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Anomalous and dimensional scaling in anisotropic turbulence

L. Biferale,1,4 I. Daumont,1 A. Lanotte,2,4 and F. Toschi3,4

1Dipartimento di Fisica, Universita` ‘‘Tor Vergata,’’ Via della Ricerca Scientifica 1, I-00133 Roma, Italy
2CNR, ISAC - Sezione di Lecce, Strada Provinciale Lecce-Monteroni Km 1.200, I-73100 Lecce, Italy

3CNR, Istituto per le Applicazioni del Calcolo, Viale del Policlinico 137, I-00161 Roma, Italy
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We present a numerical study ofanisotropicstatistical fluctuations inhomogeneousturbulent flows. We give
a new argument to predict the dimensional scaling exponents,zd

j (p)5(p1 j )/3, for the projections of thepth
order structure function in thej th sector of the rotational group. We show that the measured exponents are
anomalous, showing a clear deviation from the dimensional prediction. Dimensional scaling is subleading and
connected to the dynamical fluctuations without phase correlations. Universality of the observed anomalous
scaling is discussed both theoretically and by means of numerical simulations at different Reynolds numbers
and with different forcing.
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In recent years a huge amount of theoretical, numeri
and experimental work has been done in order to study
isotropic turbulent fluctuations@1–11#. Typical questions go
from the theoretical point of calculating and measuri
anomalous scaling exponents in anisotropic sectors@3–6,10#,
to the more applied problem of quantifying the rate of reco
ery of isotropy at small scales@1,2,7#. Another important
issue is the universality of anisotropic scaling exponents,
whether they are an intrinsic characteristic of the Navi
Stokes nonlinear evolution or they are fixed by the exter
anisotropic forcing.

Important steps forward in the analysis of anisotro
fluctuations have been done in Kraichnan models, i.e., p
sive scalars or vectors advected by isotropic, Gaussian,
d-correlated in time velocity fields@12#, with a large-scale
anisotropic forcing@13–15#. In those models, anomalou
scaling arises as the result of a nontrivial null-space struc
for the advecting operator~zero modes!. Also, correlation
functions in different sectors of the rotational group sh
different scaling properties. Scaling exponents are univer
they do not depend on the actual value of the forcing a
boundary conditions, and they are fully characterized by
order of the anisotropy. Nonuniversal effects are felt only
coefficients multiplying the power laws.

Similar problems, such as the existence of scaling law
anisotropic sectors and, if any, the values of the correspo
ing scaling exponents are at the forefront of the experim
tal, numerical, and theoretical research for real turbul
flows. Only a few indirect experimental investigations
scaling in different sectors@4,5# and direct decomposition in
numerical simulations@6–8,10# have been attempted up t
now. On a theoretical ground, the potentiality of SO~3! de-
composition to quantify different degrees of anisotropy
any correlation function has been highlighted only recen
@3#. Preliminary experimental evidences of the existence o
scaling law also in sectors with total angular momentumj
52 have been reported@4,5#. The value of the exponent fo
the second-order correlation function being close to the
mensional estimatezd

j 52(2)54/3 @16#.
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Theoretically speaking, there exists only one previous
tempt to give an estimate for scaling exponents of the sec
order moment and in all sectors@9#. In Ref. @9#, a mean-field
prediction was formulated for anisotropic scaling of secon
order structure functions obtained by changing the analyt
properties of the external forcing. In this paper we provi
two different results on this important topic. First, we prese
a ‘‘dimensional’’ argument able to predict the scaling pro
erties of any moment in any anisotropic sector on the basi
a ‘‘local’’ matching between nonlinear and shear-induc
terms in the inertial range. Such a dimensional predict
should play the same role played by Kolmogorov 19
theory for isotropic fluctuations, i.e., it fixes the referenc
background scaling we should expect in the anisotropic s
tors in absence of intermittent fluctuations. Second we sh
that, after a phase randomization of velocity Fourier com
nents, structure functions posses a dimensional scaling.
is a clear signature that most of the anisotropic intermitte
is brought by a nontrivial phase organization while the ba
ground field almost follows the dimensional estimate.
nally, to comment on the universality properties of t
anomalous anisotropic scaling, we also present some c
parison at changing Reynolds numbers and the large-s
forcing.

We have performed two different sets of numerical sim
lations with large-scalehomogeneous and anisotropicforc-
ing obtained by changing both Reynolds numbers and
anisotropy degree of the forcing. The first simulation~DNS!
is a random Kolmogorov flow~RKF!. The RKF is fully pe-
riodic; the large-scale anisotropic random forcing points
one direction,ẑ, has a spatial dependency only from th
x coordinate and it is different from zero at the two wa
numbers: k15(1,0,0),k25(2,0,0). Namely, f i(k$1,2%)
5d i ,3f $1,2%exp(u$1,2%), where f $1,2% are fixed amplitudes and
u$1,2% are independent random phases,d correlated in time.
We simulated the RKF at resolution 1283 and 2563 and col-
lected up to 70 eddy turnover times; Reynolds numb
based on the gradient scale are Rel560 and Rel590, re-
spectively. Energy is dissipated by a hyperviscosity term
small scales.
©2002 The American Physical Society06-1
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The second set of simulations was forced by fixing
total energy on a subset of Fourier modes falling in a pla
k5(kx ,ky,0) with uku,4. Both simulations are homoge
neous and anisotropic, the degree of anisotropy in the la
case is much smaller than in the RKF. Most of the quant
tive results will be discussed for the RKF. The second se
simulations is used to discuss the degree of universality
anisotropic scaling.

Anisotropy is studied by means of SO~3!decomposition of
longitudinal structure functions, Sp(R)5^$@v(x1R)
2v(x)#•R̂%p&. Theoretical and numerical analysis show
@3,6,10# that one must first decompose the structure functi
onto irreducible representations of the rotational group
then study the scaling behavior of the projections. In pr
tice, being the longitudinal structure functions scalar obje
their decomposition reduces to the projections on the sph
cal harmonics,

Sp~R!5(
j 50

`

(
m52 j

j

Sp
jm~ uRu!Yjm~R̂!. ~1!

As usual, we use indexes (j ,m) to label, respectively, the
total angular momentum and its projection along a refere
axis, sayẑ. The whole physical information is brought by th
projectionsSp

jm(R). In particular, the main question we wa
to address here concerns their scaling properties,

Sp
jm~ uRu!;AjmuRuz

j ,m(p). ~2!

First, we need an estimate for the dimensional values of
exponentszd

j ,m(p) in all sectors. Our argument is based
the idea that large-scale energy pumping and/or bound
conditions are such as to enforce a large-scale anisotr
driving velocity field U. A prediction for intermediate
~small! scales anisotropic fluctuations may then be obtai
by studying the influence of the large scaleU on the inertial
range. By decomposing the velocity field in a small sc
component,u, and a large-scale anisotropic componentU
one finds the following equation for the time evolution ofu:

] tui1uk]kui1Uk]kui1uk]kUi52] i p1nDui . ~3!

The major effect of the large-scale field is given by t
instantaneous shearSik5]kUi which acts as an anisotropi
forcing term on small scales.

A matching argument can be built as follows. Let us fi
consider the equation of motion for two-point quantiti
^ul(x8)ui(x)& in the stationary regime. We may balance i
ertial terms and shear-induced terms as follows:

^ul~x8!uk~x!]kui~x!&;^Sik~x!ul~x8!uk~x!&, ~4!

which allows for a dimensional estimate of the anisotro
components of the left-hand side~LHS! in terms of the right-
hand side~RHS! shear intensity and of thêuu& isotropic
part.

Similarly for three-point quantities we have~neglecting
here, for simplicity, tensorial notation!: ^uuu]u&;^Suuu&
which can be easily generalized to any order velocity co
05630
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lations. The shear term is a large-scale ‘‘slow’’ quantity a
therefore, as far as scaling properties are concerned, we
safely estimate: ^Sik(x)ul(x8)uk(x)&;Dik^ul(x8)uk(x)&.
Here the matrixDik is associated to the combined probabili
to have a given shear and a given small scale velocity c
figuration. Clearly theDik tensor brings angular momentum
only up to j 52. One may therefore argue, by using simp
composition of angular momenta, the following dimension
matching@17#:

Sp
j ~R!;RSSp21

j 22 ~R!, ~5!

whereSp
j (R) is the projection on thej th sector of thepth

order correlation function at scaleR @see Eq.~1!#, andS is
the intensity of the shear termDik in the j 52 sector. For
instance, the leading behavior of thej 52 anisotropic sector
of the third-order correlation function in the LHS of Eq.~5!
is given by the coupling between thej 52 components of
Dik and thej 50 sector of the second-order velocity corr

lation in the RHS of Eq.~5!: S3
2(R);RSS2

0(R);Rzd
j 52(3).

By using the same argument and considering that now
know the scaling ofj 50 and j 52 sectors of the third-orde
correlation, we may estimate the scaling exponents of
fourth-order correlation forj 52,4. The procedure is easil
extended to all orders, leading to the following general e
pression:

zd
j ~p!5

~p1 j !

3
, ~6!

which has been obtained, for simplicity, by neglecting t
intermittency effects in the isotropic sector.

In this way, giving as input only the isotropic exponen
zd

j 50(p), we are able to predict the scaling exponents up
j 52 for the third-order structure functions, toj 54 for the
fourth order, toj 56 for the fifth order, and so on. We ma
do a little better by giving a prediction also for anisotrop
fluctuations of second-order correlation functions. This c
not be simply obtained by using the equations of motio
because the first one involving velocity correlations at diff
ent spatial locations, i.e., inertial range quantities, is that
] t^ui(x)uj (x8)&, which fixes a constraint only for the third
order correlation function~4!. A way out is to ask the
second-order anisotropic fluctuations to be analytic in
shear intensityS consistently with what one finds for highe
order structure functions by the above dimensional estim
With this assumption, we recover forj 52 Lumley predic-
tion @16#, zd

j 52(2)54/3 by simply writing the first two terms
dimensionally consistent with an expansion in the shear
tensity:^uu&;(eR)2/31e1/3SR4/31••• where the first corre-
sponds to the isotropic scaling, while the second captu
anisotropies up toj 52 ~higherj sectors could be captured b
adding other terms in the expansions!. By using this argu-
ment, we may now remove the limit of validity of the dimen
sional prediction~6! and extend it to allp values.

Let us notice that prediction~6! must be considered as th
systematic generalization of Lumley argument@16# to all
structure functions orders and to all SO~3!sectors. To our
knowledge, this is the first prediction of scaling properties
6-2
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all sectors and for all orders of moments. It is worth to no
that at difference with previous attempts made for the cas
the second-order structure function@9#, here the tensorial na
ture of the shear-induced terms is taken into account.

We come to our numerical results for the SO~3! decom-
position of longitudinal structure functions. In Ref.@6# a first
quantitative analysis of scaling was presented. We repe
and extended the same analysis on a larger ensemble of
figurations of the random Kolmogorov flow at two differe
Reynolds numbers. Now, except for the sector withj 52,
where a sign oscillation in the projections,Sp

j ,m(R), does not
allow a quantitative estimate of exponents, we are able
measure with higher accuracy the scaling exponents upj
56 andp56. All measured exponents show a clear dep
ture from the dimensional prediction. For example, we m
sure in thej 54 sectors the valuesz4(2)51.65(5), z4(4)
52.20(5), z4(6)52.55(10), and in thej 56 sector,z6(2)
53.2(2), z6(4)53.1(2), z6(6)53.3(2). This is a clear in-
dication that anisotropic scaling exponents are intermitte
Nevertheless, the dimensional prediction~6! plays an impor-
tant role in fixing the subleading background scaling as it
be demonstrated by looking at those fluctuations which
phase independent.

We have taken the stationary configurations of the R
and randomly reshuffled all velocity phases:ûi(k)
→Pil (k)ûl(k)exp@iul(k)#, where Pil (k) is the incompress-
ibility projector. Doing so, we expect to filter out the dom
nant intermittent fluctuations coming from the inertial evo
tion, or at least those intermittent contributions connected
nontrivial phase organization. In other words, we expect t
once canceled the anomalous fluctuations, the subdomi
fluctuations due to the dimensional balancing with t
forcing-shear terms will show up. It is worth to remark th
after phase randomization the statistics of the velocity fi
still stays non-Gaussian, because velocity Fourier amplitu
are not changed.

In Fig. 1 we show the results for the decomposition of t
fourth-order structure functions~after phase randomization!
in the j 54,m50 anisotropic sector. As it can be seen, sc

FIG. 1. Comparison of scaling properties before (1) and after
(3) phases randomization of the fourth-order structure function
j 54,m50. Straight lines are the best fit slopes in the inertial ran
In the inset, the changes for the logarithmic local slopes~same
symbols!; the horizontal dashed line corresponds to the dimensio
prediction zd

4(4)58/3. Similar results hold for other anisotrop
sectors~not shown!.
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ing properties change significantly going from the anomalo
value ~before randomization! to the dimensional prediction
~after randomization!. This happens for all sectors and m
ments we have measured, as it is summarized in Fig. 2, w
the notable exception of the second-order structure func
where phase randomization has almost no effect. This is
interesting fact that can have at least two explanations. Ph
randomization is not enough to completely filter out interm
tency, especially for two-point quantities which should
less sensible to phase correlation. Or, as noticed before
cause second-order correlation function is not constrained
any equation of motion, dimensional scaling may never e
for it even not as a subleading contribution.

The last issue we want to discuss is that of universality
anomalous scaling, i.e., the dependency on the large-s
forcing mechanism.

In Kraichnan models there exists a tight link between
presence of anomalous scaling and its universality, due to
zero-mode mechanism@12#. Unfortunately, in the Navier-

FIG. 3. Log-log plot of the most intense anisotropic sectors
structure functions of order 2 and 4, at changing Reynolds num
and large-scale forcing. On the top, three curves:S4

2,2(R) for the
RKF at Rel560 (s) and Rel590 (n), and for the second large
scale forcing~see text! at Rel590 (h). In the bottom, the same bu
for S2

4,0(R).

r
.

al

FIG. 2. Comparison between the dimensional estimate,zd
j (p)

5(p1 j )/3 ~straight lines!, the measured exponentsz j (p) (s), and
the exponentsz r

j (p) obtained after random dephasing (3), for p
52,4,6. Top, sectorj 56; bottom, sectorj 54. Error bars are esti-
mated by looking both at fluctuations in the local slopes and
performing the same analysis on different subsamples.
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Stokes case the linear hierarchy of equations governing
spatial-time evolution of thenth point correlation functions
is not closed. Inertial solutions with different scaling exp
nents obtained by changing the large-scale forcing may t
exist, while in the Kraichnan case only prefactors of the sc
ing laws depend on the large-scale forcing. Because of th
is of primary importance to compare different experime
and numerical simulations in order to understand the deg
of universality of the inertial range scaling.

In Fig. ~3! we compare the scaling properties of the m
important anisotropic contributions for second- and four
order structure functions for two different forcings and tw
different Reynolds numbers.

As it can be seen, despite the anisotropic contributions
the second forcing being much noisier at large scale, we h
a quite good qualitative agreement for the scaling proper
in the inertial range. This is a first indication that anisotrop
d

d

ch

v.
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scaling might be universal. Clearly, much more extens
tests at higher Reynolds numbers and with different an
tropic forcings have to be performed before drawing any fi
conclusion on the issue. In conclusions we have present
dimensional argument able to predict scaling exponents
all structure functions in any anisotropic sector. We ha
shown by DNS that anisotropic scaling exponents dev
from the previous dimensional prediction, showing anom
lous values. When performing a random reshuffling of
velocity phases, the dimensional scaling, otherwise suble
ing, shows up. The present work is intended to give qual
tive indications about anisotropic anomalous fluctuatio
when varying the forcing and the Reynolds number.
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