale of Q 2. 
If we indicate by 

AQ(0 IQ($ + 0 - &(XI( ,  A V O  = IV(Z + 0 - V(z)  I , 
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then the rate of the &-cascade at scale 1 can be estimated to be[31 

= N(1). AQ(02 AV(0 
1 

By assuming N(1) to be constant we simply obtain AQ(Z) = AV(Z)-ll= l 2 I 3 ,  where we have 
used the Kolmogorov scaling AV(I) = l1I3 for the fully turbulent velocity field. However, it 
turns out that (2) is not true, namely it has been found experimentally[4,5] that 

(4) 
2 cz(r) = r b ,  b = - 3 - A a ,  A a  > 0 .  

It has been claimed that deviations from the scaling law (3) is due to  intermittency both in the 
&-cascade and in the energy cascade of the velocity field. Indeed, intermittency is a well- 
known effect in fully developed turbulence [3]. A popular way to measure intermittency in 
fully developed turbulence is to compute, from numerical or experimental data, the structure 
functions S,(I) defined as 

(5) 

The Kolmogorov theory predicts S,(1) = l"I3 independent of m, while it has been found [41 
S,(Z) = la(,) with a(m) a nonlinear convex function of m. In particular a(2) = 2/3 + b2 with 
b2 > 0. Thus, in fully developed turbulence the intermittency correction of the two-point cor- 
relation function has opposite sign to  the one observed for the passive scalar. 

Many authors [5] have presented theoretical arguments to explain the intermittency effect 
in Q. In this letter we present a very simple argument to  explain the behaviour of 

First of all let us describe a naive approach to the problem which illustrates the difficulty 
to develop a theoretical framework for the intermittency effect in the passive scalar dy- 
namics. A s  for the energy cascade in three-dimensional fully developed turbulence, intermit- 
tency effect can be taken into account by saying the rate of Q-cascade in the inertial range is 
not constant as assumed by Obukhov and Corrsin. For simplicity, let us introduce the scales 
I, = 2-"Zo and let us define A&, = AQ(I,), AV, = AV(1,). Then we can think that N(I,) and 
N(1, 1) are related by the equation 

N(1,) = P(n + 1) N(Z,), (6) 

S,(Z) = (IV(X + I) - V(X)I"). 

C2 03. 

where P(n + 1) can be considered as the fraction of space where the &-cascade is taking place 
from scale I, t o  scale I, + 1. Equation (6) is in complete analogy to what it has been proposed 
for the energy cascade of fully developed turbulence [6]. From (6) and the estimate of N(I,) 
previously given we obtain 

By iterating eq. (7) we obtain 

where we have assumed for simplicity lo = AVo = AQo = 1. From eq. (8) we can compute the 
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m-moments of A&,: 
/ \ 

where a volume factor P(i )  has been inserted in the definition of the average. Equation (9) 
shows that in order to compute the structure functions of AQ, one has to develop a theory 
which takes into account the correlation of pq with AV,. Let us remark that the structure 
functions of the velocity field S,  (1,) are usually well explained by the so-called multifractal 
hypothesis. Thus in order to compute the average of equation (9) one has to define a joint 
multifractal model which takes into account both the multifractal scaling of AV, and 
A&,. 

Recently Crisanti et al. [7] have proposed that the estimate of N(1,) given before is not 
justified by the passive scalar dynamics. Indeed this estimate is based on the assumption that 
the characteristic time of &-cascade from scale I ,  to scale I ,  + is given, as in fully developed 
turbulence, by 1, /AV,. In order to explain the sign of the intermittency correction to Cz (1,) 
they assumed that the characteristic time is equal to the average time for two particles to  in- 
crease their distance up to scale 1,. 

Here we take eq. (9) as starting point to compute C,(Z,>. We first observe that 

Cz(Z,> = (A&:) = Z,(AV;'). (10) 

Thus the intermittency effect on the Obukhov-Corrsin theory should be computed regardless 
of the fluctuations of P(i )  in eq. (9), i.e. no joint multifractal theory should be needed in order 
to compute Cz (Z, ). 

At first sight, one could be tempted to compute (AV;') by using one of the multifractal 
model proposed for fully developed turbulence161, like for instance the P random model. 
However, such models have been proposed to understand the scaling properties of ( A T )  for 
positive values of m: it is not clear that (AV;') can be naively extrapolated from our knowl- 
edge of (AV;) for positive m. As an example of the above statement we have obtained, by 
using the random P model, (AV;') = l$22. Using this value in eq. (10) we get C2 (I,) = 1278, i.e. 
a quite different result from what it has been experimentally observed, namely Cz(I,) = 
= 1261 

We claim that the scaling behaviour of (AV;') is quite different from what one can esti- 
mate from multifractal models tuned to compute the scaling of positive moments of AV,. In 
order to show that this is true we have directly computed (AV;') by using a quite simple nu- 
merical model of fully developed turbulence recently introduced by Yamada and Okhitani [81. 
This model shows scaling properties of ( A T )  for positive m in quite close agreement with 
what has been observed in experimental data (see Jensen et al. [9] for a complete detailed de- 
scription of the model and the computation of the above-mentioned scaling properties of 
(AV:)). Thus we can check if the scaling of (AV;'} can be extrapolated from the scaling of 
(AV:) with m 0. A few comments on the computations of (AV;') are needed. If there is a 
nonzero probability for AV, to be zero, then any estimate of (AV; '> is meaningless. However 
AV, has a real and imaginary part and AV;' should be computed as I A y z  1 -'. Thus it is possi- 
ble that the real and imaginary parts of AV, are zero with nonzero probability and I AV, 1 -' is 
zero with zero probability. For instance, if the probability of both the real and imaginary part 
of AV, is approximately Gaussian near zero, then (AV;') is well defined. This is indeed the 
case for the Yamada-Okhitani model here considered. In real turbulence 1 AV, I should be 
computed as the square root of the energy fluctuations at scale 1,. 

Figure 1 shows log [(AV; ')I as a function of log &). At variance with the prediction of the 
random jl model, the scaling of (AV;') is given by 1," with A = - 0.45 ? 0.05. Using this scal- 
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Fig. 1. - The figure illustrates the scaling behaviour of log[( I AV, I -')I vs,log(Z,) computed from the 
shell model of Yamada and Okhitani[8]. In the inertial-range region a clear scaling law can be 
measured. 

ing into eq. (lo), we obtain 

c, (I,) z I$" * 0.05 (11) 

in reasonable agreement with experimental data and also with a generalization of the Yama- 
da-Okhitani model, recently introduced by Jensen et al. [lo], aimed to describe the statistical 
properties of a passive scalar. 

From fig. 1 we argue that in fully developed turbulence 

(AV;l) = z;1/3 - 0 (12) 
with Q > 0. Thus the scaling of the Obukhov-Corrsin theory is 

Although eq. (11) is based on a very simplified model of fully developed turbulence we 
think that experimental data will confirm the scaling (12). 

It is possible to prove eq. (12) starting from eq. (10). Let us recall that a(m) are the scaling 
exponents of the structure functions Sm(Z,J and a(m) is a convex function of m. In a similar 
way we can define H(m)  as the scaling exponents of the structure functions of Q: 

where H(m) is also a convex function of m. From experimental data we know that a(1) = 
= 1/3 + a1 with a1 > 0. Because a(0) = 0 and a(m> is convex, we obtain a( - 1) S - a(1) = 
= - 1/3 - al.  Inserting the last inequality into eq. (lo), we finally obtain 

(13) 2 
3 

H ( Z ) = l + a ( - l ) S  - - h l ,  

which proves eq. (12). 
It is not difficult in principle to generalize the previously proposed multifractal model, like 

the random B model, in order to take into account the scaling properties of (AV; '). However, 
we think that at  this stage it is not worthwhile. We certainly need more experimental and nu- 
merical data analysis in order to understand whether or not the scaling (12) always occurs. If 
this is the case, the possibility to develop a realistic joint multifractal model for the passive 
scalar may not be a difficult problem. 

We are gratefully to A. VULPIANI and G. PALADIN for many illuminating discus- 
* * *  

sions. 
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