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Fluctuation-response relation in turbulent systems
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We address the problem of measuring time properties of response functions~Green functions! in Gaussian
models~Orszag-McLaughin! and strongly non-Gaussian models~shell models for turbulence!. We introduce
the concept ofhalving-time statisticsto have a statistically stable tool to quantify the time decay of response
functions and generalized response functions of high order. We show numerically that in shell models for
three-dimensional turbulence response functions are inertial range quantities. This is a strong indication that the
invariant measure describing the shell-velocity fluctuations is characterized by short range interactions between
neighboring shells.
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I. INTRODUCTION

The fluctuation-response~F/R! relation plays an importan
role in statistical mechanics and, more generally, in syste
with chaotic dynamics. With the term F/R relation we ind
cate the connection between the relaxation properties
system and its response to an external perturbation. The
evance of this relation is evident: it allows us to conn
‘‘nonequilibrium’’ features~i.e., response and relaxation! to
‘‘equilibrium’’ @1# properties~correlation functions!. As an
important example, we mention the Green-Kubo@2# formu-
las in the linear response theory which links the respons
an external field with correlations computed at equilibrium

Consider a system whose state is given by a finite dim
sion vector x5(x1 , . . . ,xN), the average linear respons
Gi

j (t)[^Ri
j (t)& is the average response after a timet of the

variablexi to a small perturbation of the variablexj at time
t50. Under rather general conditions~basically one has to
assume that the system is mixing! it is possible to show tha
a generalized F/R relation holds@3,4#:

^Rj
i ~ t !&5 K dxi~ t !

dxj~0!L 5^xi~ t ! f j@x~0!#&, ~1!

where the functionsf j depend on the invariant probabilit
distributionr(x),

f j@x#52
] ln r~x!

]xj
. ~2!

The physical meaning of Eq.~1! is the following: consider a
small perturbationdx(0)5„dx1(0), . . . ,dxN(0)… at t50;
the average distancêdxi(t)& from the unperturbed value
xi(t) is

^dxi~ t !&5(
j

^Rj
i ~ t !&dxj~0!. ~3!
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For Hamiltonian systems one realizes that Eq.~1! is the usual
linear response theory. Ifr(x) is Gaussian, one has a simp
relationship between the response and the correlation fu
tion

^Rj
i ~ t !&5

^xi~ t !xj~0!&2^xi&^xj&

^xixj&2^xi&^xj&
. ~4!

In the general case of non-Gaussian statistics, formula~1!
just gives a qualitative information, i.e., the existence o
link between response and the general correlation func
^xi(t) f j@x(0)#&. In particular, in the most interesting cases
which r(x) is unknown, it is extremely important that th
F/R relation~1! exists because it allows us to control som
properties of the invariant measurer(x) in terms of the
response-functions behavior. In the past, this has not alw
been clear, e.g., some authors claim~with qualitative argu-
ments! that in fully developed turbulence there is no relati
between equilibrium fluctuations and relaxation to equil
rium @5#, while a proper statement would limit to the none
istence of the usual ‘‘Gaussian-like’’ F/R relation~4!.

Response functions have a clear phenomenological
portance in many applied problems where one needs to
trol and/or predict the system reaction as a function of ex
nal spatial and/or temporal perturbations. Moreover respo
functions, also known as Green functions, play a very imp
tant role in many nonequilibrium problems. In particular,
many analytical approaches to hydrodynamical problems
scribed by Navier-Stokes equations, or models of the
Greens functions naturally show up both in perturbative@6#
and closure schemes like the direct interaction approxima
~DIA ! @7#.

We stress that the F/R, in the form~1!, is a rather genera
relation which does not depend too much on the details
the measure of the systems, e.g., both in the presenc
absence of an energy flux. For example, in the field of d
ordered systems the F/R had been widely studied in orde
highlight nontrivial relaxation aspects, e.g., aging pheno
ena. In this paper we want to address the problem of the
relation for the case of dynamical models with many degr
©2001 The American Physical Society02-1
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of freedom and many characteristic times. We are also in
ested in exploiting the F/R relation in models which exhibi
strong departure from Gaussian statistics. We introduc
suitable numerical method for measuring the character
times involved in the response functions.

This method is based on the idea of characterizing
response behavior as a function of itshalving time statistics
~HTS!, i.e., the timet necessary for the response from
typical infinitesimal perturbation to reach, say, one-half of
initial value.

The plan of the paper is as follows. First we investigat
dynamical system with many degrees of freedom and m
different characteristic times where still a classical Gauss
set of F/R relations holds. The model is the so-cal
‘‘Orszag-McLaughlin’’ model which is used to probe the e
fective improvement of halving time statistics with respect
the usual direct measurement of time decaying proper
Then, we attack the much less trivial case of characteriz
response behavior in models for three-dimensional turbu
energy cascade, i.e., shell models@8#. Also in the latter case
the halving time statistics will allow us to measure with go
accuracy the nontrivial time properties of Green functio
We show that the response function~which probes linear
features of the dynamical evolution! is strongly affected by
thenonlinearinertial range physics. As a consequence, sh
range interactions between neighboring shells are though
characterize the invariant measure describing shell-velo
fluctuations.

II. NUMERICAL SIMULATIONS

Before entering the detailed description of the results,
want to discuss a practical problem for the numerical co
putation of Gj

i (t)5^Rj
i (t)&. In numerical simulations

^Rj
i (t)& is computed perturbing the variablexi at time t5t1

with an ‘‘infinitesimal’’ kick of amplitude dxj (t1ut1)5 x̃ j (t
5t1)2xj (t5t1)5e, for e→0, and the deviationdx(tut1)
5 x̃(t)2x(t) is computed integrating the two trajectoriesx
and x̃ up to a prescribed timet25t11Dt. At time t5t2 the
variablexi is again perturbed with another kick, and a ne
sampledx(t) is computed and so forth. The procedure
repeatedM!1 times and the mean response is then eva
ated as

Gi
j~ t !5

1

M (
k51

M
dxi~ tk1tutk!

dxj~ tkutk!
. ~5!

In the presence of chaos, the absolute value of the devia
udxi(tk1t,utk)u, typically grows exponentially witht. There-
fore, the mean response,^Rj

i (t)&, is the result of a delicate
balance of terms with nonfixed sign. As a result, we have
the errors(t) on ^Rj

i (t)& increases exponentially witht,

s~ t !;
exp~gt !

AM
, ~6!

where g is the generalized Lyapunov exponent of seco
order ~greater than or equal to the maximum Lyapunov e
01630
r-

a
ic

e

a
y
n

d

s.
g
nt

.

rt
to
ty

e
-

-

n,

at

d
-

ponent!. One easily understands the main problem in tryi
to numerically compute any response function for lar
times: one needs to control an observable which is rap
decaying to zero with exponentially large fluctuations.
practice, it turns out to be impossible to have a reliable c
trol on the asymptotic behavior of Green functions~see the
following sections and figures therein!.

In order to avoid this trouble we propose another a
proach. Let us first consider onlydiagonalresponses, i.e., the
response after a timet of thenth variable from a perturbation
of the samenth variable at timet50, Gn

n(t)[^Rn
n(t)&.

In this case, we claim that it is possible to have a go
characterization of the main temporal properties by look
at the HTS, that is at the probability density functionsP(t)
of the timet necessary to see an appreciable decay of
response function:Rn

n(t5t)5lRn
n(0), with the thresholdl

fixed to a macroscopic value, sayl51/2. In practice, one
performs many response experiments by collecting the
tistics of the times necessary to see the response bec
one-half of its initial value. The advantage of this HTS wi
respect to the more standard way of characterizing the m
responseGn

n(t) with some typical time is that one does n
need to know any functional behavior for the averaged
sponse and, moreover, one has also a control on the fluc
tions of the characteristic times, i.e., the HTS integrates
times corresponding tohalving events. In the following, we
show that the HTS is at least able to reproduce with go
accuracy the same results of the direct fitting procedure
the averaged response in cases when the classical F/R
tion ~4! holds~the Orszag-McLaughlin model, i.e., Gaussi
statistics! and, more interesting, it is also able to give ne
hints on the F/R relations when time intermittency and
strong departure from Gaussianity are present~shell models!.
In the following we will also discuss the cases of nondiag
nal responses,̂Rm

n (t)&, with nÞm and the cases of genera
ized higher order responses

^Rm1 ,m2 , . . . ,mr

n1 ,n2 , . . . ,nr ~ t1 ,t18 ;t2 ,t28 ; . . . ;t r ,t r8!&

5K dxn1
~ t1!

dxm1
~ t18!

dxn2
~ t2!

dxm2
~ t28!

•••

dxnr
~ t r !

dxmr
~ t r8!L .

A. The Orszag-McLaughlin model

Let us consider the following model@9#:

dxn

dt
5xn11xn121xn21xn2222xn11xn21 , ~7!

with n5(1,2, . . . ,N), N520, and the periodic condition
xn1N5xn . This model contains some of the main features
inviscid hydrodynamics:~a! there are quadratic interaction
~b! a quadratic invariant exists (E5(n51

N xn
2); ~c! the Liou-

ville theorem holds. For sufficiently largeN the distribution
of each variablexn is Gaussian. In this situation, a classic
F/R relationship exists for each of then variables: self-
2-2
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FLUCTUATION-RESPONSE RELATION IN TURBULENT . . . PHYSICAL REVIEW E 65 016302
response functions to infinitesimal perturbations are indis
guishable from the corresponding self-correlation functio
@3#.

We have slightly modified the system~7! in order to have
variables with different characteristic times. This can
done, for instance, by rescaling the evolution time of ea
variable,

dxn

dt
5kn~xn11xn121xn21xn2222xn11xn21!, ~8!

where the factorkn is a function of the ‘‘number of identifi-
cation’’ ~e.g., a site in the chain! of the variables defined
as kn5abn, with a5531023 and b51.7, for n
51,2, . . . ,N/2, with the ‘‘mirror’’ property kn1N/2
5kN/2112n . An immediate consequence is that the quadra
observableE is no longer invariant during the time evolutio
of the system~8!. The mean energy per mode,En5^xn

2& ~not
shown!, follows a linear law withk5kn . It can be demon-
strated that a new quadratic integral of motion exists, a
this has the form

I 5 (
n51

N xn
2

kn
. ~9!

Moreover, thexn variables are shown to preserve the Gau
ian statistics to a good extent. Therefore, the only effec
the change in the original Orszag-McLaughlin system is t
each variable now has its own characteristic time.

Let us see how correlation and response functions beh
for the system~8!. In Fig. 1 the self-correlation functions

Cn,n~ t !5
^xn~ t !xn~0!&2^xn&

2

^xn
2&2^xn&

2 ~10!

and the self-response functions

FIG. 1. Plot of the averaged response functionsGn
n(t) and cor-

relation functionsCn,n(t) for five fast variables of the modified
Orszag-McLaughlin model,n56 (1), n57 (3), n58 (*), n
59 (h), andn510 (s). Statistical error bars are shown only fo
response functions corresponding ton56 and n510. Thin lines
represent correlation functions. The statistics is over 105 events.
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Rn
n~ t !5 K dxn~ t !

dxn~0!L ~11!

are shown. As a consequence of the preserved Gaussian
tistics, the F/R relation of the form~4! holds for each of the
variables, at least over time delays not too long. The~linear!
response functions are computed as decay functions of si
variable perturbations to infinitesimal instantaneous ‘‘kicks
averaged over a large number of simulations. If we conv
tionally define the correlation time of a variablexn as the
time delay tC(n) after which the correlation function be
comes lower than the value 1/2, we find that

tC~n!;kn
23/2. ~12!

The exponent of the scaling law~12! can be explained with a
dimensional argument by noticing that from the mean ene
per variable we getxn

2;kn , so from Eqs.~8! and ~9! the
characteristic time results to betC(n);kn

23/2. We notice that
the scaling~12! is robust with respect to the choice of th
threshold value,l, i.e., it is observed even if the decay fact
l is chosen slightly different from 1/2.

The response timetR(n) is defined as the time interva
after which the averaged response function becomes lo
than 1/2. We must observe that the computation of the m
response function is practically impossible after a cert
time delay because of exponentially growing errors.

Last, halving timest(n) have been computed always fo
the variables of the system~8!, using the same procedure a
before~i.e., infinitesimal kicks!. The halving-time probability
distribution functions~PDF’s! decay exponentially and, a
can be shown, they all can be ‘‘collapsed’’ to the same ren
malized PDF for a proper rescaling of the halving time~see
below!. A comparative plot of̂ t(n)&, tC(n), andtR(n) is
shown in Fig. 2. Halving times and correlation times follo
the same scaling law withkn and, for each variable, hav
values very close to each other. Typical time decaying of
averaged response,tR(n) are very difficult to estimate due to
high errors for slow variables. In fact, only a few points a
shown in Fig. 2, the ones for which the mean response dr
down to 1/2 fast enough, before the statistical error becom
too large~say larger than 100%). The advantage of the H
with respect to the mean response function is that, with
same statistics, halving times can be computed for all v
ables within reasonable uncertainty, while response tim
tR(n) are generally affected by exponentially growing erro
and are practically not defined when the typical relaxat
time scale is longer than the error growth time scale.

The numerically computed PDF’s of the halving timet
can be rescaled as follows:

t→ t

^t&
, P~t!→^t&P~t!. ~13!

We show in Fig. 3 the overlap of some rescaled PDF’s of
halving times. As a consequence, all moments of thet(n)
PDF’s have a simple scaling

^t~n!p&;kn
2(3/2)•p .
2-3
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We have found that in a Gaussian case, the respons
infinitesimal perturbations can be characterized both with
classic mean response function and with the mean halv
time technique. It is worth stressing that the HTS could
the only technique usable for studying relaxation to non
ear perturbation in complex systems.

B. Shell model

Shell models for a turbulent energy cascade have pro
to share many statistical properties with turbulent thr
dimensional velocity fields@10,8#. Let us introduces a set o
wave numberskn52nk0 with n50, . . . ,N. The shell-

FIG. 2. Log-log plot of correlation timestC(n) (n), mean halv-
ing times^t(n)& (h), and response timestR(n) (s) as a function
of kn for the modified Orszag-McLaughlin model. Notice the mu
larger errors found when measuring the characteristic resp
times,tR(n). Errors ontC(n) and ^t(n)& are of the same size a
the representative symbols. The statistics is over 105 realizations.
All these characteristic times follow the same scaling law withkn .
The exponent23/2 of the scaling law follows from dimensiona
arguments.

FIG. 3. Collapse of the rescaled PDFs of the halving times
the modified Orszag-McLaughlin model. For simplicity, only th
PDFs relative to the fastest four variables are shown,n
57, . . .,10. The statistics is over 105 impulsive infinitesimal per-
turbations as in Fig. 2.
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velocity variablesun(t) must be understood as the veloci
fluctuation over a distancel n5kn

21 . It is possible to write
down many different sets of coupled ordinary different
equations possessing the same kinematical features nece
to mimic Navier-Stokes nonlinear evolution. In the followin
we will present numerical results for a particular choice, t
so-called Sabra model@11#, namely,

S d

dt
1nkn

2Dun5 i @knun11* un121bkn21un11un21*

1~11b!kn22un22un21#1 f n , ~14!

whereb is a free parameter,n is the molecular viscosity, and
f n is an external forcing acting only at large scales, necess
to maintain a stationary temporal evolution. The ma
strong, difference with the model discussed in Sec. II A co
sists of the existence of a mean energy flux from large
small scales which drives the system toward a strongly n
Gaussian stationary temporal evolution@12#. Shell models
discussed here present exactly the same qualitative diffi
ties of the original Navier-Stokes equations: strong non
earity and far from equilibrium statistical fluctuations. Th
most striking quantitative feature of the non-Gaussian sta
tics is summarized in the existence of anomalous sca
laws of velocity moments:

^uunup&;kn
2z(p) , ~15!

with z(p)Þp/2z(2). Anomalous scaling, also known as in
termittency, is the quantitative way to state that veloc
PDF’s at different scales cannot be rescaled by any chan
of variables.

Let us now discuss two subtle points. Using some gen
arguments from the dynamical systems theory, one has
all the~typical! correlation functions at large time delay hav
to relax to zero with the same characteristic time, related
spectral properties of the Perron-Frobenius operator. If
uses this argument in a blind way, the apparently paradox
result is that all correlation functions, Cn,n(t)
5^un(t)un(0)&, must go to zero with the same characteris
times. On the contrary one expects a whole hierarchy
characteristic times distinguishing the behavior of the cor
lation functions at different scales@13#. In particular, the self-
correlation function,Cn,n(t), decays with a characteristi
time decreasing withn. The paradox is only apparent sinc
the dynamical systems argument is valid at very long tim
i.e., much longer than the longest characteristic time,
therefore in systems with many different time fluctuations
is not helpful. In fact, it is well established numerically an
well understood theoretically@13–15# that general multiscale
multitime correlation functions of the kindCn,m

p,q (t)
5^uun(0)upuum(t)uq& are described by the cascade form
ism. In particular, most of the statistical properties in t
inertial range can be well parametrized by the multifrac
formalism.

On the other hand, the response properties are relate
infinitesimal perturbations. Therefore, it is not obvious th
the response depends on inertial range properties. The
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tence of the F/R relation and the fact thatCn,n(t) ~and other
similar correlation functions! are determined by the inertia
range properties suggest that also the response feature
ruled by the inertial range behavior if the invariant meas
is dominated by local interactions among shells.

Let us now examine the numerical results concerning
sponse functions in the shell model. Figure 4 shows the
agonal mean responseGn

n(t) for a range of inertial shells
nP @7–14#. The most striking property is the impossibility t
follow the response behavior at large scales~small shells! for
large times, i.e., the explicit evidence that errors grow ex
nentially. In order to compare the different behavior~and
different error propagation! between the response and corr
lation function, we plot in Fig. 5 both the average respon
and the self-correlation,Cn,n(t), for the shelln510. As it is
clear from the previous figures, only a response at the sm
est scales~fast scales! in the inertial range can be compute
with enough accuracy to follow an asymptotic decay. S
also for this response the clear departure between the
sponse and the self-correlation shows another indication

FIG. 4. Modulus of the average response functions,Gn
n(t)

5^Rn
n(t)&, for shellsn57, . . . ,14~from top to bottom!. Error bars

are shown only for the smallest and the largest scales. The num
of independent kicks used to perform the averages is aroun
3105. Notice the extremely large error bars measured for the sl
est shell variables. The parameters entering in the equations of
tion ~14! areb50.4, n5531027 for N525 shells.

FIG. 5. Comparison between the averaged response func
Gn

n(t) ~top! and the self-correlationCn,n(t) ~bottom! for the shell
n510. Notice the different order of magnitude of error bars.
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the inertial-range statistics is far from Gaussian. By us
HTS we can get information on the temporal dependence
the response function in the whole range of inertial shells
Fig. 6 we report some realizations of the instantaneous
sponse function, which shows typical halving time expe
ments.

In Fig. 7 we summarize the results we obtain by comp
ing the mean halving time,̂t(n)&, with the characteristic
times one extracts from the decay properties of both
mean responsetR(n) and correlation functionstC(n) for
those shells where such a behavior can be safely extracte
is worth noticing how the mean halving time allows a fu
characterization of time properties also for those shells wh
the mean responseGn

n(t) cannot be measured for large tim
legst. Also, the dependence from the scale of the mean h
ing time is given as a best fit̂t(n)&;kn

2x , with x50.53
60.03. The valuex50.5360.03 can be seen as an interm
tent correction to the dimensional inertial-range predict
2/3. On the other hand, the dependency from the scale
tR(n) is difficult to extract due to the small number of poin
available.

Let us now focus on the whole PDF of the halving tim

er
2
-
o-

on

FIG. 6. Plot of three different diagonal instantaneous respon
Rn

n(t), for the shelln510, versus time. Halving time is fixed by th
first time when the curve touches the threshold atl51/2.

FIG. 7. Log-log plot of the mean halving times,^t(n)& (1) and
of decaying times of the mean diagonal response,tR(n) (3), ver-
suskn . We have checked that a different choice of the thresh
l51/2 used to compute halving time does not affect the slope
the graph.
2-5
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statistics. We first analyze the positive and negative mom
of the halving times,

Tp~n!5^~t p~n!&;kn
2c(p) , ~16!

with p525, . . . ,3. Dimensional, nonintermittent, scalin
would predict the linear behavior for the scaling exponen
c(p)52/3p. In Fig. 8 we plot the results for the halvin
times scaling exponentsc(p) for all moments fromp5
25, . . . ,3 and thestraight line corresponding to the dime
sional inertial range estimate. We notice that intermittent c
rections are much stronger for the positive moments than
the negative moments. This must be related to the fact
positive moments of the halving times are dominated by r
events where the response has a very long decaying.
interpret the fact thatc(p).(2/3)p as an indication tha
linear response functions are inertial range quantities.
latter results lead to the important conclusion that the inv
ant measure is well approximated by short range interac
among shells in the inertial range.

As for the nondiagonal response function and for the g
eralized response function of higher order the numer
problems to measure them are even more pronounced. F
let us examine the off-diagonal response functionRn

m(t)
5dun(t)/dum(0). Of course these responses start from z
at time zero instead of starting from one as in the diago
case. Measuring them by a direct average is strictly imp
sible because of very large errors. We still decided to m
sure their characteristic time by using the time the respo
reaches a ‘‘macroscopic’’ fraction, say 1/2, of the typic
fluctuations on the scale where we are measuring the
sponse, i.e., we collect the statistics of the first timest such
thatRn

m(t5t)51/2̂ uunu2&. We expect a strong asymmetry o
the characteristic times depending whether the perturba
is done at smaller (m.n) or larger (n.m) scales. Indeed
by using the usual inertial range arguments we expect
the response reacts always with a typical time given by
time of the largest between the two shells involvedn,m. By
fixing, therefore, the shell where we perturb, saym, we ex-
pect that the typical time ofRn

m(t), tn
(m) is constant whenn

.m and scales askn
22/3 whenn,m. In Fig. 9 we show that

indeed this behavior is well reproduced numerically.

FIG. 8. cp exponents of thepth moment of halving times. The
straight line corresponds to the dimensional prediction :cp52/3p.
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The strong intermittency shown by halving times in Fig.
is the clear signature of deviations from a simple Gauss
like behavior of response functions. We must therefore a
expect that generalized responses of higher order are
simply related to the linear response. For example, let
consider the third moments of the linear response@16#:

Sn
n~ t ![^@Rn

n~ t !#3&.

A simple nonintermittent behavior would suggest thatSn
n(t)

}@Gn
n(t)#3 while in Fig. 10 it is possible to see that this

definitely not the case for allt legs where we have a mea
surable signal. Unfortunately the already discussed statis
problems in measuring averaged response functions for
times are even more pronounced for generalized respo
functions. Therefore, we refrain from showing any results
the scaling behavior of typical times of the generalized
sponse functions.

FIG. 9. Log-log plot of the off-diagonal response characteris
times tn

(m) versuskn . We performed two experiments. First, w
perturb at large scales,m52, and we follow the response at sma
scalesn.2 (1); the expected independence of characteristic tim
from the scale is well reproduced. Second, we perturb at sm
scales,m513, and we follow the response at larger scales,n
,13, 3. In the latter case, for comparison we also plot the strai
line ~dashed! with the expected dimensional slope22/3.

FIG. 10. Comparison between the third power of the mean
agonal response,uGn

n(t)u3 (1) and the generalized third order re
sponse,uSn

n(t)u (3) computed for the shelln513, with 53105

kicks.
2-6
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III. CONCLUSIONS

We have addressed the problem of measuring time p
erties of response functions in Gaussian models~Orszag-
McLaughin! and strongly non-Gaussian models, like sh
models for turbulence. We have introduced the concep
halving time statistics with the aim of having a statistica
stable tool to quantify the time decaying of response fu
tions and generalized response functions of high order.
have shown numerically that in shell models for thre
dimensional turbulence response functions are inertial ra
quantities. This is a strong indication that the invariant m
sure describing the shell-velocity fluctuations is charac
ized by short range interactions between neighboring sh

Response functions and generalized response func
r-
dy

l-

,

01630
p-

l
of

-
e

-
ge
-

r-
ls.
ns

play an important role in any diagrammatic approach
nonlinear out-of-equilibrium systems. In this work we ha
presented the first numerical attempt to measure som
their properties in a systematic way. More work is need
both numerically and analytically, in order to better und
stand the detailed structure of the invariant measure gov
ing F/R relations.

ACKNOWLEDGMENTS

We acknowledge useful discussions with G. Boffetta a
V. L’Vov. This work has been partially supported by the E
under the Grant No. HPRN-CT 2000-00162 ‘‘Non Ideal Tu
bulence.’’ G.L. thanks the Department of Physics of L’Aqui
University for the kind hospitality.
.

.

D

ed a
wth
nd
ged
@1# With ‘‘statistical equilibrium’’ we mean the statistical prope
ties described by the invariant probability measure of the
namical system.

@2# R. Kubo, M. Toda, and Hashitsume,Statistical Physics 2
~Springer-Verlag, Berlin, 1985!.

@3# M. Falcioni, S. Isola, and A. Vulpiani, Phys. Lett. A144, 341
~1990!.

@4# G.F. Carnevale, M. Falcioni, S. Isola, R. Purini, and A. Vu
piani, Phys. Fluids A3, 2247~1991!.

@5# H.A. Rose and P.L. Sulem, J. Phys.~Paris! 39, 441 ~1978!.
@6# V. L’vov and I. Procaccia, Phys. Rev. E62, 8037~2000!.
@7# R.H. Kraichnan, J. Fluid Mech.5, 497 ~1959!.
@8# T. Bohr, M.H. Jensen, G. Paladin, and A. Vulpiani,Dynamical

Systems Approach to Turbulence~Cambridge University Press
Cambridge, UK, 1998!.

@9# S.A. Orszag and J.B. McLaughlin, Physica D1, 68 ~1980!.
-
@10# U. Frisch,Turbulence: The Legacy of A.N. Kolmogorov~Cam-

bridge University Press, Cambridge, 1995!.
@11# V. L’vov, E. Podivilov, A. Pomyalov, I. Procaccia, and D

Vandembroucq, Phys. Rev. E58, 1811~1998!.
@12# D. Pisarenko, L. Biferale, D. Courvoisier, U. Frisch, and M

Vergassola, Phys. Fluids A5, 2533~1993!.
@13# L. Biferale, G. Boffetta, A. Celani, and F. Toschi, Physica

127, 187 ~1999!.
@14# R. Benzi, L. Biferale, and F. Toschi, Phys. Rev. Lett.80, 3244

~1998!.
@15# V.S. L’vov and I. Procaccia, Phys. Rev. E54, 6268~1996!.
@16# Even moments, being positive definite, cannot be consider

response function. They possess the typical exponential gro
with a characteristic time given by the Lyapunov exponent a
then, for times large enough, they saturate to the avera
maximal distance in the attractor.
2-7


