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3INFM, Unitá di Tor Vergata, Roma, Italy

(Received 26 June 2000 and in revised form 13 July 2001)

SO(3) and SO(2) decompositions of numerical channel flow turbulence are performed.
The decompositions are used to probe, characterize, and quantify anisotropic struc-
tures in the flow. Close to the wall, the anisotropic modes are dominant and reveal the
flow structures. The dominance of the (j, m) = (2, 1) mode of the SO(3) decomposition
in the buffer layer is associated with hairpin vortices. The SO(2) decomposition in
planes parallel to the walls allows us also to access the regions very close to the wall.
In those regions we have found that the strong enhancement of intermittency can
be explained in terms of streaklike structures and their signatures in the m = 2 and
m = 4 modes of the SO(2) decomposition.

1. Introduction
Structures called ‘streaks’ have been thought to be the main signatures of wall-

bounded flows in the viscous sublayer since the pioneering work of Kline et al. (1967)
who observed the existence of extremely well-organized motions made of regions of
low- and high-speed fluid, elongated downstream and alternating in the spanwise
direction. Later, in Kim, Kline & Reynolds (1971), ‘streaks’ were reported to be
responsible for turbulent production in the viscous sublayer. Similarly, ‘hairpins’ have
been the main persistent structures observed experimentally (Head & Bandyopadhyay
1981; Wallace, Eckelmann & Brodkey 1972) and numerically (Moin & Kim 1985;
Kim & Moin 1986) outside the viscous layer, in the turbulent boundary layer. By
means of conditional sampling, Kim & Moin (1986) were able to show that these
‘hairpin’ shaped structures are associated with high Reynolds-shear stress and give
a significant contribution to turbulent production in the logarithmic layer. For a
thorough discussion of structures in wall flow and their characterization with the help
of statistical methods see Pope (2000, chap. 7).

How are the structures seen in wall-bounded flows reflected in the statistical theory
of turbulence?

Kolmogorov’s classical statistical theory (Kolmogorov 1941) avoids the term struc-
tures. He hypothesizes that any turbulent flow isotropizes and homogenizes on the
smallest scales. Based on this, he postulates (i) the existence of an inertial range of
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scales where (ii) the ‘almost’ isotropic homogeneous turbulent fluctuations are charac-
terized by a power law spectrum with a universal − 5

3
slope. Both statements are con-

nected and neither is strictly correct. First, it has been established experimentally and
numerically (Frisch 1995) that already in the ideal isotropic and homogeneous high-
Reynolds-number limit turbulent fluctuations are strongly intermittent. Intermittency
means that the probability density of velocity increments, δRu = (u(x+ R)− u(x)) · R̂,
cannot be rescaled by using only one single scaling exponent for all distances R,
see for example Frisch (1995). Secondly, in almost all relevant applied situations
we are interested in those ranges of scales where turbulence statistics are neither
homogeneous nor isotropic.

In this paper, as an example, we will discuss the important case of channel flows. Ex-
perimental (Garg & Warhaft 1998) and numerical investigations (Pumir & Shraiman
1995; Pumir 1996; Schumacher & Eckhardt 2001) have shown that the tendency
towards the isotropization of small-scale statistics of shear flows is much slower than
any dimensional prediction, even at very large Reynolds numbers. Even worse, in
contrast to what is predicted by the Kolmogorov 1941 theory, some observables such
as the skewness of velocity gradients, exhibit persistence of anisotropies.

The two above issues of intermittency and anisotropy are connected. We can-
not focus on the issue of intermittency in high-Reynolds-number homogeneous and
isotropic statistics without first having a systematic control on the possible slowly
decaying anisotropic effects that are always present in all numerical or experimen-
tal investigations. Similarly, the understanding of complex non-homogeneous and
anisotropic flows cannot avoid the problem of intermittent isotropic and anisotropic
fluctuations.

Toschi et al. (1999) and Benzi et al. (1999) started a systematic investigation of the
intermittent properties of velocity increments parallel to the wall as a function of the
distance from the wall in a channel-flow simulation. In this case, a clear transition
between the bulk physics and the wall physics was recognized in terms of two different
sets of intermittent exponents characterizing velocity fluctuations at the centre and
close to the channel walls. A firm quantitative understanding of how much these
intermittent quantifiers can be connected to the presence of persistent structures is
still lacking. For instance, in Benzi et al. (1999), the different behaviour of velocity
fluctuations in the buffer layer was explained as a breaking of the Kolmogorov refined
hypothesis linking energy dissipation to inertial velocity fluctuations, i.e. an effect due
to the different production and dissipation mechanism caused by the presence of
strong shear effects close to the walls. Clearly, such an issue can only be addressed
by using systematic tools which are able to quantify the degree of anisotropy and
coherency at different scales and at different spatial locations in the flow.

In this paper, we suggest as such a tool the exact decompositions of the correlation
functions in terms of the irreducible representations of the rotational group SO(3)
(in the bulk of the flow) and in terms of the irreducible representation of the two-
dimensional rotational group SO(2) (close to the walls). The SO(3) decomposition
has been introduced by Arad et al. (1998, 1999a,b) and meanwhile used extensively
(Grossmann, Lohse & Reeh 1998; Kurien et al. 2000; Grossmann, von der Heydt
& Lohse 2001; Kurien & Sreenivasan 2001a,b). With this tool, we can quantify in a
systematic way the relative and absolute degree of anisotropy of velocity fluctuations.
The SO(3) decomposition, being connected to the exact invariance under rotations
of the inertial and diffusive terms of the Navier–Stokes equations, can disentangle
universal scaling properties of the isotropic sectors from the more complex behaviour
in the anisotropic sectors. We also show how the SO(2) decompositions in planes
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parallel to the walls are useful analysing tools in order to quantify the relative change
of planar anisotropy when approaching the boundaries.

Furthermore, we show how a statistical data analysis, in principle, allows for
a connection between some coefficients of the decompositions and the ‘structures’
observed by simple flow visualization. We therefore try to contribute to filling the gap
between the quantitative systematic methodology used in ‘ideal’ homogeneous and
isotropic turbulence and the more qualitative description in terms of ‘structures’ used
in the ‘non-ideal’ wall-bounded flows.

The paper is organized as follows. In § 2, we review the main theoretical con-
siderations about the importance of the SO(3) decomposition in the Navier–Stokes
equations. In § 3, we present a systematic analysis of the SO(3) decomposition in a
numerical channel flow database. We discuss the results with particular emphasis on
the universality issue, i.e. independence from the large-scale effects, and on how we
can use such a decomposition to quantify the relative importance of structures such
as ‘hairpin’ in the bulk of the flow. In § 4, we present the results from the SO(2)
decompositions in planes well inside the buffer layer, i.e. where the SO(3) decompo-
sition cannot be applied owing to the presence of the rigid walls. In particular, we
show how the SO(2) analysis allows us to distinguish clearly the existence of ‘streak’
like structures in a statistical sense. Section 5 contains comments and conclusions.

2. SO(3) decomposition
SO(3) – rotational invariance – is one of the basic symmetries of the Navier–Stokes

equations. However, it is broken by the boundary conditions or by the driving force of
the flow, both of which introduce anisotropy and also inhomogeneities. Let us start,
as an example, with the SO(3) decomposition of the second-order velocity correlation
depending only on one spatial increment R:

Cαβ(x,R) = 〈(uα(x+ R)− uα(x)(uβ(x+ R)− uβ(x)〉. (2.1)

This observable can be decomposed in terms of the irreducible representations of the
three-dimensional rotational group (Arad et al. 1999b) which form a complete basis
in the space of smooth second-order tensors depending on one vector R:

Cαβ(x,R) =
∑
qjm

aq,jm(x, R)Bq,jmαβ (R̂). (2.2)

The notation in (2.2) is borrowed from the quantum mechanical analogue, i.e. j =
0, 1, . . . labels the eigenvalues of the modulus of the total angular momentum L2;
m = −j, . . . ,+j labels the eigenvalues of the projection of the total angular momentum
in one direction, say ŷ; q labels the different irreducible representations corresponding
to a given j; and B

q,jm
αβ (R̂) are the eigenfunctions of the rotational group in the

space of second-order smooth tensors; they only depend on the R̂ = R/R. For the
fully isotropic sector, j = 0, we have only m = 0, and a simple calculation shows that
there are only two independent irreducible representations in the isotropic sector, i.e.
the well-known result (Monin & Yaglom 1975) that we need only two independent
eigenfunctions in order to describe any second-order isotropic tensor. These two
eigenfunctions can be taken to be:

B
1,00
αβ (R̂) = δα,β , B

2,00
αβ (R̂) = R̂αR̂β,
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Figure 1. Coordinate system in channel. Shown are streamwise (x), spanwise (z),
and wall-normal (y) directions.

and therefore the decomposition (2.2) in the isotropic sector assumes the familiar
form

Cαβ(x,R) = a1,00(x, R)δα,β + a2,00(x, R)R̂αR̂β. (2.3)

In the Appendix we list the complete set of Bq,jmαβ for the case of second-order tensors.
For higher tensor ranks we refer to Arad et al. (1999b). The main physical information
is, of course, hidden in the dependence of the coefficients aq,jm(x, R) on the spatial
location, x, and on the analysed scale, R. We aim to use the decomposition (2.2) as
a filter able to disentangle different anisotropic effects as a function of the spatial
location and of the analysed scale. In previous studies, the main interest was focused
on the theoretical issue of the existence of scaling behaviour for the coefficients
aq,jm(x, R) and on its possible dynamical explanation in terms of the ‘foliation’ of the
Navier–Stokes equations in different j sectors (Arad et al. 1998, 1999a,b; Biferale &
Toschi 2001; Grossmann et al. 2001). The typical questions addressed were whether
coefficients belonging to different j sectors have different scaling behaviour (if any)
and, in this case, which kind of dimensional estimate for scaling exponents in the
anisotropic sectors we could propose. As for the issues of scaling behaviour, owing to
the limitation of small Reynolds numbers in the numerical case (Arad et al. 1999a;
Biferale & Toschi 2001), and to the limited amount of information available on the
tensorial structure of the velocity field in the experimental case (Arad et al. 1998;
Kurien et al. 2000; Kurien & Sreenivasan 2001), only partial answers have been found.
Among them, the most important is the strong universality shown by the isotropic
sector as a function of the local degree of non-homogeneity (and anisotropy), i.e. the
independence on x shown by the scaling properties of the coefficients aq,00(x, R) in
non-homogeneous turbulence (Arad et al. 1999a).

In this paper, we do not focus on possible scaling behaviour but we would like
to suggest the SO(3) decomposition as an appropriate tool to analyse, characterize,
and quantify the non-universal large-scale geometric properties of the turbulent flow.
As an example, we take numerical channel flow (Amati, Succi & Piva 1997; Toschi
et al. 1999) obtained by a lattice Boltzmann code running on a massively parallel
machine. The spatial resolution of the simulation is 256 × 128 × 128 grid points.
Periodic boundary conditions were imposed along the streamwise (x) and spanwise
(z) directions, whereas no-slip boundary conditions were applied at the top and at
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the bottom planes (y-direction) (see figure 1). The Reynolds number at the centre of
the channel is about 3000.

We assume that, owing to the homogeneity in planes parallel to the walls, there
is only a dependence on the height y of all statistical observables. The coefficients

aq,jm(x, R) carry two types of information: (i) their scaling behaviour aq,jm(x, R) ∝ Rζ
(2)
q,jm

which at least for small scales and large Re is hoped to be universal, i.e. position
and flow independent†, and (ii) their absolute or relative magnitudes which clearly
are non-universal, i.e. position x and flow-type dependent. These ratios characterize
what kinds of structure the flow contains. These are time- and ensemble-averaged
quantities, obeying the underlying Navier–Stokes SO(3) symmetry, and we consider
them to be a more systematic tool for structure characterization than snapshots of
vortex sheets, worms, swirls or contour plots of either the velocity or the vorticity
fields.

When analysing higher-order structure tensors Cαβ...γ(x,R), the decomposition of
type (2.2) soon becomes cumbersome. Moreover, in most experiments, the full tensorial
information is not available. Therefore, we are restricted to an abbreviated form of the
SO(3) decomposition of the velocity structure tensor, namely, the SO(3) decomposition
of the longitudinal structure function. In this case, the undecomposed observable is
a scalar under rotations and there exists only one irreducible representation for each
j sector, i.e. the usual spherical harmonics basis set Yjm(R̂). We have to be careful,
however, as using only scalar quantities may not be enough to fully characterize
the geometrical contents of statistically important structures. We decompose the
longitudinal structure function

S
(p)
L (x,R) =

〈(
(u (x+ R)− u (x− R)) · R̂

)p〉
, (2.4)

as follows:

S
(p)
L (x,R) =

∑
jm

S
(p)
jm (x, R)Y jm(R̂). (2.5)

We expect that when scaling behaviour sets in (presumably at high enough Re, far
beyond what we can achieve in numerical simulations) we should find:

S
(p)
jm (x, R) ∼ ajm(x)Rζ

(p)
jm . (2.6)

Again, the S (p)
jm (x, R) carry both the scaling information S

(p)
jm (x, R) ∝ Rζ

(p)
jm and their

non-universal amplitudes.
A practical problem with the decomposition (2.5) of (2.4) is that for x close to

the boundaries, the scale R is restricted to lengths smaller than the distance from
the wall, and the large scales cannot be probed. Therefore, we will also perform
a decomposition of (2.4) which obeys the weaker SO(2) symmetry, i.e. rotational
invariance in a plane for fixed distance y from the wall,

D
(p)
L (y,R) =

∑
m

d(p)
m (y, R) exp (imφ). (2.7)

The orientation dependence in a plane reduces to the dependence on an angle φ.
Again, the d(p)

m (y, R) carry both scaling and amplitude information.
Let us notice at this point that the SO(3) decomposition has its roots on the intimate

† The issue of universality of sectors with j > 0 is far from being trivial. A lack of universality
may be due to the existence of infrared (IR) or ultraviolet (UV) divergences in the non-local integral
induced by the pressure terms in the Navier–Stokes equations (Arad et al. 1998).



44 L. Biferale, D. Lohse, I. M. Mazzitelli and F. Toschi

101

100

10–1

10–2

10–3

10 100 320

R+

S
(2

)
2,

m
 (y

+
, R

+
)

Figure 2. Log-log plot of S (2)
2,2 (y+, R+) (∗), S (2)

2,1 (y+, R+) (×), and S (2)
2,0 (y+, R+) (+) as functions of R+

at the centre of the channel y+ = 160.

structure of the Navier–Stokes equations, i.e. on the invariance under rotations of
the inertial and dissipative terms and on the relative foliations on different sectors of
the three-dimensional rotational group of the equation of motion of any correlation
function (Arad et al. 1999b). For two-dimensional observables, no such closed equation
exists. Nevertheless, the SO(2) decomposition can still be seen as a powerful tool to
exactly decompose any observable in a fixed plane as a function of isotropic and
anisotropic structures in the plane itself.

3. SO(3) analysis of a turbulent channel flow field
In previous studies, most of the attention was paid to the isotropic sector of the

structure function decomposition (2.5), i.e. on the behaviour of S (p)
00 (x, R) as a function

of the centre of the decomposition x and of the scale R. In Arad et al. (1999a), it was
shown that the isotropic projection enjoys much better scaling properties than the
undecomposed structure function and that these properties are robust with respect
to the changing of the local degree of anisotropy, i.e. with respect to the centre of
the decomposition, x. These findings support the idea of universality of the isotropic
scaling exponents. It was possible to say very little about scaling of the anisotropic
sectors because of lack of spatial resolution; the only qualitative statement was that
the scaling exponent of the j = 2 sector was roughly 4

3
, as predicted by the dimensional

argument given by Lumley (1967) or by Grossmann et al. (1994).

3.1. SO(3) decomposition and structures

Here we concentrate on the more applied question of how much the different pro-
jections, independently of their possible scaling properties, can teach us about the
preferred geometrical structures present in the flow when changing the analysing
position in the channel.

In figures 2 and 3 we present the three different contributions we have in the
j = 2 non-isotropic sector extracted at the centre of the channel (y+ = 160) and at a
quarter (y+ = 80), respectively. (The j = 1 sector is absent owing to the symmetries
of the structure functions chosen in this work.) From now on, with the notation y+
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Figure 3. Log-log plot of S (2)
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2,0 (y+, R+) (+) as functions of R+

at y+ = 80.
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Figure 4. Graphical representation of spherical harmonics (a)
∣∣Y 2,0(θ, φ)

∣∣, (b)
∣∣Y 2,1(θ, φ)

∣∣,
and (c)

∣∣Y 2,2(θ, φ)
∣∣.

we mean normalization with respect to the wall coordinates. The relative size of the
S

(2)
2m (y+, R+) for different m and fixed y+ characterizes the geometry of the anisotropic

structures on the corresponding scale R. Note also that the distance at which velocity
increments are measured (R) is normalized to wall units (R+). For y+ = 80, the
(j = 2, m = 1) mode is very pronounced on smaller scales, see figure 3. We associate
this with the hairpin vortices and other structures which diagonally detach from the
wall and which are projected out by Y21. For a visualization of Y2m see figure 4. In
the centre, the (j = 2, m = 1) mode is two orders of magnitude less pronounced than
at y+ = 80. Our interpretation is that the diagonal structures from above and below
have equal and opposite contributions.

The most pronounced structures in the centre are those parallel to the flow direction,
i.e. (j = 2, m = 2), see figure 2. Also at y+ = 80 the structures parallel to the flow
direction (mode (j = 2, m = 2)) are rather pronounced. At scales beyond R+ ≈ 100
they overwhelm the diagonal contributions (mode (j = 2, m = 1)). Therefore, we are
tempted to interpret R+ ≈ 100 as the typical maximal size of the hairpin vortices.

We repeated this type of analysis for the S (4)
2m (y+, R+) with very similar results.

3.2. Higher-order moments and the lack of isotropy at small scales

The first question we may want to ask about the decomposition (2.5) is whether it
converges with increasing j. We want to check this for an R in the streamwise flow
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Figure 5. Sketch of a ‘streak’ in an (x, z) plane probed with the m = 2 and m = 4 eigenfunctions.

direction, i.e. R̂ = (θ, φ) = ( 1
2
π, 0). As we can see from figure 6(a), at small scales

and in the channel centre, where anisotropic contributions are small, the convergence
is good; but away from the centre (y+ = 62) and in particular for large scales, the
quality of the convergence becomes poor, see figure 6(b). Note that in any case the
convergence is not monotonous as a function of the scale.

Another, even more informative way to quantify the rate of isotropization
is to plot the ratio of each single amplitude S

(2)
jm (x, R) to the total structure

function S
(2)
L (x,R) with R in the direction of the mean flow. In figures 7(a) and

7(b), we can find the above quantities at the centre of the channel y+ = 160 and in
the buffer layer y+ = 62, respectively. At large scales there are contributions from
all resolved j sectors indicating, as already seen above, a lack of convergence of the
decomposition at those scales.

In the buffer layer, the relative ratio of the anisotropic sectors is much higher than
what is seen in the centre. Moreover, even more interestingly, in the buffer layer, where
owing to the presence of a high shear we can imagine a statistically stable signature of
anisotropic physics, there appears to be a clear grouping of different sectors labelled
by different j indices: Figure 7(b) shows that projections with the same j but different
m indices have a qualitative similar behaviour. Of course, this kind of comparison
depends on the direction of the undecomposed structure functions (here taken parallel
to the walls).

Another test of the relative weights of anisotropies (now independent of the chosen
coordinate system) is to plot the ratio between the isotropic projection S (p)

00 (x, R) and
the other anisotropic projections for j > 0. Such a test is carried out in terms of
quantities depending only on the separation magnitude R, and therefore measures the
relative importance of anisotropies independently of the orientation. In figure 8 we
show, for example, the ratio between the sector (j, m) = (4, 4) and the isotropic sector
(j, m) = (0, 0) as a function of the wall distance and the scale R+. As expected, by
approaching the wall (decreasing y+), the ratio becomes larger and larger, showing
clearly the importance of high j fluctuations in the sheared buffer layer.

This convergence analysis is a systematic quantitative way of understanding the
rate of isotropization toward small scales exhibited by this particular flow as a
function of the distance from the wall. However, the lack of convergence of the SO(3)
decomposition close to the wall also shows its limitations once highly anisotropic
structures are present; many (j, m)-amplitudes are necessary to characterize them.

All the previous trends have also been found, amplified, by analysing higher
moments. For example, in figures 9(a) and 9(b) we re-plot the same terms as in
figures 7(a) and 7(b) but for the fourth-order structure functions. The fact that the
previous trends are much more enhanced for higher-order moments is an indication
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Figure 6. Analysis of the convergence of the SO(3) decomposition: ratioJ,M represents the ratio
between the longitudinal structure function of order 2 in the streamwise direction reconstructed up
to (J,M) = (0, 0) (+), (J,M) = (2, 0) (×), (J,M) = (2, 2) (∗), (J,M) = (4, 0) (�), (J,M) = (4, 2) (�),
and (J,M) = (4, 4) (◦) and the undecomposed structure function, (a) at the centre of the channel
y+ = 160 and (b) at y+ = 62.

that anisotropy fluctuations are important but ‘rare’, i.e. are connected to intense
fluctuations in a sea of isotropic turbulence.

4. SO(2) analysis of a turbulent channel flow
As discussed in the previous sections, the SO(3) decomposition turned out to be

useful as it is able to highlight statistical information as a function of geometrical
structures. However, the SO(3) decomposition suffers from some drawbacks when we
want to analyse the statistical turbulent behaviour close to the fluid boundaries. They
originate from the need to perform integrals over a given sphere, and therefore close
to the boundaries the limitation of the sphere radius does not allow us to extract any
information except for a very limited (almost fully dissipative) range of scales.

To overcome this problem, we propose to use a decomposition in eigenfunctions
of the group of rotations in two dimensions, SO(2). The rationale behind this idea
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Figure 7. Ratio of each single (j, m) amplitude S (2)
j, m(y+,R) to the total structure function S (2)

L (y+,R)

with R in the direction of the mean flow and (a) y+ = 160, (b) y+ = 62. The (j, m) indices are:
(0, 0) (+), (2, 0) (×), (2, 2) (∗), (4, 0) (�), (4, 2) (�), and (4, 4) (◦).

is that the Navier–Stokes equations obviously obey the SO(2) symmetry and for the
channel flow also the geometry obeys this symmetry, once the rotation axis is chosen
in the y-direction. However, the mean flow breaks the SO(2) symmetry as it breaks the
SO(3) symmetry. Nevertheless, we will gain a tool that is able to exactly decompose
any two-dimensional observable in terms of fluctuations with a given property under
two-dimensional rotations. In the region very close to the walls where very elongated
‘streak’ structures have been observed, the SO(2) analysis may help in understanding
the relative importance of isotropic and anisotropic planar fluctuations.

4.1. SO(2) decomposition and structures

The SO(2) decomposition of the longitudinal structure function D
(p)
L (y,R) is defined

as
D

(p)
L (y,R) =

∑
m

d(p)
m (y, R) exp (imφ), (4.1)
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where R is a two-dimensional vector lying in a plane at fixed y. Owing to the symmetry
of the structure function only even values of m will contribute to the sum in (4.1).

In figures 10(a) and 10(b) we show the rate of convergence of the reconstructed
structure function of order 2 as a function of the maximum M contributing to the
right-hand side of (4.1) and at two different distances from the wall, at the centre
(figure 10a) and in the buffer layer (figure 10b). The findings are the same as for the
SO(3) decomposition. (i) In the centre of the channel, we find a good convergence. (ii)
However, in the buffer layer, even when reaching M = 8, large scales are still far from
being reconstructed. This reflects the tendency of the formation of large and intense
anisotropic structures. These trends are even more pronounced for the fourth-order
moment as shown in figures 11(a) and 11(b).

In figure 12(a) we show the absolute weight of different m-contributions for the
second-order structure function, again in the centre. Note that there is a clear mono-
tonic organization of different contributions as a function of their isotropic/anisotropic
properties, i.e. higher values of m are less intense than lower values of m in a systematic
way at all scales.

In contrast, in the buffer layer, figure 12(b), there is a crossing of the m = 2
contribution and of the m = 4 contribution at scales of the order of R+ ∼ 90. We
interpret this crossing as the signature of the formation of structures or streaks with
typical width R+ ∼ 90 and with a preferred orientation projected out by the m = 4
eigenfunction; the m = 2 eigenfunction weighs essentially the difference between
velocity correlations in the streamwise and in the spanwise directions, whereas those
contributions sum in the projection on the m = 4 eigenfunction (see figure 5). Thus, at
scales R+ smaller than the typical streak width, the intensity of the m = 4 coefficient
will exceed that of the m = 2 coefficient. On the other hand, at large scales R+ > 90,
we find the normal ordering d

(2)
0 (37, R+) > d

(2)
2 (37, R+) > d

(2)
4 (37, R+) > d

(2)
6 (37, R+).

That elongated structures exist close to the wall is shown in the contour plot of
figure 13, and of course is known from many experiments and simulations (see Pope
2000, chap. 7).
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Figure 9. Ratio of each single (j, m) amplitude S (4)
j,m(y+,R) to the total structure function S (4)

L (y+,R)

with R in the direction of the mean flow and (a) y+ = 160, (b) y+ = 62. The (j, m) indices are:
(0, 0) (+), (2, 0) (×), (2, 2) (∗), (4, 0) (�), (4, 2) (�), and (4, 4) (◦).

The above trends are again more intense for p = 4, 6, . . . . For p = 6, the dominant
contribution at large scales (not shown) is given by the m = 2 sector, proving, once
more, the extreme departure from isotropy (in the plane) close to the walls.

In order to quantify the departure from isotropy in each plane at a changing
distance from the wall, we plot the ratios between the projections on the m = 2
sector and the isotropic sector (figure 14a) at a varying distance from the wall and
for some R+ values. Figure 14(b) shows the same but for m = 4. Note the sharp
transition at y+ ∼ 40 from almost isotropic statistics (y+ > 40) to strongly anisotropic
statistics (y+ < 40); this is again the signature of the beginning of the buffer layer
with ‘structures’. The ratio of the anisotropic to the isotropic amplitudes peaks around
y+ = 10. In the viscous sublayer y+ < 10, the anisotropy loses importance.
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Figure 10. Analysis of the convergence of the SO(2) decomposition: ratioM represents the ratio
between the longitudinal structure function of order 2 in the streamwise direction reconstructed up
to M = 0 (+), M = 2 (×), M = 4 (∗), M = 6 (�), and M = 8 (�) and the undecomposed structure
function, (a) at the centre of the channel y+ = 160 and (b) at y+ = 37.

4.2. Extended self-similarity plots for SO(2) decomposed structure functions

Let us now switch to the more statistically minded question of the experimental
and numerical finding of stronger intermittency corrections close to the walls (Benzi,
Struglia & Tripiccione 1996b; Gaudin et al. 1998; Toschi et al. 1999, 2000; Onorato,
Camussi & Iuso 2000). Remarkably, these corrections display universality, i.e. the
same exponents were measured in different set-ups. This result has been connected
with a universal shear-dominated range for scales R larger than the shear length

LS =
(
ε/S3

)1/2
. In that range, we can expect different energy transfer statistics and

as a consequence the breakdown of Kolmogorov’s refined similarity hypothesis.
Can we see the features of this shear-dominated universality class of intermittency

also in the wall region of the present channel flow? In order to extract any quantitative
information on scaling exponents in numerical simulations we must use the ESS
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Figure 11. Analysis of the convergence of the SO(2) decomposition: ratioM represents the ratio
between the longitudinal structure function of order 4 in the streamwise direction reconstructed up
to M = 0 (+), M = 2 (×), M = 4 (∗), M = 6 (�), and M = 8 (�) and the undecomposed structure
function, (a) at the centre of the channel y+ = 160 and (b) at y+ = 37.

technique (Benzi et al. 1993, 1996a; Grossmann, Lohse & Reeh 1997). ESS is based
on the experimental and numerical observation that structure functions even at
moderate Reynolds numbers show scaling in a generalized sense, i.e. they scale when
plotted against each other. In particular, we want to analyse the scaling:

D
(p)
L (y,R) ∼

(
D

(2)
L (y,R)

)ζ(p)(y)/ζ(2)(y)

. (4.2)

Here, we have limited ourselves again to the analysis of structure functions in the
plane. In (4.2), we have explicitly taken into account the possibility that the scaling
exponents depend on the distance from the walls. As stated above, Toschi et al. (1999)
have shown that there exist two distinct sets of exponents: one governing the scaling
in the range of scales smaller than LS (i.e. close to the centre of the channel, in
our case) which is given in terms of the usual isotropic and homogeneous set of
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Figure 13. Contour plot of the fluctuations of the streamwise velocity at y+ = 37.
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the isotropic sector m = 0 as a function of y+, for R+ = 10 (+), 25 (×), 50 (∗), 75 (�), 150 (�), and
250 (◦).

exponents; and the second one governing the scaling in the shear dominated range
of scales R > LS (i.e. close to the walls in our channel simulation).

In figure 15 we show the ESS local slopes of the undecomposed structure function
in the streamwise direction in the centre of the channel and the same for the projection
on the m = 0 sector for the moments p = 2 versus p = 4. Already the fully isotropic
component (in the plane) is able to reproduce well the undecomposed observable and
both are in good agreement with the isotropic and homogeneous scaling. This finding
confirms that at the centre of the channel the whole range of scales is affected only
weakly by any shear effect, reflecting that here R � LS, which diverges to infinity
at the channel centre. On the other hand, in figure 16 we show the same quantities
as in figure 15 but now in a plane well inside the buffer layer (y+ = 37). Here,
the m = 0 component does not reproduce the undecomposed observable, confirming
the anisotropy. However, remarkably, it is enough to add the m = 2 sector, i.e. to
reconstruct up to M = 2 in the right-hand side of (4.1), to have good agreement with
the more intermittent undecomposed structure function local slope. This is evidence
that, as far as the new scaling properties are concerned, the main effect is brought by
the m = 2 ‘streak’ like structures in the buffer layer.
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Figure 15. ESS logarithmic local slopes of the undecomposed structure function in the streamwise
direction (+) and of the projection on the m = 0 sector (×) as functions of the scale R+, for the
moments p = 4 versus p = 2, at y+ = 160. The dashed line represents the value 1.84 resulting from
the experimental high-Reynolds-number isotropic measurements.
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Figure 16. ESS logarithmic local slopes of the undecomposed structure function in the stream-
wise direction (+), of the projection on the m = 0 sector (×), and of the reconstruction up to
mmax = 2 (∗) as functions of the scale R+, for the moments p = 4 versus p = 2, at y+ = 37.
The dotted line represents the best fit value, 1.52, for the ESS logarithmic local slopes of the
undecomposed structure function in the streamwise direction, the dotted-dashed line corresponds
to the high-Reynolds-number experimental isotropic value, 1.84, for the same quantity.

5. Conclusions
A detailed investigation of anisotropies in channel flows in terms of the SO(3) and

SO(2) decomposition of structure functions has been presented. Projections on the
eigenfunctions of the two symmetry groups can be seen as a systematic expansion of
structures as a function of their scale and in terms of their local degree of anisotropy.

This tool may be thought of as complementary to the POD approach (proper or-
thogonal decomposition, see e.g. Pope 2000) where projections are made on structures
specific to the flow. The advantage of the SO(3)/SO(2) decomposition as compared to
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POD is that the modes on which we project are more familiar and obey the symmetry
of the Navier–Stokes equations; the disadvantage is that convergence is presumably
slower. Both methods share the shortcoming that hitherto they have not been proved
to be useful for dynamical calculations; they are simply analysing tools.

We have used the SO(3) decomposition of structure functions at the centre and at
a quarter of the channel in order to have a tool to measure the relative importance of
isotropic and anisotropic fluctuations at all scales. Close to the wall, the anisotropic
fluctuations show strong effects induced by structure with the typical orientations
of hairpin vortices. A partial lack of isotropization is still detected at the smallest
resolved scales.

The SO(2) decomposition in planes parallel to the walls allowed us to access
also the regions close to the wall. In those regions, we have found that the strong
enhancement of intermittency can be understood in terms of streaklike structures and
their signatures in the m = 2 and m = 4 modes of the SO(2) decomposition.

We need still to understand the physics of the anisotropic flow structures and why
they are more intermittent. However, we are confident that the SO(3) and SO(2)
decompositions are a useful systematic tool to analyse any isotropic/anisotropic
two-dimensional/three-dimensional turbulent data. We hope that in the long run,
characterizations of anisotropic behaviour like the present one may help to improve
LES of strongly anisotropic and inhomogeneous flows.
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European Union under contract HPRN-CT-2000-00162 and by the National Science
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Physics in Santa Barbara for its hospitality.

Appendix
In this Appendix, we want to explicitly write down the SO(3) decomposition of the

most general two-point velocity correlations in anisotropic turbulence. We consider
the second-order tensor involving velocities at two distinct points x and x+ R:

Cαβ(R) ≡ 〈uα(x)uβ(R+ x)〉, (A 1)

where we have supposed that the statistics are homogeneous (but not isotropic) and
therefore the left-hand side of (A 1) depends only on R, the distance between the two
points. Then, we can decompose Cαβ according to the irreducible representation of the
SO(3) group. Each irreducible representation will be composed of a set of functions
labelled with the usual indices j = 0, 1, . . . and m = −j, . . . ,+j corresponding to
the total angular momentum and to the projection of the total angular momentum
on an arbitrary direction, respectively. Moreover, a new ‘quantum’ index q which
labels different irreducible representations will be necessary. There are only q =
1, . . . , 9 irreducible representations of the SO(3) groups in the space of two-indices
tensors depending continuously on a three-dimensional vector (Arad et al. 1999b). In
particular, for fixed j and m, the 9 basis tensors can be constructed starting from the
scalar spherical harmonics Yj,m(X̂ ) plus successive application of the two isotropic
operators Rα and ∂β in order to saturate the correct number of tensorial indices.
For example, the 9 linearly independent basis vectors which define the irreducible
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representations (2.2) can be chosen as:

B
αβ
1,jm(R̂) ≡ R−jδαβΦjm(R),

B
αβ
2,jm(R̂) ≡ R−j−2RαRβΦjm(R),

B
αβ
3,jm(R̂) ≡ R−j[Rα∂β − Rβ∂α]Φjm(R),

B
αβ
4,jm(R̂) ≡ R−j−1εαβµRµΦjm(R),

B
αβ
5,jm(R̂) ≡ R−j+2∂α∂βΦjm(R),

B6,jm(R̂) ≡ R−j+1[εβµνRµ∂ν∂
α + εαµνRµ∂ν∂

β]Φjm(R),

B
αβ
7,jm(R̂) ≡ R−j(Rα∂β + Rβ∂α)Φjm(R),

B
αβ
8,jm(R̂) ≡ R−j−1[RαεβµνRµ∂ν + RβεαµνRµ∂ν]Φjm(R),

B
αβ
9,jm(R̂) ≡ R−j+1εαβµ∂µΦjm(R),

where Φjm(R) ≡ Rj Yjm(R̂). The most general second-order tensor like (A 1) can be
decomposed as:

Cαβ(R) ≡∑
j,m

9∑
q=1

aq,jm(R)Bαβq,jm(R̂) , (A 2)

where now the physics of the anisotropic statistical fluctuations must be analysed
in terms of the projections aq,jm(R) into the different sectors. Not all projections
are statistically independent. For example, there exists the well-known constraint
induced by the continuity equation for the only two projections alive in the isotropic
homogeneous sector, a1,00(R), a2,00(R),

R
d

dR
a1,00(R) + R

d

dR
a2,00(R) + 2a2,00(R) = 0.

The above constraint has the immediate consequence that both projections must have
the same scaling behaviour in the inertial range.

The continuity equation is not enough to impose similar constraints on the scal-
ing behaviour in the anisotropic sectors j > 0. In the latter case, the number of
constraints is less than the possible scaling degrees of freedom and therefore the
possibility of having different scaling for different irreducible representations within
the same jm sector is not ruled out (see Appendix of Arad et al. 1999b). Also, dynam-
ical constraints like the famous Kolmogorov 4

5
-law which connects the third-order

longitudinal structure function with the dissipation are only known for the isotropic
case. Hitherto, no exact dynamical relation of this type could be established in the
anisotropic j > 0 sectors. The only exception known to us is the case of isotropic but
non-parity invariant flow where a helicity-flux may exist in the system. In that case,
for the non-parity invariant but isotropic third-order correlation functions involved
in the helicity flux we can establish a relation similar to the 4

5
-law (Chkhetiani 1996;

L’vov, Podivilov & Procaccia 1997).
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