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The decay of large-scale anisotropies in small-scale turbulent flow is investigated. By introducing
two different kinds of estimators we discuss the relation between the presence of a hierarchy for the
isotropic and the anisotropic scaling exponents and the persistence of anisotropies. By direct
measurements on a channel flow numerical simulation we show that the presence of a hierarchy for
the isotropic and the anisotropic scaling exponent is not in contradiction with the persistence of
anisotropies at small scales. 2001 American Institute of Physic§DOI: 10.1063/1.1381019

One of the main assumptions made by Kolmogorov inhand, there are theoretical arguméhtping in the opposite

his 1941 theory is the restoring of universality and isotropydirection, i.e., that anisotropic fluctuations are subdominant
at small scales in turbulent flows. The idea is that the effectsvith respect to the isotropic onésee below. This short note
of a large-scale anisotropic forcing and/or boundary condiis meant to clarify the relation between the previous results
tions are rapidly lost during the process of energy transfemnd support the arguments by numerical simulations on
toward small scales. The overall result is that both isotropychannel flow turbulence.
and universality of turbulent fluctuations should be locally ~ The analysis in Ref. 13 is based on the invariance under
restored at small enough scales and large enough Reynolégtations of the unforced Navier—Stokes equations. We shall
numbers. The rate of convergence toward isotropy can bgpecifically restrict here to the structure functions and refer
quantitatively predicted within the K41 theory both as ato the original paper for more complex tensorial objects.
function of the scale, e.g., for the structure functions, and aSince the Navier—Stokes equations are invariant under rota-
a function of the Reynolds numbers, e.g., for the single-pointions, the correlations are conveniently decomposed in terms
moments of velocity gradients. Experimeltaind numerical of the irreducible representations of the rotation group. For
simulation§=° do not confirm those predictions. The skew- the nth order longitudinal structure function we have
ness 202/2 the transversal gradientsS;=¢( (ayux)3>/

dyu is, for example, found to have a very slow deca _ m_ im "
\</\$itr); )Igez The effect ig even stronger for th)tla fifth—orde?l S ={LVO) =vx+ 1) ] >_,-Em ST Yim(P),
skewnessSs=((d,U,)*)/{(dyuy)?)®? observed to remain (1)
O(1) for all available Re. Similar results were recently re-
ported on a series of hydrodynamical problems. The mostvhere we have used the fact that the basis of the rotation
striking ones were obtained analytically in passive scalargroup for scalar functions is the set of spherical harmonics
vector models advected by isotropic, Gaussian and white-inY;,,. The coefficientsS"(|r|) are expected to behave as

time velocity fields(the so-called Kraichnan modgwith a power lawsr éh and the scaling exponen'ré{,, are expected
large scale anisotropic forcirld. Numericaf*® and experi-  to depend only on the indek (the exponents should not
mental(see, e.g., Refs. 11 and )l@vidences of persistence depend on then-index since it does not appear in the equa-
of anisotropies in real passive scalars have also been rgons of motion, see Ref. 13 for more detail$he previous
ported. strong assumption is motivated by the idea of universality,
On the one hand, there are then strong indications ife., that inertial-range scaling behaviors are independent of
favor of a persistent memory of the large-scale anisotropieghe large-scale boundary and forcing effects. Furthermore, it
even at the smallest scales of a turbulent flow. On the othek natural to suppose a hierarchical organization of the dif-
ferent sectors in the inertial range, i.e., the existence of a

aAuthor to whom correspondence should be addressed. Electronic maiRi€rarchy among the scaling exponents characterizing differ-
biferale@romaz2.infn.it ent sectors,
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This statement, even if not proved for the Navier—Stokes
equations, is verified analytically in various Kraichnan mod-
els of passive field¥¥*® The existence of the hierarchkg) [ ...
implies that the anisotropic fluctuations become more and g 4

more subdominant at the small scales as their degree of ar 2
isotropy increases. [ ]
Let us now analyze in a quantitative way the relative I P TS 1

. . . . . . o

importance of isotropic and anisotropic fluctuations. In the e

following we shall concentrate for simplicity on the structure  o; L !
functions, but the same arguments could be generalized ti 10 50 120

other correlations. Isotropic flows are characterized by hav- log(R)

ing only the SeFtorJ =0, m=0 .ex0|ted. One is ther?fore FIG. 1. Analysis of the persistence of anisotropies with observable belong-
naturally led to introduce two different tests to quantify theing to case¢A) and(B) for the projection of structure functions in the sector
degree of isotropy/anisotropy. Fifgtase(A)], one can ana- j=2, m=2. Bottom: projections of fourth momenf7%(r|) (x) and

lyze fluctuations of comparable intensity, i.e., fixing the orderS;(r|) (+). Top: projection of sixth momen®Z%(r|) (O) and $%(r|)

n of the structure function and measuring the scaling in dif_(*). Notice how for the moment of order 6 we have a clear tendency toward
ferent sectors. We can introduce the ratio between the prd2creasing ofS(|r|) at small scales. Scales are droppedRat10 which

L o . . . . . corresponds to the onset of the viscous scale in the simulation. For details on
jection on the anisotropic sector vv_|th the.nonvanlshlng indi-how to compute numerically the projectior®™(|r|), see Ref. 16.

cesj, m and the projection on the isotropic secjer m=0,

SIm(r) 7 and 12. ltis impqrtant to notice_ that, i.n presence of higr-
TLm(r)Er(‘)o—_ (3) archy (2), the persistence of anisotropies is only possible

Sp(r) thanks to the existence of intermittent corrections in the an-
isotropic sectors. If hierarchy?) is valid and there is not
intermittency in all sectors, i.e&,=(n/2)&,, then the ob-
servable of cas¢€B) with positive ] would vanish at small
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We thus have the possibility to disentangle different degree
of anisotropy depending on the typical intensity of the veloc-
ity fluctuations. Looking at the structure functions of low

order (small n's) gives a test on the isotropy of the weak scaII(_es. he ab ] _
fluctuations, while looking at high ordeftargen's) gives a et us now support the above arguments by presenting

test on the statistics of strong turbulent fluctuations. A seconﬁo_me results obtained in chann(_el flow simulations. Th.e simu-
possible estimatdrcase(B)] consists of first normalizing the a_tlons are .performed on a Qr_'d Of_ 12828x 256 p?'”ts
field and then taking moments of it. As it is done for the with pgrlod!c bqundary condlt.|0n5 in the streamwse and
skewness and the kurtosis, we can for example normalize b anwise directions and no-slip boundary conditions at the
the isotropic component of the second order longitudina op and bottom walls. At Fhe center of the channel we have
structure function, $0(|r|)=([((v(x)—v(x+r)) Rq~70_. Due to the relatively mo_derate R_eynolds number,
11%); _om-o. The resulting dimensionless stochastic vari-no s_calmg Iav_vs_ are_observed. Still, even in the absence of
able can then be studied by looking at its decomposition ir?callng laws, it is .qune. clear from the data that t.he tWo sets
different], m sectors, of observable defmed in casés) and(B) beha_v_e in a very
different way. In Fig. 1 we present the quantities defined in
. si™(|r)) casegA) and(B) for the structure functions of order 4 and 6
Si(Irh)= S (4 atthe center of the channel for the seqter2, m=2. In Fig.
2 the same is presented but for a higher segte, m=2.

If the hierarchy(2) holds, all the observables of cade)
tend to zero as the scale is decreased. The decay rates pa 1
sibly differ from the dimensional predictions due to intermit-
tency, but they are guaranteed to be positive. There is nc
experimental or numerical evidence that the hierar@)yis
violated. The situation with observable of ca® is quite
different. The dimensionless quantities are indeed formed by 0.1 %
comparing anisotropic and isotropic fluctuations of different i
intensity[in the numerator and denominator @ structure
functions of different orders are involvedrhe hierarchy(2)
does not give any constraint in this case and it is well pos-
sible that£l <(n/2)¢57°. The corresponding observable of (g1t
case(B) é{{“ defined in(4) would then diverge going toward
the small scales, even in the presence of the hieraf2hy
That divergence is the effect of persistence of anisotropiesiG. 2. The same as Fig. 1 but for the segter4, m=2. Bottom: projec-
reported in experiments and numerical simulations both fofions of fourth momentT4?(|r|) (x) and&}|r|) (+). Top: projection of
the passive scalars and Navier—Stokes turbulésee Refs.  the sixth momentT¢(|r|) (0) and SE4(|r]) (x).
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That is the manifestation of persistence of anisotropies at

small scales and gives further support to the observations

first made in Ref. 4. Note that the scales shown in the figure
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