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We present a simple stochastic algorithm for generating multiplicative processes
with multiscaling both in space and in time. With this algorithm we are able to
reproduce a synthetic signal with the same space and time correlation as the one
coming from shell models for turbulence and the one coming from a turbulent
velocity field in a quasi-Lagrangian reference frame.
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1. INTRODUCTION

The multifractal language for turbulent flows has been introduced about 20
years ago in order to describe the anomalous scaling properties of turbu-
lence at large Reynolds numbers. (1, 2) Beside any particular interpretation,
the multifractal formalism exploit the scale invariance of the Navier–Stokes
equation by taking into account fluctuations of the scaling exponents. To
be more quantitative let us consider the Navier–Stokes equations:

“tuF+uF · NFuF=−
1
r

NFp+n DuF (1)



where uF is the velocity field describing a (homogeneous and isotropic)
turbulent flow. For n=0 the Navier–Stokes equations are invariant with
respect to the scale transformation:

r Q lr u Q lhu t Q lt1 − h (2)

Then, following Kolmogorov, it is assumed that at large Reynolds numbers
(n Q 0) the rate of energy dissipation is constant. As a consequence,
h=1/3, if no fluctuation on h are present. The above reinterpretation of
the Kolmogorov theory naturally opens the way to describe intermittent
fluctuations in turbulent flows. Following the original idea by Parisi and
Frisch, many possible values of h are allowed in turbulent flows. Each fluc-
tuation h at scale r is weighted with a probability distribution Ph(r) ’ r3 − D(h).

Since its first formulation, the multifractal model of intermittency have
been applied to explain many statistical features of intermittency in a
unified approach. The final goal of many theoretical investigation is to
compute the function D(h) starting by the equation of motions. In some
simple although highly nontrivial case such a goal has been recently
reached for the case of the Kraichnan model of a passive scalar. (3)

One of the key issue in the multifractal language of turbulence is to
understand in a more constructive way what is a multifractal field and how
the fluctuations of h are related to the dynamics of the system. In order to
develop any systematic theory for computing D(h) starting from the equa-
tion of motions, one has to handle a complex nonlinear problem: the way
in which a perturbative scheme may be developed strongly depend on a
reasonable ansatz on the time-space properties of the probability distribu-
tion. It is therefore crucial to understand how we can formulate the most
general form of multifractal random field which is consistent with the time
and space scaling properties of the Navier–Stokes equations.

One possible interpretation of the multifractal formalism is to observe
that for any r < R, the multifractal theory predicts:

du(r)=W(r, R) du(R) du(r)=u(x+r)− u(x) (3)

Then, according to the scaling properties of u, the quantity W(r, R) is a
random quantity proportional to ( r

R)h. It turns out that for r1 < r2 < r3 we
have

W(r1, r3)=W(r1, r2) · W(r2, r3) (4)

Equation (4) tells us that one possible interpretation of multifractal field is
to assume that fluctuations at scale r are described by a random multipli-
cative process. The random multiplicative process is also somehow a simple
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way to mimic the energy cascade in turbulence. Actually, a general for-
mulation of multifractal random fields based on random multiplicative
process was first presented in refs. 4 and 5 by using a wavelet decomposi-
tion of the field.

One obvious limitation of random multiplicative process is the absence
of any time dynamics in the field, as one can immediately highlight by
considering space-time correlations. Space-time scaling is a crucial and
delicate issue when considering multifractal fields for the Navier–Stokes
equations. (8, 9) It is the aim of this paper to understand how one can
exhibits a multifractal field whose space and time scaling is consistent with
the scaling constraints imposed by the Navier–Stokes equations. In Sec-
tion 2 we introduce the technical problem shortly reviewed in this intro-
duction by using a rather simplified language. In Section 3 we discuss
several implications of the results obtained in Section 2, with a particular
emphasis on the consequences for the fusion rules as introduced in refs. 6
and 7. In Section 4 we outline our conclusions and we discuss future
extensions of our research.

2. MULTI-SCALE AND MULTI-TIME STOCHASTIC SIGNALS

To simplify even further our argument we can concentrate an a typical
fluctuation at a given scale, i.e., disregarding space position. We introduce
the scale hierarchy ln=l0 · l−n, in terms of the scale separation l > 1, and
the velocity differences wn=v(x+ln) − v(x). We assume that the scaling
properties of wn are consistent with the dimensional constraints imposes by
the Navier–Stokes equations, i.e.,

“twn ’ l−1
n w2

n (5)

If wn shows multifractal scaling, we may write:

Owp
nP ’ Ow0P

p
0
1 ln

l0

2z(p)

(6)

where z(p) is a nonlinear function of p and O · · ·P0 is an average over the
large scale statistics. Following Parisi and Frisch, we know that the multi-
fractal scaling (6) can be derived by assuming that wn ’ lh

n with probability
l3 − D(h)

n , i.e.,

Owp
nP ’ F dh lph+3 − D(h)

n (7)
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Indeed by means of a saddle point evaluation of the previous integral, one
obtain the explicit expression for zp in terms of D(h):

z(p)=inf
h

[ph+3 − D(h)] (8)

Supposing one wants to keep into account also the time correlations, the
constraint (5) implies that

Cp, q(y)=Own(t)p wn(0)qP ’ F dh lh(p+q)+3 − D(h)
n fp, q(y/yn) yn=ln/wn (9)

where yn is a random time (the eddy turnover time) and the functions fp, q

are dictated by the dynamic equations. Expression (9) has been introduced
in ref. 8 and analyzed in details in ref. 9. We underline that, as a conse-
quence of (9), we can predict the scaling properties of quantities like
dmCp, q(y)

dym . We now want to understand how to define a random process
satisfying both multiscaling in space (6) and multiscaling in time (9). In a
more general way, we would like to exhibit random multifractal fields with
prescribed dynamical scaling. It is known that the multifractal scaling (6)
can be observed for random multiplicative process. Let us introduce the
(positive) random variable An and let us indicate with P(An) the probabil-
ity distribution of An. Then, by defining wn=(<n

i=1 A i) w0 and by assum-
ing that the random variables A i are independent, one obtains:

Owp
nP ’ F 1D

n

i=1
A i
2p

D
n

i=1
P(Ai) dAi=OApPn=lz(p)

n z(p)=log(OApP)/log l

(10)

We want to generalize expression (10) in order to satisfy the dynamical
constrain (5). At each scale ln we introduce the random time yn=ln/wn.

The generation of our signal proceeds as follows, we extract An with
probability P(An) and keep it constant for a time interval yn. Thus, for
each scale ln, we introduce a time dependent random process An which is
piece-wise constant for a random time intervals yn. This is one possible and
relatively simple way to take into account the constraint (5).

To give a visual idea of how the algorithm works we show in Fig. 1 the
time behaviour of the regeneration times for several scales. It is evident that
there are short time-lag where the chain of multipliers is not given by an
exact multiplicative process (this happens every time a small scale has to be
regenerated but the ancestors are not yet dead).

In Fig. 2 we show the scaling behaviour of the third order structure func-
tions S3(ln)=Ow3

nP obtained by a numerical simulation of a time dependent
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Fig. 1. Time behaviour of wn for n=2, 4, 6.

random multiplicative process with P(A)=pad(A − Aa)+pbd(A − Ab), where
Aa=0.2, Ab=0.6, pb=1 − pa, and pa has been chosen such that z(3)=1.
Although S3 shows a very well defined scaling, the value of z(3) is greater
than what is predicted by (10) ( in Fig. 2 the slope − 1 is shown for com-
parison). This effect shows that the ‘‘real space’’ scaling Owp

nP is renor-
malized by the presence of the nontrivial time dynamics of the multipliers.

Fig. 2. Log–log plot of measured scaling of S3(n) vs. n for a time dependent binomial
random multiplicative process. The slope fitted slope z3 4 − 1.36 is ‘‘renormalized’’ with
respect to the ‘‘bare’’ value z3=1.
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In order to understand why (10) cannot be used to predict the scaling
exponents, let us understand which is the effect of the time dynamics for a
given scale ln by assuming that at scale ln − 1 the variable wn − 1 is kept con-
stant. Let T be the time used for time-averaged quantities and let Na and
Nb be the number of events where the random variable A is equal to
Aa and Ab respectively. We next introduce the quantities ya=ln/wn and
yb=ln/wn, the times associated to Aa and Ab. By using our definition we
can write: Naya+Nbyb=T, Na=paN, Nb=pbN, Na+Nb=N. It then
follows:

Owp
nP=Owp

n − 1P
1
T

F dt A(t)p=Owp
n − 1P

1
T

(yaNaAp
a+ybNbAp

b ) (11)

The above expression can be further simplified and we finally obtain:

Owp
nP=Owp

n − 1P
1
T
1 Naln

Aawn − 1
+

Nbln

Abwn − 1

2=Owp
n − 1P

paAp − 1
a +pbAp − 1

b

paA−1
a +pbA−1

b

(12)

The consequence of (12) is that the scaling exponents z(p) are renormalized
according to the expression:

zR(p)=zo(p − 1) − zo(−1) (13)

where the number zo(p) are the ‘‘bare’’ scaling exponents, i.e., those com-
puted by using P(A) according to (10).

Expression (13) have been obtained by using the simplified assumption
wn − 1=const. In the general case, i.e., all variables wn are fluctuating, one
needs to generalize the above discussion. A possible way is to write:

zR(p)=zo(p − a) − zo(−a) (14)

where the number a (not necessarily integer) depends on the details of
P(A).

We have checked expression (14) for a number of different choices of
P(A). Here we present the results for P(A) being a log-normal distribution,
i.e., for

zo(p)=pho − 1
2 s2p2 (15)

By using (14) we obtain:

zR(p)=p(h0+as2) − 1
2 s2p2 (16)
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Fig. 3. Behaviour of renormalized zR(3) for log-normal distribution as a function of s2

(see text).

In Fig. 3 we show zR(3) obtained by a set of numerical simulations for dif-
ferent values of s and h0 chosen in such a way that zo(3)=1. In this case
(16) can be written as zR(3)=1+3as2. As one can easily observe, the pre-
diction of (16) is verified with very good accuracy with a value of a close
to 2. In Fig. 4 we show the value of zR(p) for p=2,..., 6 as obtained by
direct numerical simulation for s=0.03. The dashed line represent the
estimate (16) with a=2: a very good agreement is observed.

Fig. 4. Behaviour of zR(p) for s=0.03 (×) as compared to bare exponents z(p). Dashed
line is the prediction (16).
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The above discussion can be generalized for multifractal fields and for
any particular choice of P(A). In all cases, a re-normalization of the scaling
exponents, as predicted by (16), should be expected. At the same time,
a nontrivial time correlation is introduced for the variables wn. In Fig. 5 we
show Own(y) wn(0)P and Own+6(y) wn(0)P for n=3, obtained by a numeri-
cal simulation of the time dependent random multiplicative process with a
log-normal distribution with parameters s=0.03, zR(3)=1. As expected,
the correlation Own+6(y) wn(0)P increases for small y and then goes to 0.
The pick at a time lag larger than zero is due to the presence of a nontrivial
time dynamics, i.e., multipliers at different scales need some time to realize
that their ancestor have changed their status. This is meant to mimic the
non-trivial time dynamics of the turbulent energy transfer. This behaviour
is also observed in the numerical simulation of deterministic shell models as
reported in ref. 9.

Finally let us check whether the quantities wn satisfies the scaling
constrain imposed by (5). We first observe that the correlation function
Own(t+y) wn(t)P goes as exp(−B |y|). This is due to the fact wn as a func-
tion of time is not differentiable. In order to check whether (5) is satisfied,
we observe that B ’ knw3

n ’ const. if zR(3)=1. In Fig. 6 we plot the time-
scale B as a function of n obtained by a time dependent random multipli-
cative process, using a log normal distribution with s=0.03, zo(3)=0.83,
and zR(3)=1. As one can see, B is fairly constant in the inertial range.

Fig. 5. Time correlations at the same scale, Ow3(y) w3(0)P, and at different scale,
Ow9(y) w3(0)P, as a function of the time lag y.
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Fig. 6. The time scale B, computed by the expression Own(t+y) wn(t)P ’ exp(−B |y|), for
different value of n. The scaling constrain (5) should correspond to B ’ const. as observed.

3. NUMERICAL RESULTS

The re-normalization effects discussed in the previous section can be
further investigated by considering the case of a passive scalar. In this case
the constraint (5) should be written as:

“hn ’ hn
wn

ln
(17)

where hn=h(x+ln) − h(x) in analogy with the definition of wn. We assume
that Ohp

nP ’ lH(p)
n . Let us assume that a suitable representation of hn is given

by a time dependent random multiplicative process as described in Section 2.
In this case, however, the random time yn is not correlated with the value of
hn or the related random multiplicative variables. Therefore, we should not
expect any re-normalization for the scaling exponents H(p). This is indeed
the case as shown in Fig. 7, where we plot the scaling of Oh3

nP for a log-
normal random multiplicative process with s=0.03 and h0 such that
H(3)=1. The updating times have been chosen with an independent
random distribution mimicking the velocity fluctuations, yn ’ ln/wn The
dashed line corresponds to a slope − 1.

Our definition of time dependent random multiplicative process can
be very useful in investigating the behaviour of the so called fusion rules
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Fig. 7. Log–log plot of Oh3
nP vs. n, for the passive scalar as compared to the theoretical

prediction with slope − 1.

for the quantities like Owp
n+mwq

nP. Following refs. 6, 7, and 13, we can
write:

Owp
n+mwq

nP=Cp, q(m)
Owp

m+nP

Owp
nP

Owp+q
n P (18)

where Cp, q is a constant for large m. Actually a direct measurements of
Owp

n+mwq
nP in turbulent flows at high Reynolds numbers and in direct numer-

ical simulations, confirm the validity of (18) with Cp, q < 1 for large m. (13) It
is interesting to observe that our time dependent random multiplicative
process satisfies fusion rules with Cp, q < 1. It is indeed possible to show this
result by the following argument. Let us consider two scales ln and ln+m.
For fixed time, the quantity wn and wn+m are not necessary product of the
same random variables. They feel the same chain of multipliers for some
larger scale lnŒ with nŒ < n. Thus we should have:

Owq
nwp

n+mP=7 D
nŒ

k=1
Aq+p

k
87 D

n

k=nŒ

Aq
k
87 D

n+m

k=nŒ

Ap
k
8 (19)

where Ak is the random multiplier acting between scale k − 1 and scale k,
i.e., wk+1=Akwk. The above expression gives the following result for the
compensated fusion rules:

Owq
nwp

n+mPOwp
nP

Owp
n+mPOwp+q

n P
’
OAq+pPnŒ OAqPn − nŒ OApPm+n − nŒ OApPn

OApPn+m OAp+qPn (20)
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Fig. 8. Behaviour of C2, 2(m), defined by using (18) for n=3, as a function of m=−1,..., 11,
for the log-normal probability. For m=0, C2, 2(0)=1, while for large and positive m, C2, 2

reaches a plateau smaller than 1.

that is:

Owq
nwp

n+mPOwp
nP

Owp
n+mPOwp+q

n P
=1 OAq+pP

OAqPOApP
2n − nŒ

[ 1 (21)

Let us notice that for nŒ=n, which corresponds to random multiplicative
process without time dynamics, the r.h.s. of the above expression is just 1.
The above equation should be considered as a qualitative prediction. In
general we expect nŒ to be a function of both p and q.

We have checked our prediction by several simulations for different
choices of P(A). In Fig. 8 we show the quantity C2, 2(m) defined as in (18)
for n=3 and for m=−1,..., 11. As expected C2, 2(m)=1 for m=0 and for
m > 0 is a slowing decaying function of m which reaches a plateau only for
very large m.

As a consequence of our analysis, we can also predict that the quantity
Cp, q(t), defined through:

Own+m(t)p wn(0)qP=Cp, q(t)
Owp

m+nP

Owp
nP

Owp+q
n P m ± 1

should increase with t. This is indeed the case as one can observe in Fig. 9.
According to (21), the asymptotic value of Cp, q(m) for large m is a

function of the intermittency, i.e., Cp, q(.) becomes smaller for larger value
of the anomaly zR(p)+zR(q) − zR(p+q). The qualitative prediction of (21)
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.

Fig. 9. Behaviour of C9, 3(t) as a function of time.

has been checked against numerical simulations of time dependent random
multiplicative process. In Fig. 10 we plot the asymptotic value of C2, 2(.)=
limm Q . C2, 2(m) for a log normal P(A) as a function of zR(4) − 2zR(2). As
one can see the qualitative prediction is confirmed.

A further inspection of the numerical simulations reveals that Cp, q can
be written as

Cp, q(m)=1 − Dp, q f(m) (22)

Fig. 10. Behaviour of C2, 2(.) vs. zR(4) − 2zR(2).
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where f(0)=0 and f(.)=1. While Dp, q is a function of zR(p)+zR(q) −
zR(p+q), we may wonder whether the function f(m) is somehow univer-
sal. Although a definite conclusion cannot be reached by looking at the
numerical simulations, still our results seem to indicate that f(m) is either
universal or is a function weakly dependent on intermittency. This can be
seen from Fig. 11 where we plot f(m) for different values of zR(4) − 2zR(2).

We already observed at the beginning of this section that a time
dependent multiplicative process for a passive scalar does not show a
re-normalization of the scaling exponents H(p). However, the argument
used to derive (21) can be applied even if the random times yn are not cor-
related to the multiplicative process, as in the case of the passive scalar. In
Fig. 12, we show the quantity G(m) defined by the relation:

Oh2
3h2

3+mP=G(m)
Oh2

3+mP

Oh2
3P

Oh2
3P (23)

for the passive scalar and m=−1,..., 11. As expected, the fusion rules are
satisfied only asymptotically with prefactors G(m) < 1.

Let us also notice that the coefficients Cp, q of the fusion rules are not
fully defined, in terms of the time dependent random multiplicative process.
Let us consider the variable

un=gnwn
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Fig. 12. Plot of the fusion rule coefficient G(m), as defined in the text, for the passive scalar
and for m=−1,..., 11.

where gn is a random variable, independent of n, with the same probability
distribution for any n, i.e., Ogn1

gn2
· · · gnk

P=Ogn1
POgn2

P · · ·Ognk
P and P(gn)

does not depend on n. It follows that the fusion rules for un satisfy:

Oup
n+muq

nP=OgpPOgqPOwp
n+mwq

nP

which gives

Oup
n+muq

nP=OgpPOgqP Cp, q
Oup

m+nP

Oup
nP

Oup+q
n P

1
Ogp+qP

Note that, for each n, wn is the time dependent multiplicative process and
that the scaling properties of un and wn are the same. The above equation
implies that the fusion rules coefficients Cp, q for un becomes:

Cp, q Q Cp, q
OgpPOgqP

Ogp+qP
wn Q gnwn (24)

Equation (24) implies that the asymptotic value of Cp, q for large m is fixed
up to a number (less than 1) linked to a scale invariant probability distri-
bution function.

Before closing this section we would like to notice that the renor-
malized exponents zR(p) are associated to a less intermittent field with
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respect to the bare exponents zo(p). This can easily be deduced by using
Eq. (14). Thus we can predict that whenever the random times yn are not
correlated to wn we should observe (for a given P(A)) an increase of
intermittency. One may wonder whether this qualitative prediction may
have any experimental evidence. This is indeed the case. Let us consider
a shear flow. It has been noted that whenever the mean shear S is large
enough intermittency increases. For large scale the characteristic time scale
of the dynamics should be dominated by the shear effect and we would
expect the characteristic time scale independent on the scale. (10–12) In this
case, therefore, if we describe intermittency as a random multiplicative
process, time dynamics does not lead to a re-normalization of the scaling
exponents, i.e., we should observe the scaling exponents zo(p) < zR(p). It is
suggestive to think that the increase of intermittency in shear dominated
flows may be understood in terms of the absence of re-normalization in
time dependent multiplicative process.

4. CONCLUSIONS AND DISCUSSIONS

We have introduced a simple multiplicative process which embeds
intermittency both in time and in space. This allow us to generate a signal
which respect the constraint ( imposed by the Navier–Stokes equations)
given by Eq. (5): “twn ’ l−1

n w2
n. This models is a generalization of the mul-

tiplicative process (10) and a practical implementation of a signal satisfying
the multifractal representation (9). Studying the numerical process we
found a ‘‘re-normalization’’ of the scaling exponents in space due the non-
trivial interplay between multipliers re-generation and time evolution. We
have shown that in the case of a passive scalar this effect is not present.
Furthermore, we have clearly connected the asymptotic gap, observed on
fusion rules, with the intermittent scaling exponents. This finding will be
exploited in a forthcoming paper (14) to build up a stochastic closure to
compute anomalous scaling exponents for shell models of turbulence.
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