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The decay of large-scale anisotropies in small-scale turbulent flow is investigated. By introducing
two different kinds of estimators we discuss the relation between the presence of a hierarchy for the
isotropic and the anisotropic scaling exponents and the persistence of anisotropies. By direct
measurements on a channel flow numerical simulation we show that the presence of a hierarchy for
the isotropic and the anisotropic scaling exponent is not in contradiction with the persistence of
anisotropies at small scales. ©2001 American Institute of Physics.@DOI: 10.1063/1.1381019#
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One of the main assumptions made by Kolmogorov
his 1941 theory is the restoring of universality and isotro
at small scales in turbulent flows. The idea is that the effe
of a large-scale anisotropic forcing and/or boundary con
tions are rapidly lost during the process of energy trans
toward small scales. The overall result is that both isotro
and universality of turbulent fluctuations should be loca
restored at small enough scales and large enough Reyn
numbers. The rate of convergence toward isotropy can
quantitatively predicted within the K41 theory both as
function of the scale, e.g., for the structure functions, and
a function of the Reynolds numbers, e.g., for the single-po
moments of velocity gradients. Experiments1,2 and numerical
simulations3–5 do not confirm those predictions. The skew
ness of the transversal gradients,S35^(]yux)

3&/
^(]yux)

2&3/2 is, for example, found to have a very slow dec
with Rel . The effect is even stronger for the fifth-ord
skewnessS55^(]yux)

5&/^(]yux)
2&5/2, observed to remain

O(1) for all available Rel . Similar results were recently re
ported on a series of hydrodynamical problems. The m
striking ones were obtained analytically in passive sca
vector models advected by isotropic, Gaussian and white
time velocity fields~the so-called Kraichnan model6! with a
large scale anisotropic forcing.7,8 Numerical9,10 and experi-
mental~see, e.g., Refs. 11 and 12! evidences of persistenc
of anisotropies in real passive scalars have also been
ported.

On the one hand, there are then strong indications
favor of a persistent memory of the large-scale anisotrop
even at the smallest scales of a turbulent flow. On the o
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hand, there are theoretical arguments13 going in the opposite
direction, i.e., that anisotropic fluctuations are subdomin
with respect to the isotropic ones~see below!. This short note
is meant to clarify the relation between the previous res
and support the arguments by numerical simulations
channel flow turbulence.

The analysis in Ref. 13 is based on the invariance un
rotations of the unforced Navier–Stokes equations. We s
specifically restrict here to the structure functions and re
to the original paper for more complex tensorial objec
Since the Navier–Stokes equations are invariant under r
tions, the correlations are conveniently decomposed in te
of the irreducible representations of the rotation group. F
the nth order longitudinal structure function we have

Sn~r !5^@~v~x!2v~x1r !!•r #n&5(
jm

Sn
jm~ ur u!Yjm~ r̂ !,

~1!

where we have used the fact that the basis of the rota
group for scalar functions is the set of spherical harmon
Yjm . The coefficientsSn

jm(ur u) are expected to behave a

power lawsr jn
j

and the scaling exponents,jn
j , are expected

to depend only on the indexj ~the exponents should no
depend on them-index since it does not appear in the equ
tions of motion, see Ref. 13 for more details!. The previous
strong assumption is motivated by the idea of universal
i.e., that inertial-range scaling behaviors are independen
the large-scale boundary and forcing effects. Furthermor
is natural to suppose a hierarchical organization of the
ferent sectors in the inertial range, i.e., the existence o
hierarchy among the scaling exponents characterizing dif
ent sectors,
il:
9 © 2001 American Institute of Physics
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jn
j 50,jn

j 51,jn
j 52,¯ . ~2!

This statement, even if not proved for the Navier–Stok
equations, is verified analytically in various Kraichnan mo
els of passive fields.14,15 The existence of the hierarchy~2!
implies that the anisotropic fluctuations become more
more subdominant at the small scales as their degree o
isotropy increases.

Let us now analyze in a quantitative way the relati
importance of isotropic and anisotropic fluctuations. In t
following we shall concentrate for simplicity on the structu
functions, but the same arguments could be generalize
other correlations. Isotropic flows are characterized by h
ing only the sectorj 50, m50 excited. One is therefore
naturally led to introduce two different tests to quantify t
degree of isotropy/anisotropy. First@case~A!#, one can ana-
lyze fluctuations of comparable intensity, i.e., fixing the ord
n of the structure function and measuring the scaling in d
ferent sectors. We can introduce the ratio between the
jection on the anisotropic sector with the nonvanishing in
cesj, m and the projection on the isotropic sectorj 5m50,

Tn
jm~r ![

Sn
jm~r !

Sn
00~r !

. ~3!

We thus have the possibility to disentangle different degr
of anisotropy depending on the typical intensity of the velo
ity fluctuations. Looking at the structure functions of lo
order ~small n’s! gives a test on the isotropy of the wea
fluctuations, while looking at high orders~largen’s! gives a
test on the statistics of strong turbulent fluctuations. A sec
possible estimator@case~B!# consists of first normalizing the
field and then taking moments of it. As it is done for th
skewness and the kurtosis, we can for example normaliz
the isotropic component of the second order longitudi
structure function, S2

00(ur u)5^@((v(x)2v(x1r ))
•r #2& j 50,m50 . The resulting dimensionless stochastic va
able can then be studied by looking at its decomposition
different j, m sectors,

Ŝn
jm~ ur u![

Sn
jm~ ur u!

~S2
00~ ur u!!n/2 . ~4!

If the hierarchy~2! holds, all the observables of case~A!
tend to zero as the scale is decreased. The decay rates
sibly differ from the dimensional predictions due to interm
tency, but they are guaranteed to be positive. There is
experimental or numerical evidence that the hierarchy~2! is
violated. The situation with observable of case~B! is quite
different. The dimensionless quantities are indeed formed
comparing anisotropic and isotropic fluctuations of differe
intensity @in the numerator and denominator of~4! structure
functions of different orders are involved#. The hierarchy~2!
does not give any constraint in this case and it is well p
sible thatjn

j ,(n/2)j2
j 50. The corresponding observable

case~B! Ŝn
jm defined in~4! would then diverge going toward

the small scales, even in the presence of the hierarchy~2!.
That divergence is the effect of persistence of anisotrop
reported in experiments and numerical simulations both
the passive scalars and Navier–Stokes turbulence~see Refs.
Downloaded 28 Jan 2003 to 160.80.2.16. Redistribution subject to AIP
s
-

d
n-

e

to
v-

r
-
o-
-

s
-

d

by
l

-
n

os-

o

y
t

-

s
r

7 and 12!. It is important to notice that, in presence of hie
archy ~2!, the persistence of anisotropies is only possi
thanks to the existence of intermittent corrections in the
isotropic sectors. If hierarchy~2! is valid and there is not
intermittency in all sectors, i.e.,jn

j 5(n/2)j2
j , then the ob-

servable of case~B! with positive j would vanish at small
scales.

Let us now support the above arguments by presen
some results obtained in channel flow simulations. The sim
lations are performed on a grid of 12831283256 points
with periodic boundary conditions in the streamwise a
spanwise directions and no-slip boundary conditions at
top and bottom walls. At the center of the channel we ha
Rel;70. Due to the relatively moderate Reynolds numb
no scaling laws are observed. Still, even in the absenc
scaling laws, it is quite clear from the data that the two s
of observable defined in cases~A! and ~B! behave in a very
different way. In Fig. 1 we present the quantities defined
cases~A! and~B! for the structure functions of order 4 and
at the center of the channel for the sectorj 52, m52. In Fig.
2 the same is presented but for a higher sector,j 54, m52.

FIG. 1. Analysis of the persistence of anisotropies with observable belo
ing to cases~A! and~B! for the projection of structure functions in the sect
j 52, m52. Bottom: projections of fourth moment,T4

2,2(ur u) ~3! and

Ŝ4
2,2(ur u) ~1!. Top: projection of sixth moment,T6

2,2(ur u) ~h! and Ŝ6
2,2(ur u)

~* !. Notice how for the moment of order 6 we have a clear tendency tow

increasing ofŜ6
2,2(ur u) at small scales. Scales are dropped atR;10 which

corresponds to the onset of the viscous scale in the simulation. For deta
how to compute numerically the projections,Sn

jm(ur u), see Ref. 16.

FIG. 2. The same as Fig. 1 but for the sectorj 54, m52. Bottom: projec-

tions of fourth moment,T4
4,2(ur u) ~3! and Ŝ4

4,2(ur u) ~1!. Top: projection of

the sixth moment,T6
4,2(ur u) ~h! and Ŝ6

4,2(ur u) ~* !.
 license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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While the observable of case~A! always monotonically de-
creases with the scale, the observable of case~B! for the
sixth order moments shows a clean tendency to incre
That is the manifestation of persistence of anisotropies
small scales and gives further support to the observat
first made in Ref. 4. Note that the scales shown in the fig
go from the largest available one~the box size! to the begin-
ning of the viscous scale. The decomposition in spher
harmonics at the very small scales~inside the viscous range!
is hard to obtain because of interpolation errors of the cu
grid on the sphere. Details on the numerical procedure
compute the projections on different sectors can be foun
Ref. 16. Let us stress again that by using the SO~3! decom-
position we have an exact separation of isotropic and an
tropic fluctuations. Therefore the persistence of anisotrop
observed at small scales cannot be due to spurious l
scales contamination of the small scales statistics.

As for the intermittency in the anisotropic sectors, t
situation is still moot. Experimentally, the lack of control o
the whole velocity field does not allow us to perform
exact projection on each separate sector, only indirect fit
the superposition of many anisotropic contribution
possible.17,18 There is only one attempt to directly measu
the projections on each single sector in the same cha
flow data set used here.16,19 As stated previously, the Rey
nolds number is unfortunately not high enough and sca
exponents of the anisotropic sectors can be measured
via the ESS.20 In the anisotropic sectors it is not even qu
clear what would be the dimensional prediction for thejn

j

with j .0. Different dimensionless quantities can indeed
built by using some anisotropic mean observable, e.g.,
mean shear, and the usual energy dissipation. The dim
sional predictions would then depend on the requirement
the anisotropic correction is~or is not! an analytical, smooth
deviation from the isotropic sector. Furthermore, the co
parison with the behavior observed in the Kraichnan mod
of scalar/vector fields6,21 suggests that the anisotropic secto
may show intermittent corrections induced by the homo
neous ~nonlinear, in the Navier–Stokes case! part of the
equations for the correlation functions. If that is the case,
dimensional predictions might be very far from the observ
behaviors.

In conclusion, we have discussed the decay of lar
scale anisotropy memory in the small scales of turbul
flows. The analysis of numerical data from channel flo
simulations indicate that the anisotropies persist at the s
scales but still respecting the hierarchy~2! between the iso-
tropic and anisotropic velocity components.

Recently, a further support to the hierarchy~2! has been
obtained in a numerical simulation of homogeneo
anisotropic turbulence.22
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