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The decay of homogeneous anisotropic turbulence
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We present the results of a numerical investigation of three-dimensional decaying turbulence with
statistically homogeneous and anisotropic initial conditions. We show that at large times, in the
inertial range of scaledi) isotropic velocity fluctuations decay self-similarly at an algebraic rate
which can be obtained by dimensional argumerits; the ratio of anisotropic to isotropic
fluctuations of a given intensity falls off in time as a power law, with an exponent approximately
independent of the strength of the fluctuatidiii;) the decay of anisotropic fluctuations is not
self-similar, their statistics becoming more and more intermittent as time elapses. We also
investigate the early stages of the decay. The different short-time behavior observed in two
experiments differing by the phase organization of their initial conditions gives a new hunch on the
degree of universality of small-scale turbulence statistics, i.e., its independence of the conditions at
large scales. €2003 American Institute of Physic§DOI: 10.1063/1.15828539

I. INTRODUCTION tions allowing one to relate correlation functions at different
spatial and temporal scales. By inserting this assumption into
Decaying turbulence has attracted the attention of varithe equations of motion, asymptotic results can be obtained
ous communities and is often considered in experimental,,, for the final viscosity-dominated regime and for the

numerical, and theoretical investigationS.tis in fact quite i iermediate asymptotics when nonlinear effects still play an
common that even experiments aimed at studying stationary ool

properties of turbulence involve processes of decay. Impor- The status of the self-preservation hypothesis and the
tant examples are provided by a turbulent flow behind a grid . . .
(see Ref. 4, and references thejedr the turbulent flow properties of energy decay in unbounded flows are still

- -4,6 -
created at the sudden stop of a grid periodically osciIIatingﬁomrot:/ers'm?'t bl_S)r/]st(;amatm tlresults ;)n reIeFed prob(ljerlns f
within a bounded boX.In the former case, turbulence is ave been establisned recently, €.g., Tor nonlineéar models o

slowly decaying going farther and farther away from the grid'\“"‘\"er_StOkes eque_1t|ons as Burggrs’ equatlo.n, see e'%{'_’ Ref.
and its characteristic scale becomes larger and lasge 7, and for stochastic models of linear passive advection,

Ref. 4 for a thorough experimental investigatiowhenever  oth in unboundeti**and bounded domairis:**

there is sufficient separation between the grid-sizeand Here, we investigate the decay of three-dimensional ho-

the scale of the tunnel or the tahk>L,,, a series of inter- Mogeneous and anisotropic turbulence by direct numerical

esting phenomenological predictions can be derived. For exsimulations of the Navier—Stokes equations in a periodic

ample, the decay of the two-point velocity correlation func-box. Previous numerical studies have been limited to either

tion, for both isotropic and anisotropic flows, can be obtainechomogeneous and isotropic turbulettc€ or to shell models

under the so-called self-preservation hypothésee Ref. 3, of the energy cascadé.

Chapter XV). That posits the existence of rescaling func-  The initial conditions are taken from the stationary en-
semble of a turbulent flow forced by a strongly anisotropic

dAuthor to whom all correspondence should be addressed; electronic maimpUt' T_he correlation Iength scgle of the initial VeIOC'ty
a.lanotte@isac.cnr.it field L;, is of the order of the size of the bolxomLm.
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In the first part of this paper, we shall try to answer the |
following questions about the intermediate asymptotic re-
gime of nonlinear decay: How do global quantities, such as
single-point velocity and vorticity correlations, decay? What
is the effect of the outer boundary on the decay law? Do
those quantities keep track of the initial anisotropy? As for §
the statistics of velocity differences within the inertial range
of scales, is there a recovery of isotropy at large times? If so.
do strong fluctuations get isotropic at a faster/slower rate :
with respect to those of average intensity? Do isotropic and
anisotropic fluctuations decay self-similarity? If not, do
strong fluctuations decay slower or faster than typical ones"

In the second part we study the early stages of the deca)
with the aim of establishing a link between the small-scale | '
velocity statistics in this phase and in the forced case. Tha
will allow us to argue in favor of an “exponents only” uni-
versality scenario, for forced hydrodynamic turbulence.

@loa(m)]  (@e(10m)]  ()[va(10070)]

FIG. 1. Two-dimensional sections of a typical velocity field at different
times of decay. The three top images and the three bottoms are the gray-
Il. NUMERICAL SETUP scale plots of the velocity components parallel and transverse to the direc-
tion of the forcing, respectively. Note in the upper row, the presence of
anisotropic structures which decay as time elapses.

The initial conditions are taken from the stationary en- . . .
semble of a forced random Kolmogorov fldivFor sake of After a few eddy turnover times, it is evident that large-scale
completeness, we recall here some of the statistical propefluctuations become more and more isotropic. To give a
ties of this forced turbulent flow. We consider the solutionsduantitative measure, we collect for each run the temporal
of the Navier—Stokes equations for an incompressible veloc2€havior of the following one-point quantities:

ity field v, Ejj=vi(t)v;(1), (]
o +(v-V)v=—Vp+rAv, () 0= (Do (1), 3

in a three-dimensional periodic domain. To maintain a statis-

An overbar denotes the average over space coordinates only,
tically stationary state Eq1) had to be supplemented by an

whereas angular brackets will indicate the average over both
input termf acting at large scales. This force was strongly.

initial conditions and space. The symmetric matriéggt)

anisotropic: f=(0,0f,(x)) with f,(x)=F; cog2mx/L,
. and Q;;(t) are then diagonalized at each time step and the
+ (1) ]+-Focod4mx/Ly+ ¢o(t)], constant amplitudes, , and eigen\I/Ja(Iu)edzl(t) E,(1) gE3(t) and (1), Q,(1) 93(3 are

independent uniformly distributed-correlated in time ran- . > o : SV
dom phases, At). This choice ensured the statistical ho- extracted. Since the forcing points in a fixed direction two
P LA eigenvalues are almost degenerate, &yand E;, and

T e oot s Koo oo N iflr fom e 1t ones_The Opial decay o
9 E;(t) andQ;(t) fori=1,...,3 isshown in Fig. 2. During

3 B B
2.56 for time spans up to 70 eddy turnover tm?ésTh_e the self-similar stagete[lo 1(53] the energy eigenvalues
viscous term was replaced by a second-order hypervisco Il of as E ~t as expected for the decav in a
term —vA2v. We stored 40 statistically independent con- {12, ’ b Y

°Th h I -
figurations that here serve as initial conditions for the deca bounde"l?,‘éma' e enstrophy eigenvaluey, , 3 de
cay ast The dimensional argument that captures these

A. The initial conditions

ing runs.
_ 10t
B. Decaying runs »
10%
As turbulence decays, the effective Reynolds number o0

Re=v,ndlo/v decreases, while the viscous characteristic
scale and time increase. To speed up the numerical time- 10
marching, it is then convenient to use an adaptive scheme.
We calculate periodically the smallest eddy-field configura-

tion is then dumped for off-line analysis at fixed multiples 10

{0,1,10,16,10°,10%,10°,1CF} r, of the initial large-scale eddy 108 |
0

2|

10* t

Ei(),Qi(t)

6 |

turnover time 7o=Lo/vi,o. In Fig. 1 we show a two- 1070 |
dimensional section in the plamxe-z of the velocity compo- 1
nentsv, andu,. 1071
107
I1l. THE DECAY OF GLOBAL QUANTITIES t

A first hint on the restoration of isotropy at large times i, 2. Log—log plot of the eigenvalues of energy and vorticity matrices vs
can be obtained by the two-dimensional snapshots in Fig. ime, expressed im, units.

Downloaded 01 Oct 2011 to 130.89.86.11. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



Phys. Fluids, Vol. 15, No. 8, August 2003 The decay of homogeneous anisotropic turbulence 2107

10° . : ; . statistics is anisotropic. A method to systematically disen-
g ] tangle isotropic from anisotropic contributions in the struc-
T T i ture functions is based on the irreducible representations of
AgE®  AE() \, the SA3) group®® In this approach, the observablé are

expanded on the complete basis of the eigenfunctions of the
rotation operator. The S@) decomposition of scalar objects,

- 1
F 10 such as structure functions, is obtained by projection on the
spherical harmonicS’jm(F):
i i
SUrH=2 2 SO (7)
=0 m==j
2|
10 ' : ' - Here, S{7)(r,t) denotes the projection of theh order struc-
103 10 107 10° 10’ 102

ture function on the j,m) SQ(3) sector, withj andm label-

ing the total angular momentum and its projection in the

FIG. 3. Log—log plot of the anisotropy content at the large sdalgsE(t), directionz, respectively. Another equivalent possibility is to

AgE(1), topf CUft‘_’er% ingmtgeej"':zgszza_'eﬁiilél(th]ve ﬁ?ﬁ(&agﬁgﬂn look at the S@3) decomposition of the probability density

ggerl\lle)ega?iss;rggj l:c(’)nt?ent is éiefir?ed as tr:g l:nisrﬁatch be?ween the eigenvaT—unCtlon (PDF) O,f the Iongltudlnal VeIOCIty, differences. In

ues of the single-point velocitfvorticity) correlation. this case, denoting b(A,r;t) the prObabJ“ty that the lon-
gitudinal increments,v=(v(r,t)—v(0;t))-r is equal toA,
we may projectP(A,r;t) on the S@3) basis:

algebraic laws proceeds as follows. The energy decay is ob- o

tained by the energy balanckE(t)/dt= — €(t), where we e ) "

estimateE~vZ (t) and e(t)~v (t)/Lo~E¥(t)/L,, and Pa.ry= ,ZO m;,- i1 A0 Y jen(F). ®)

obtainE(t)~t~ 2 and e(t)~t 3. As for the vorticity decay, o ) ,

we haveﬂ(t)~(5,7v)2/1;2, wherez is the dissipative length The ’PrOJectlonij(r,A;t) plays the role of an “effective

scale ands, v is the typical velocity difference at separation PDF” for each single S(8) sector.[It should be however

7. Assuming a Kolmogorov Sca“n@”vwe(t)anl/S’ and remarked that only the isotropic probability density

recalling that for a second-order hyper-viscous dissipatiorf oo",4;t) has the property of being everywhere positive
e(t)~v(8,0)% 7* we obtain 7~t¥10 and & p~t 91 and normalized to unity with respect to the weight(47).]
7 n '

whenceQ(t)~t =15 We now focus on the process of re- Indeed, the projections of the longitudinal structure function
covery of isotropy in terms of global quantities. We identify O @ny sector j;m) can be reconstructed from the corre-

t

two set of observables spondingPj,(r,A;t) by averaging over all possiblg’s:
_[EM-E(® Sy t)=fdAA” L (FA) 9)
AijE(t)—<Ei(TEj(t) : (4) jm i Jmita =
Q) —Q(1) That establishes the equivalence between the decompositions
AijQ(t)=<—Ql n +QJ n >, (50 (7) and(8).
i(t) i The main points broached here are about the long-time

which vanish for isotropic statistics. Their rate of decay isproperties of the S@) projections,S},’R(r,t). A simple an-
therefore a direct measurement of the return to isotropy. Thesotropic generalization of the self-preservation hypothesis
energy matrixg;; is particularly sensitive to the large scales (see, e.g., Ref.)2amounts to writing

while small-scale fluctuations are sampled®y . As can be
seen from Fig. 3, both large and smallpscalez begin to isotro- S},?f(r,t)=V},’;)(t)f§,';)(r/ij(t)). (10
pize after roughly one eddy turnover time and become fullyNote thatV{}(t) takes explicitly into account the fact that
isotropic(within statistical quctuatior‘)safter 100 eddy turn- |arge-sca|e properties may depend in a nontrivial way on
over times. However, small scales show an overall degree qoth (j,m) and the orden. Furthermorel_;,(t) accounts for

anisotropy much smaller than the large scales. the possibility that the characteristic length scale depend on
the SA3) sector.
IV. THE DECAY OF SMALL-SCALE FLUCTUATIONS In analogy with the observations made in the stationary
8,20-26 : :
A. The self-preservation hypothesis for case we postulate a scaling behavior
anisotropic decay " £
J
The observables which characterize the decay of small- ~ Sip(r,t)~aj(t) » (t)) - 1y
jm

scale velocity fluctuations are the longitudinal structure func-
tions The time behavior is encoded in both the decay of the overall
i i )
n _ _ 2n intensity, accounted for by the prefactmﬁn(t), and the
SPr =[x+ rH—o(x)1"). ©®)  Variation of the integral scalek;,(t). The representation
Those quantities depend not only on the modulus of thd1l) is the simplest one fitting the initial time statistics for
separatiorr but also on its orientation, since the velocity t=0 and agreeing with the evolution given by the self-
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10,7,
t=101y -

s&yrh
()

FIG. 4. Log-log plot of the isotropic component of the second-order
projection SE)(r,t) vs r for seven decay times,t=0,7,,10r,,
107, ,10°7,, 107,107, (from top to bottom. The two straight lines cor-
respond to the inertial range sloﬁﬁ)(r,t)fvro-7 (top) and to the smooth
differentiable slopes{(r,t)~r? (bottom).

FIG. 5. The same quantities as in Fig. 4 but for the anisotropic sgctor
=4m=0, i.e., log—log plot ofSZ(r,t) vsr.

quantities are presented in Fig. 5 for the most intense aniso-
tropic sector {=4,m=0).

We notice that as time elapses the dissipative range
preservation hypothesis in the isotropic case. The power lawrodes the inertial one, as a consequence of the growth of the
behavior forflﬁm(r/ij(t)) can be expected only in a time- Kolmogorov scalen(t). We notice in passing that the two
dependent inertial range of scal@ét)<r<(t). As for the  curves corresponding te=0 andt= r, almost coincide, i.e.,
exponents appearing iil), their values are expectedly the even small scales are unchanged despite their typical eddy
same as in the stationary case. In the latter situation it hagirnover times being much smaller thag. This finding has
been shown that they are organized hierarchically accordingome consequences that will be discussed at length in Sec. V.
to their angular sectqr?* A similar qualitative trend is displayed by the most intense
anisotropic sector, jE4m=0) shown in Fig. 5, even
though oscillations at small scales spoil significantly the
rﬁpaling properties at small separatians

ggn)ggg-n)$...§}n)$... . (12

Since the isotropic sector has the smallest exponent, at al R ) )
given time and for a given intensity of the fluctuatiése- In order to assess the relative importance of isotropic
lected by the value oh) we have a recovery of isotropy &Nd @nisotropic contributions, we plot in Fig. 6 the (D
going to smaller and smaller scales. Yet, deviations of th@r0iections of somej(m) sectors for the orden=2 and a
scaling exponents from their dimensional expectations makE*ed time,t=7,. Figure 7 shows the same quantities as in

the recovery at small scales much slower than predicted bly!9- 6 but ata later time,=100r,. Although the small-scale
dimensional analysi&?® Moreover, there are quantities ehavior of anisotropic sectors readily becomes rather noisy,

which should vanish in an isotropic field and actually blow the various contributions are organized hierarchically and the

up as the scale decreagas. isotropic contribution is dominant, as expected.

Concerning the time evolution, it seems difficult to dis- L€t US now analyze quantitatively the time decay of the
entangle the dependence due to the decaéﬂbﬁ) from the  Structure functions at a fixed separation. In Fig. 8 we show
one due to the growth of the integral scalg,(t). Here, we
note only that the existence of running reference scale,
L;m(t), introduces some nontrivial relations between the spa- 108 |
tial anomalous scaling and the decaying time properties, and
those relations might be subject to experimental verification.
In our case, the fact that the initial condition has a character- 10°
istic length scale comparable with the box size, simplifies the
matter. Indeed we expect tHaﬁT)]% Lo, and the decay is due
only to the fall off of the global intensitya](,'},)(t). Unfortu-
nately, a shortcoming is that the width of the inertial range
Lo/ 5(t) shrinks monotonically in time, thereby limiting the 103 " T/
possibility of precise quantitative statements.

Si(,f)(r,t)

107

B. Numerical results 10 0! 02

An overall view of the S@B) projections at all resolved r

scales and for all measured decay times is presented in Fig.fg. 6. Log—log plot ofS2)(r ) Vs t=r,. Symbols refer to (=0,m=0)
for n=2 and the isotropic, j=0,m=0), sector. The same (top) and to (=4,m=0) (bottom.
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FIG. 7. The same quantities as in Fig. 6 but at the later tim&0’r,. The FIG. 9. Hierarchal organization of anisotropic fluctuations at long times.

sectors shown arej€0,m=0) and (=4m=0) (top to bottom, as in Log-log plot of the anisotropic projections normalized by the corresponding

Fig. 6. isotropic projection(see the text at two fixed scales =80 andr=40
(insey for n=2, 4, 6 in the anlsotroplc sectcpr:4 m=0. Symbols read as
follows: Hgﬁ) (closed box; H ) (stap; H ) (open boy. The straight line is

the long-time decay of the second- and fourth-order mot™* with x*~0.3. Same symbols in the inset.
ments on the isotropic and an anisotropic sector=ag0,
within the inertial range.

We observe that the anisotropic sectors decay faster thang that large-scale fluctuations are almost Gaussian we have
the isotropic one, i.e., at a fixed scale there is a tendencyhat the leading time-dependency af2" is given by
toward the recovery of isotropy at large times. The relat|ve>a(2)a(2n 2). For the isotropic sectoraazn)~(a(2))“ and

rate of decay can be quantified by the observable plugglng that in (13), we get HJ(,Tq)(r t)~ aj(ﬁq)(t)/a(z)(t)
(n>(r t) - ~tX* with y*~0.3(+0.1) independent of. The quality
H}{R(r,t)zn)— X (13)  of our data is insufficient to detect possible residual effects
SOvO(r’t) due toLn(t), which would make)(}“) depend om andj
In Fig. 9 we showlI{)(r t) atr =80 for structure func- because of spatial intermittency.
tions of ordern=2, 4, 6 and for(4,0), one of the most in- The interesting fact that we measure decay properties of

tense anisotropic sectors. In the inset we also plot the santbe anisotropic sectors which are almost independent of the
quantities at the smaller scale=40. All anisotropic sectors, order of the structure functions indicate that we must expect
for all measured structure functions, decay faster than theome nontrivial time dependence in the shape of the PDF's
isotropic one. The measured slope in the decay is aboufjm(r,A;t) for j>0. The most accurate way to probe the
x{~0.3 almost independent, within the statistical errors, offescaling properties P, (r,A;t) in time is to compute the
the ordern. Note that these results agree with the simplegeneralized flatness:

picture that the time-dependence(ir) is entirely carried by ‘n)(r t)
the prefactorsa(”)(t) and the value of the integral scales K}%)(r,t)zhrv " (14)
Lim(t) is saturated at the size of the box. Indeed, by assum- (Sjm(r,1))

Were the PDF projection in thg (m) sector self-similar for
t> 1o, thenK{(r,t) would tend to constant values. This is
not the case for anisotropic fluctuations, as is shown in Fig.
10. The curvek({)(r,t) are collected for two fixed inertial
range separations=80 andr =40 (insed, for two different
orders,n=4,6, and for both the isotropic and one of the most
intense anisotropic sector§=4,m=0). The isotropic flat-
ness tends toward a constant value for ldrg@onversely, its
anisotropic counterparts are monotonically increasing tyith
indicating a tendency for the anisotropic fluctuations to be-
come more and more intermittent as time elapses. A conse-
quence of the monotonic increase of intermittency for large
A . . ‘ . . times is the impossibility to find a rescaling functiatt,r),
102 10 10! 10° which makes the rescaled PDg(t,r)Pjn,(r,A/g(t,r);t)

t time-independent at large times. Let us notice that the be-
FIG. 8. Log—og plot of the second-order momesfE)(r—801) for the hayior in Fig. 10 is in qualitative a}greement with t.he obser-
isotropic sector [—0m—0) and the anisotropic sectof £4m—0), vs vation previously made that all time dependencies can be

time, for a separation in the inertial range. In the inset we plot the same accounted by the prefacmﬂ#ﬂq)(t)- Indeed, assuming that
curves for the fourth-order momes{;)(r =80t). the length scale4 ,(t) have saturated and that the large

(r=80.1)

@)
m
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observed anomalous scaling laws have been understood and
even calculated analytically for some instances in the special
class of Kraichnan flow&’ Here, it is worth stressing that the
universal character of scaling exponents is shared by both
isotropic and anisotropic fluctuatioR%.

For the Navier—Stokes case we have a huge amount of
experimental and numerical indications that the velocity field
shows anomalous scalifgsuggesting the existence of phe-
nomena “similar” to those of the linear case. However, car-
rying over the analytical knowledge developed for linear hy-
drodynamical problems involves some nontrivial missing
107 s . . . . steps. For the Navier—Stokes dynamics, linear equations of
motion surface again but at the functional level of the whole
set of correlation functions. In a schematic form:

((r=80.1)

FIG. 10. Log-log plot of the generalized flatneia(ﬂ)(r,t) of ordern
=4, 6 for both the isotropi¢two bottom curvel and the anisotropic sector gCM=r0*rHch+D 4 ,pMch 4 Em) (15
(j=4,m=0) (two top curvey at r=80, and as a function of time. In the

inset we plot the same quantities, in the same order, at a different inerti

range scale; =40 WhereI' " 1) s the integro-differential linear operator com-

ing from the inertial and pressure terms a@d'*) is a
shorthand notation for a generio+ 1)-point correlator. The
scale PDF is close to Gaussian, it is easy to work out th&holecular viscosity is denoted by and D is the linear
prediction K](rr;])(r,t)wtfx*(lfn&), ie. a](”)=)(*(n/2— 1).  operator describing dissipative effects. Finali" is the

We conclude this section with a brief summary of the resultscorrelator involving increments of the large-scale forcing
We have found that isotropic fluctuations persist longer thar@nd of the velocity field. Balancing inertial and injection
anisotropic ones, i.e., there is a time-recovery, albeit sloweterms gives dimensional scaling, and anomalously scaling
than predicted by dimensional arguments, of isotropy during€fms must therefore have a different source. A natural pos-
the decay process. We have also found that isotropic fluctudiPility is that a mechanism similar to the one identified in

tions decay in an almost self-similar way while the aniso-linear transport problems is at work in the Navier—Stokes
tropic ones become more and more intermittent. Qualitacase as well. The anomalous contributions to the correlators

tively, velocity configurations get more isotropic but Would then be associated with statistically stationary solu-
anisotropic fluctuations become, in relative terms, mordions of the unforced equatiorid5). The scaling exponents
“spiky” than the isotropic ones as time elapses. would a fortiori be independent of the forcing and thus uni-
versal. As for the prefactors, the anomalous scaling expo-
nents are positive and thus the anomalous contributions grow
at infinity. They should then be matched at the large scales
Let us now move to the properties of decay at shortwith the contributions coming from the forcing to ensure that
times {<<7p). Universality of small-scale forced turbulence the resulting combination vanishes at infinity, as required for
is at the forefront of both theoretical and experimental inves<correlation functions. Our aim here is not to prove the pre-
tigation of real turbulent flow$.The problem is to identify vious points but rather to check over the most obvious catch:
those statistical properties which are robust against changeise Navier—Stokes equations being integro-differential, non-
of the large-scale physics, that is against changes in thecal contributions might directly couple inertial and injec-
boundary conditions and the forcing mechanisms. Our godion scales and spoil the argument. This effect might be par-
here is to relate the small-scale universal properties of forceticularly relevant for anisotropic fluctuations where infrared
turbulent statistics to those of short-time decay for an endivergences may appear in the pressure integrals.
semble of initial configurations. An immediate remark is that  In order to investigate the previous point, we performed
one cannot expect an universal behavior for all statisticatwo sets of numerical experiments in decay. The first set, A,
observables as the very existence of anomalous scaling is tle of the same kind as in Sec. 1V, i.e., we integrated the
signature of the memory of the boundaries and/or the extemrnforced Navier—Stokes equatiofi3 with initial conditions
nal forcing throughout all the scales. Indeed, the main mespicked from an ensemble obtained from a forced anisotropic
sage we want to convey here is that only the scaling of botlstationary run. Statistical observables are measured as-an
isotropic and anisotropic small-scale fluctuations is universembleaverage over the different initial condition® )¢
sal, at least for forcings concentrated at large scales. Th€he ensemble at the initial time of the decay process is there-
prefactors are not expected to be so. There is therefore rfore coinciding with that at the stationary state in forced
reason to expect that quantities such as the skewness, thans. If correlation functions are indeed dominated at small
kurtosis, and in fact the whole PDF of velocity increments orscales by statistically stationary solutions of the unforced
gradients are universal. equations then the field should not decay. Specifically, the
This is the same behavior as for the passive transport dield should not vary for times smaller than the large-scale
scalar and vector fieldssee Ref. 8 and references thejein eddy turnover timerg~ Lo /(v?)*?, with L, denoting the in-
For those systems both the existence and the origin of theegral scale of the flow. Those are the times when the effects

V. ANALOGIES WITH PASSIVE SCALAR DECAY
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FIG. 11. Top: Temporal decay of the second-order isotropic structure funcFIG. 12. The same curves as in Fig. 11 but for the anisotropic segtor (
tion S{2(r,t), rescaled by its value at=0. Herer =30, inside the inertial =4m=0).

range. The two curves refer to the time evolution of the structure function

starting from the forced-stationary velocity fiel(luares, set pand from

the randomly dephased velocity fiel@srcles, set B. Time is normalized by

the integral eddy turnover time. Notice that for set B we observe changes OMI' CONCLUSIONS

a time scale faster than the integral eddy turnover time. That is to be con- We hav r nted a numerical investiaation of the d
trasted with case A, where structure functions are strictly constant in time up € have presented a numerica esligation o e de-

to an integral eddy turover time. Bottom: The same curves but for theCay Of three-dimensional turbulence, both isotropic and an-

fourth-order structure function. isotropic. Concerning short-time decay, we have compared
the decay for two different sets of initial conditions, with and
without phase correlations. That gave some new hints on the
properties of universality of isotropic and anisotropic forced

of the forcing terms start to be felt. Note that this should hol tyrbulgnce. AS f(_)r long times, we have found that_ fluctue}-
ons in the inertial range become more and more isotropic.

at all scales, including the small ones whose turnover time%n the other hand. the anisotropic components become more
are much faster than,. The second set of numerical simu- . L pic comp . ;
and more intermittent, i.e., relatively intense anisotropic fluc-

lations (set B is meant to provide for a stringent test of ations become more and more orobable. The main issue
comparison. The initial conditions are the same as before b ! . . P ' L
ere was to investigate the effects of a bounded domain, i.e.,

for the random scrambling of the phases:;(k) N . . i
A X . situations where the integral scale cannot grow indefinitely.
—Pii(K)v,(K)exp(6(k)). Here,v denotes the Fourier trans- . )

: : - . . The decay process at long times is then governed by the
form and P; (k) is the incompressibility projector. In this getup at large scales. Anisotropies decay in time at a rate
way, the spectrum and its scaling are preserved but th . :

Y P g P Imost independent of the order of the moments and of the

wrong organization of the phases is expected to spoil the. . ) . I
statistical stationarity of the initial ensemble. As a conse- ind of anisotropic fluctuations. Projections of the PDFs on

guence, two different decays are expected for the two sets d\fiszhr etrrlltesis;)s;ter gtc?(r:s ;:;\grg'fgzriﬁm ::L?[emilgti r::n;i)trlc;;;;:tles
experiments. In particular, contrary to set A, set B shoul P 9

vary at small scales on times of the order of the eddy turr]pbwous further development of this study would be to inves-

over timesr,~r23. This is exactly what we found in the tigate the case where the integral scdlgg(t) vary in time.

numerical simulations, as can be seen in Fig. 11, where thAddltlonal intermittency in time might then be brought in by

: S . the anomalous scaling in the space variables of the correla-

temporal behavior of longitudinal structure functions of or- tion functions
der 2 and 4 is shown. The scaling of the contributions re- '
sponsible for the observed behavior at small scales are thus
forcing independent. ACKNOWLEDGMENTS

As for anisotropic fluctuations, we also found two very
different behaviors depending on the set of initial conditions
In Fig. 12 we show the case of the projectiﬁﬁﬂ)(r =60{)
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set A of initial conditions the function is indeed not decaying acknowleges the hospitality of the Observatoire de T4Co

up to a time of the order ofy. , .
To conclude, the data presented here support the corg-Azur’ where part of this work has been done.

clusion that nonlocal effects peculiar to the Navier—Stokes

dynamics do not spoil arguments on universality based ortG. K. Batchelor,The Theory of Homogeneous Turbuleri@ambridge
analogies with passive turbulent transport. The picture of University Press, Cambridge, 1953 _ _
the anomalous contributions to the correlation functions hav- \L,Jérzirscglr’;:srbg;c;}(;hee igggcy of A. N. Kolmogoi@ambridge Uni-
ing universal scaling exponents and nonuniversal prefactorsa s Monin and A. M. YaglomStatistical Fluid MechanicgMIT, Cam-

follows. bridge, 1975.

This research was supported by the EU under the Grant
Nos. HPRN-CT 2000-00162 “Non Ideal Turbulence” and
HPRN-CT-2002-00300 “Fluid Mechanical Stirring and Mix-
ing,” and by the INFM(Iniziativa di Calcolo Parallelp A.L.

Downloaded 01 Oct 2011 to 130.89.86.11. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



2112 Phys. Fluids, Vol. 15, No. 8, August 2003 Biferale et al.

4L. Skrbek and S. R. Stalp, “On the decay of homogeneous isotropic tur- chy and intermittency of scaling exponents in the anisotropic sectors,”
bulence,” Phys. Fluid42, 1997(2000. Phys. Rev. Lett86, 4831(2002).

5I. P. D. De Silva and H. J. S. Fernando, “Oscillating grids as a source of'°l. Arad, V. S. L'vov, and I. Procaccia, “Correlation functions in isotropic
nearly isotropic turbulence,” Phys. Fluids 2455(1994). and anisotropic turbulence: The role of the symmetry group,” Phys. Rev. E
6C. G. Speziale and P. Bernard, “The energy decay in self-preserving iso- 59, 6753(1999.

tropic turbulence revisited,” J. Fluid Mecl241, 645 (1992. 2035, Garg and Z. Warhaft, “On the small scale structure of simple shear
"U. Frisch and J. Bec, ies Houches 2000: New Trends in Turbulence flow,” Phys. Fluids10, 662 (1998.

edited by M. Lesieur, A. M. Yaglom, and F. Davi®pringer-EDP Sci- 2. Arad, B. Dhruva, S. Kurien, V. S. L'vov, |. Procaccia, and K. R.

ences, Les Ulis, 2001341 pp. Sreenivasan, “Extraction of anisotropic contributions in turbulent flows,”
8G. Falkovich, K. Gawezki, and M. Vergassola, “Particles and fields in ~ Phys. Rev. Lett81, 5330(1999.
fluid turbulence,” Rev. Mod. Phys73, 913 (200D. 22|, Arad, L. Biferale, 1. Mazzitelli, and I. Procaccia, “Disentangling scaling

°D. T. Son, “Turbulent decay of a passive scalar in the Batchelor limit: properties in anisotropic and inhomogeneous turbulence,” Phys. Rev. Lett.

Exact results from a quantum-mechanical approach,” Phys. Re¥9,E 82, 5040(1999.
R3811(1999. 233, Kurien and K. R. Sreenivasan, “Anisotropic scaling contributions to

19g. Balkovsky and A. Fouxon, “Universal long-time properties of Lagrang-  high-order structure functions in high-Reynolds-number turbulence,”
ian statistics in the Batchelor regime and their application to the passive Phys. Rev. B62, 2206(2000.

scalar problem,” Phys. Rev. BO, 4164(1999. 24, Biferale, I. Daumont, A. Lanotte, and F. Toschi, “Anomalous and di-
1G. Eyink and J. Xin, “Self-similar decay in the Kraichnan model of a mensional scaling in anisotropic turbulence,” Phys. Rev6@& 056306
passive scalar,” J. Stat. Phys00, 679 (2000. (2002.
12M. Chaves, G. Eyink, U. Frisch, and M. Vergassola, “Universal decay of 2°X. Shen and Z. Warhaft, “Longitudinal and transverse structure functions
scalar turbulence,” Phys. Rev. Le&6, 2305(2001). in sheared and unsheared wind-tunnel turbulence,” Phys. Fiidd870
M. Chertkov and V. Lebedev, “Decay of scalar turbulence revisited,” (2002.
nlin.CD/0209013(2002. 26| Biferale and M. Vergassola, “Isotropy vs anisotropy in small-scale

143, Sukhatme and R. T. Pierrehumbert, “Decay of passive scalars under theturbulence,” Phys. Fluid43, 2139(2001).
action of single scale smooth velocity fields in bounded two-dimensionaP’R. H. Kraichnan, “Anomalous scaling of a randomly advected passive
domains: From non-self-similar probability distribution functions to self- scalar,” Phys. Rev. Lett72, 1016(1994).

similar eigenmodes,” Phys. Rev. &, 056302(2002. 2 Lanotte and A. Mazzino, “Anisotropic nonperturbative zero modes for
15V, Borue and S. A. Orszag, “Self-similar decay of three-dimensional ho- passively advected magnetic fields,” Phys. Rev6® R3483(1999; |.

mogeneous turbulence with hyperviscosity,” Phys. Rev.5E R856 Arad, L. Biferale, and I. Procaccia, “Nonperturbative spectrum of anoma-

(1995. lous scaling exponents in the anisotropic sectors of passively advected
18H. Touil, J.-P. Bertoglio, and L. Shao, “The decay of turbulence in a magnetic fields,’ibid. 61, 2654(2000; I. Arad, V. S. L'vov, E. Podivilov,

bounded domain,” J. Turbulenc® 49 (2000. and |. Procaccia, “Anomalous scaling in the anisotropic sectors of the
173-0. Hooghoudt, D. Lohse, and F. Toschi, “Decaying and kicked turbu- Kraichnan model of passive scalar advectioijdl. 62, 4904 (2000.

lence in a shell model,” Phys. Fluids3, 2013(2001). 29, Arad and I. Procaccia, “Spectrum of anisotropic exponents in hydrody-

18, Biferale and F. Toschi, “Anisotropic homogeneous turbulence: Hierar- namics systems with pressure,” Phys. Re\6E 056302(2001).

Downloaded 01 Oct 2011 to 130.89.86.11. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



