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A shell model with few degrees of freedom is analyzed to test the multifractal prediction for 
the intermittent behaviour in turbulent flows. It takes into account the main phenomeno- 
logical aspects of turbulence in 3D: cascade of energy toward small scales and local 
interactions in the wave numbers. 

Although it is not realistic, it permits an investigation of the dynamical mechanisms leading 
to non-trivial scaling laws and multifractality in turbulence. We find that the energy 
dissipation in the model has indeed a fractal structure, which can be explained in terms of the 
time intermittency in the chaoticity degree, by computing the effective maximum Lyapunov 
exponent and eigenvector. We also compute the probability distribution of the velocity 
gradients and the scaling laws of the structure functions, which are found to be in good 
agreement with the experimental and numerical results. 

A theoretical framework for an analytical calculation of the multifractal spectra is described 
in the conclusion. 

1. Introduction 

T h e  smal l  scale s tat is t ics  o f  t h r e e - d i m e n s i o n a l  ful ly d e v e l o p e d  tu rbu l ence  is 

o n e  o f  t he  f u n d a m e n t a l  p r o b l e m s  in fluid mechan ics .  T h e  p h e n o m e n o l o g i c a l  

t h e o r y  o f  K o l m o g o r o v  [1] gives a qua l i t a t ive ly  cor rec t  desc r ip t ion  of  the  ma in  

m e c h a n i s m s  ac t ing  in i n c o m p r e s s i b l e  fluids at  high R e y n o l d s  n u m b e r  Re .  In  

t u r b u l e n t  f lows,  t h e r e  is a cascade  t rans fe r  of  ene rgy  t o w a r d  the  smal l  scales  

w h e r e  the  d i s s ipa t ion ,  due  to  m o l e c u l a r  f r ic t ion,  p lays  the  f u n d a m e n t a l  ro le .  

T h e  ca scade  is h ie ra rch ica l  in the  sense  tha t  a d i s t u rbance  on a ce r ta in  scale 

r ece ives  its e n e r g y  f rom a l a rge r  scale  d i s t u rbance  and  t r ans fe r  it to  sma l l e r  

scale  d i s tu rbances .  A t  the  e n d  of  the  cascade ,  one  has  the  d i rec t  c onve r s ion  of  

the  smal l e s t  d i s t u rbances  in to  hea t .  M o r e o v e r ,  the  ve loc i ty  g rad i en t s  a re  very  
la rge .  

A s s u m i n g  a cons t an t  r a t e  of  non - l i nea r  t r ans fe r  o f  ene rgy  one  ob ta in s  the  

c lass ical  K o l m o g o r o v  resul ts .  D i m e n s i o n a l  analys is  suggests  tha t  the  N a v i e r -  

S t o k e s  e q u a t i o n s  have  s ingu la r  ve loc i ty  g rad i en t s  in the  l imi t  of  infini te  
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Reynolds number,  i.e., the velocity difference 8v(l)==-Iv(x+ l ) -  v ( x ) l - I  h 
where l = Ill, with a singularity h = 1/3. It follows that, in the inertial range, 
the velocity structure functions scale as 

(~v(l) Q) ~ l ~Q, with ~'o = Q / 3 ,  (1) 

where ( . )  is a spatial average. 
Nevertheless, there are many experimental [2] and numerical [3] evidences 

that strong fluctuations of the energy transfer and dissipation are present, 
leading to the existence of a whole spectrum of possible singularities. In 
particular, the exponents ~'Q are different from their classical value Q/3 and 
appear to be non-linear in Q. Some fractal phenomenological approaches have 
been proposed in the last years [4] to explain the intermittent behavior. We 
believe that a first goal is the connection between the corrections to the 
Kolmogorov scaling and the dynamical properties of the time evolution 
generated by the Navier-Stokes equations. 

For this reason, it is useful to analyze particular models of the energy 
cascade process, instead of the complete Navier-Stokes equations, using an 
approach to the intermittency problem firstly proposed by Obukhov [5], 
Gledzer [6], Siggia [7] and developed by Grappin et al. [8]. 

2. A shell model 

We study a shell model [9] where the Fourier space is divided in N shells. 
Each shell k,  (n = 1, 2 , . . .  , N) consists of the wave numbers k such that 

K02" < k ~< K02 "+ ~. The velocity difference over a length scale ~ k ,  -~ is given by 
u, .  The energy is E = E lu, t2/2 and its power spectrum is E(k , )  = ( lu,  I 2 ) /2k , .  
The Navier-Stokes equations are thus approximated by 

2.) , • • • 
d + v k  u,,=l(anUn+lUn+2+bnU*_lttn+l* +CnUn_lUn_2)+f6n,4 , (2) 

where v is the viscosity, and f is a forcing (here on the fourth mode). 
There are two main qualitative differences with Navier-Stokes: 
(i) k is a scalar (no spatial structures). 
(ii) There are only nearest neighbor interactions among shells. From de- 

manding energy conservation when v - - f  = 0, one has 

a, ,=k, ,  b n = - ± k  = -  , 2 n - ~  , c , ,  l k n _  2 , 

b I = b N = c  j = c 2 = a N _  1 = aN = 0 .  

(3) 
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The  unstable  fixed point  of  eqs. (2) when  v = f = 0 is given by the K o l m o g o r o v  
scaling u ,  ~ k~ 1/3. T he  t ime evolut ion given by (2) exhibits a chaot ic  behaviour  

on  a s t range a t t rac tor  in the 2N-d imens iona l  phase space,  with a max imum 
L y a p u n o v  exponen t  p ropor t iona l  to v -1/2 [8, 9]. 

The  numer ica l  in tegrat ions  of  eq. (2) have been  pe r fo rmed  using two 

dif ferent  algori thms:  four th -o rde r  R u n g e - K u t t a  and Bur l i r sch-S toe r ,  with 16 

digits precision.  We have cons idered  N = 19 shells with v = 10 -6, f =  (1 + i) × 
5 X 10 -3, g 0 = 2 4,  and N = 27 with v = 10 -9, f = (1 + i) x 5 × 10 3, K0 = 0.05. 

3. The multifractal interpretation 

The  energy  spec t rum E ( k )  is observed  to scale as k ~, in the inertial range,  

with an exponen t  a = 1 + ~'2 - 1.7 not  exactly equal  to the value 5 /3  expected  

by applying d imensional  arguments .  In  fig. 1 one  sees that  in the model ,  the 

exponen t s  ~'o are not  l inear in Q,  and can be fitted by the r a n d o m / 3  model  [10] 
fo rmula  

~'c~ = Q / 3 -  In2[1 - x + x ( ½ ) ' - Q / 3 ] ,  x = 0 .12 ,  (4) 

where  only two possible kinds of  f ragmenta t ion  are assumed in the cascade 

process:  a d is turbance genera tes  ei ther  vorticity sheets (with probabi l i ty  x) or  
space filling dis turbances,  as in the K o l m o g o r o v  theory  (with probabi l i ty  1 - x). 

. . . .  I . . . .  I . . . .  I . . . .  I . . . .  I 
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Fig. 1. The structure function exponent ~'o, plotted vs Q for positive integer Q up to 12. The 
squares are obtained by an integration of eq. (2) with N = 27 shells, the circles with N = 19. The 
errors are smaller than the size of the symbols for Q < 10 and for Q 1> 10 are given by the bar close 
to the last point. The solid line is the Kolmogorov result ~Q = Q/3; the dashed line is the random/3 
model fit of eq. (4). 



22 L. Biferale et al. / Multifractality in a shell model  for  3 D  turbulence 

The value for the only free parameter  x is very near to that used to fit the 
experimental  data of Anselmet et al. [2] (x = 0.125). 

The  intermittency of the energy dissipation exhibit by the model is therefore 
consistent with the multifractal approach [10], where one considers a hierarchy 
of singularities h and related fractal sets S(h) of fluid points x, such that 
Iv(x + l) - v ( x ) l -  l h. The fractal dimensions D(h)  of these sets are related to 
the exponents ~Q by the Legendre transformation [10] 

~'Q = min [hQ - D(h)  + 3].  (5) 

4. Temporal intermittency 

We want to link the multifractal corrections with the behavior of the 
instantaneous maximum Lyapunov exponent  and of its eigenvector. The 
spectrum of Lyapunov exponents A 1/> A 2 i> • • •/> A2N can be computed [11] by 
considering the linear variational equation 

d z  i 
dt - Ai ' jzJ ' i, j = 1 . . . . .  2 N ,  (6) 

for the time evolution of an infinitesimal increment z = ~U, where A , , j  =- OF./ 
OUj is the Jacobian matrix of eqs. (2), and U -= (u 1, u 2 . . . .  , b / N ) .  

The solution for the tangent vector z can thus be formally written as 
z ( t2 )= m ( t  l, t2 ) z ( t l ) ,  with M=expJ ' /~  A0-)d~-. The orthonormal Lyapunov 
basis is then given by the 2N eigenvectors f, of the matrix M*M in the limit 
t---~w, and depends on the starting point U 0 in the phase space. It is also 
possible to introduce [12] a stability basis e i given by the eigenvectors of the 
matrix M. Note that a generic tangent vector z(t) is projected by the evolution 
along e~, i.e. z(t) = c exp(Alt) e I , a part corrections G ( e x p -  I A1 - A2] t  ) .  More- 
over  there is a strong correspondence between Lyapunov eigenvectors of the 
last negative Lyapunov exponents and dissipative modes following the end of 
the inertial scaling range. This result is somewhat expected since the viscous 
damping is responsible of the strongest contraction rates, so that A2i ~ - uk~ for 
i ~ N .  

More interesting, a large part of the Lyapunov exponents is found to be very 
close to zero. Their  eigenvectors are directed along directions in phase space 
given by the inertial wave number shells. This has suggested [9, 13] that power 
scaling laws in turbulence are connected to the large number of marginal 
eigenvalues in the spectrum of M tM. 

However ,  the maximum Lyapunov exponent  is proportional to the inverse of 
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the smallest characteristic time of the system, the Kolmogorov turnover time. 
It is expected to be the origin of the intermittent corrections to power laws 
connected with the almost zero Lyapunov exponents.  In fact, the average of 
the first eigenvector e I is not concentrated on the small wave numbers, but 
spreads in the whole inertial range [9]. 

We have computed the response after a time r to an infinitesimal perturba- 
tion, defining an instantaneous maximum Lyapunov exponent  as 

z(t  + 
x, t) ==- 1 • I n  . (7) 

The value of X is an indication of the global chaoticity of the system, at a given 
instant. The squared modulus of the projection of the first eigenvector on the 
nth shell p(n)  =--lel(kn)12/Ej lel(kj)l  2 can be interpreted as the fraction of the 
largest instability localized over the shell kn. 

In the laminar phase the values of p(n)  for different n spread around the 
forced mode and over the whole inertial range while in the chaotic regime they 
are significantly different from zero only for a few shells k n around a dissipative 
shell k D. This suggests that a solution of eq. (2) spends most of the time 
around the Kolmogorov fixed point. The intermittent behavior is thus pro- 
duced by strong bursts of chaoticity along a direction corresponding to the 
dissipative shells followed by a contraction back to the fixed point. 

In order  to give a quantitative description of the above scenario, we have 
focused the attention on one dissipation wave number k~5 -- k D in a numerical 
integration with N = 19 shells. The instantaneous Lyapunov exponent  X, the 
energy dissipation E D estimated by lug512, and the chaoticity fraction on the 
shell kD, estimated by pD=-p(k~5),  present a very strong temporal inter- 
mittency. The peaks of the three temporal sequences are moreover  very 
correlated. This indicates that instantaneously the chaoticity concentrates on 
dissipative wave numbers, in correspondence with high values of the energy 
dissipation and of the instantaneous Lyapunov exponent  [9]. We have com- 
puted the correlations between ED-Po  and E ~ - X ;  they show a very fast 
decaying in time. There  is a strong anticorrelation between E o and X after a 
delay of order  one time unit. This provides evidence that a chaoticity burst is 
followed from a strong contraction rate (i.e. a negative X). 

5. The probability distribution function (PDF) of the velocity gradients 

One of the fundamental  features of the three-dimensional fully developed 
turbulence is the non-Gaussian statistics of the velocity gradients. Here  we 
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present our result obtained applying the multifractal picture [14]. In this case 
the velocity increments 8vx( / )=  ]v (x+  l ) - v ( x ) [  are assumed to scale as 
8vx ( l )  ~ Vo lh, where v 0 = ]V0t is the characteristic speed of the typical macro- 
scopical length L 0. 

The length l D where viscous effects become comparable with non-linear 
transfer is used to define the velocity gradients: ] s l ~ V ( I D ) / l  D and it is 
determined by imposing that the effective Reynolds number on scale l D is 
equal to unity, i.e. 

8V(ID) l D 
- 1 .  ( 8 )  

It follows that the dissipative scale l D is itself a function of h, 

( 1 2 )  1/(l+h) 
lD(h) ~ , , ~ /  (9) 

In order to stop the cascade one has to require that the smallest singularity 
exponent  hmi n > --1. The value hmi  n = 0 ,  however, seems more reasonable and 
it is consistent with experimental and numerical data. The velocity gradients s 
are therefore 

2/ ( l+h)_  (h -1 ) / (h+l )  
I , I  = = V o  , . (10) 

The conditional PDF of the gradients restricted to the points belonging to S(h) 
is related to PDF I I ( vo )  of the characteristic velocity difference v 0 on large 
scales by 

Ph(S) = H ( v ° )  ds  " (11) 

It follows that 

( u ](1-h)/2 e x p ( -  +~ 
P h ( S ) - - \ ~ /  2(v~) )"  (12) 

In the K41 theory h = 1/3 uniformly in the fluid and 

u2/31s[4/3, 
( u )i/3 exp{-\ 

I (13) 

On the other hand, the probability of picking up a gradient singularity h is 
given by 
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~ , ( h )  dh  ~ l 3-°(h) d h  . (14) 

The  final PDF is 

× exp( 2-~0 ~ } .  (15) 

Fig. 2 shows the PDF form (15) where D ( h )  is the Legendre transformation 
(5) of (4) compared to the numerical data obtained in the shell model. 

6. A mechanism for intermittency in the cascade model 

Parisi [15] has recently proposed a mechanism, based on the existence of 
so l i ton- l i ke  solutions, to explain the intermittent behavior in the cascade 
model.  

In the limit of zero viscosity and in absence of forcing, the shell model 
equations admit special solutions of the form 

u ( k ,  t) = k - h f h ( y )  with y = (t o - O k  '°, (16) 

where the function fh goes to zero both at + ~ and - ~  and the exponents h and 
to are related by h = 1 - to; the case h = 1/3 and f = const, corresponds to K41 

0 ' . . . .  -' . . . .  ' 1 
-2  

~'oa / \ j 

/ \ ~ -4 

- 6  

, , , I~ . . . .  I . . . .  ~,L , , 1 ,  

-10 0 I0 

S/<S2>I/2 

Fig. 2. Log- l inear  plot of the PDF of the gradients P(s) versus s/~, where 2 = (s2).  (vo) = 10 2, 
v = 10 -6 and N = 19. The full line is the multifractal prediction given by eq. (15). D(h) is given by 
fig. 1 through eqs. (4) and (5). Dashed line is the K41 prediction, dots are the numerical data. 
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theory. An approximated solution of eqs. (2) might be given by a linear 
superposition of the form: 

u ( k ,  t)  = ~ k - h f h e ( y )  with y = (ti - t ) k  ~' , (17a) 
i 

o_ 
k , ( t )  = k , ( t )  1÷~' (17b) 

d t  

(17) should be valid only in the region where different solutions do not 
overlap, i.e. where the baricenters k,( t )= I t , -  tl ~/,o, remain separated. In 
order to satisfy the multifractal scaling [10], the interactions between 
" s o l i t o n s "  should lead to an equilibrium probability of finding an h-like 
solution given, for large k, by 

P ( k ,  h )  ~ k -4+D(h) . (18) 

It is interesting to understand whether it is possible to derive the power law 
(18) in this approximation. Indeed, (17b) shows that the different scale 
invariant solutions (strongly localized in wave number space) can be considered 
as a diluted gas of particles of coordinate k i, each one escaping to infinity with 
different increasing speed. It follows that the collision of two particles labelled 
by singularities h~, h 2 generates two new particles of type h3, ha, with a 
transition probability P(h~ ,  h : ,  h3 ,  h4). The particles carry energy from the low 
wave number region to the large wave number region and a quasi-equilibrium 
distribution is obtained at large momenta as consequence of collisions. 

In this picture, one would map the original differential equations to an 
interacting particle model where the transition probability, and then the D ( h )  

spectrum, might be computed analytically, e.g. by renormalization group 
techniques. 

7. Conclusions 

We have presented some results obtained with a dynamical system with few 
degrees of freedom which models the energy cascade in three-dimensional fully 
developed turbulence. The system shares a series of common properties with 
the phenomenology of fully developed turbulence, such as the anomalous 
scaling of the velocity difference and the probability distribution function of 
velocity gradients. These results are connected to the temporal intermittency of 
the chaotic time evolution, in the context of our system. The instantaneous 
Lyupanov exponent has very large fluctuations, strongly correlated with the 
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energy dissipation at the Kolmogorov scale and with the localization of the 
instability along the dissipative modes. Our results and the recent work of 
Parisi suggest that this dynamical system with relatively few degrees of freedom 
can be useful to understand the multifractal nature of turbulence. 
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