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We present the results of a numerical investigation of three-dimensional decaying turbulence with
statistically homogeneous and anisotropic initial conditions. We show that at large times, in the
inertial range of scales:~i! isotropic velocity fluctuations decay self-similarly at an algebraic rate
which can be obtained by dimensional arguments;~ii ! the ratio of anisotropic to isotropic
fluctuations of a given intensity falls off in time as a power law, with an exponent approximately
independent of the strength of the fluctuation;~iii ! the decay of anisotropic fluctuations is not
self-similar, their statistics becoming more and more intermittent as time elapses. We also
investigate the early stages of the decay. The different short-time behavior observed in two
experiments differing by the phase organization of their initial conditions gives a new hunch on the
degree of universality of small-scale turbulence statistics, i.e., its independence of the conditions at
large scales. ©2003 American Institute of Physics.@DOI: 10.1063/1.1582859#
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I. INTRODUCTION

Decaying turbulence has attracted the attention of v
ous communities and is often considered in experimen
numerical, and theoretical investigations.1–3 It is in fact quite
common that even experiments aimed at studying station
properties of turbulence involve processes of decay. Imp
tant examples are provided by a turbulent flow behind a g
~see Ref. 4, and references therein! or the turbulent flow
created at the sudden stop of a grid periodically oscillat
within a bounded box.5 In the former case, turbulence
slowly decaying going farther and farther away from the g
and its characteristic scale becomes larger and larger~see
Ref. 4 for a thorough experimental investigation!. Whenever
there is sufficient separation between the grid-sizeL in and
the scale of the tunnel or the tankL0@L in , a series of inter-
esting phenomenological predictions can be derived. For
ample, the decay of the two-point velocity correlation fun
tion, for both isotropic and anisotropic flows, can be obtain
under the so-called self-preservation hypothesis~see Ref. 3,
Chapter XVI!. That posits the existence of rescaling fun

a!Author to whom all correspondence should be addressed; electronic
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tions allowing one to relate correlation functions at differe
spatial and temporal scales. By inserting this assumption
the equations of motion, asymptotic results can be obtai
both for the final viscosity-dominated regime and for t
intermediate asymptotics when nonlinear effects still play
important role.

The status of the self-preservation hypothesis and
properties of energy decay in unbounded flows are s
controversial.2–4,6 Systematic results on related problem
have been established recently, e.g., for nonlinear mode
Navier–Stokes equations as Burgers’ equation, see e.g.,
7, and for stochastic models of linear passive advectio8

both in unbounded9–12 and bounded domains.13,14

Here, we investigate the decay of three-dimensional
mogeneous and anisotropic turbulence by direct numer
simulations of the Navier–Stokes equations in a perio
box. Previous numerical studies have been limited to eit
homogeneous and isotropic turbulence15,16or to shell models
of the energy cascade.17

The initial conditions are taken from the stationary e
semble of a turbulent flow forced by a strongly anisotrop
input.18 The correlation length scale of the initial velocit
field L in is of the order of the size of the boxL

0
'L in .

il:
5 © 2003 American Institute of Physics
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In the first part of this paper, we shall try to answer t
following questions about the intermediate asymptotic
gime of nonlinear decay: How do global quantities, such
single-point velocity and vorticity correlations, decay? Wh
is the effect of the outer boundary on the decay law?
those quantities keep track of the initial anisotropy? As
the statistics of velocity differences within the inertial ran
of scales, is there a recovery of isotropy at large times? If
do strong fluctuations get isotropic at a faster/slower r
with respect to those of average intensity? Do isotropic
anisotropic fluctuations decay self-similarity? If not, d
strong fluctuations decay slower or faster than typical on

In the second part we study the early stages of the de
with the aim of establishing a link between the small-sc
velocity statistics in this phase and in the forced case. T
will allow us to argue in favor of an ‘‘exponents only’’ uni
versality scenario, for forced hydrodynamic turbulence.

II. NUMERICAL SETUP

A. The initial conditions

The initial conditions are taken from the stationary e
semble of a forced random Kolmogorov flow.18 For sake of
completeness, we recall here some of the statistical pro
ties of this forced turbulent flow. We consider the solutio
of the Navier–Stokes equations for an incompressible ve
ity field v,

] tv1~v"“ !v52“p1nDv, ~1!

in a three-dimensional periodic domain. To maintain a sta
tically stationary state Eq.~1! had to be supplemented by a
input term f acting at large scales. This force was strong
anisotropic: f5(0,0,f z(x)) with f z(x)5F1 cos@2px/Lx

1f1(t)#1F2cos@4px/Lx1f2(t)#, constant amplitudesF1,2 and
independent uniformly distributed,d-correlated in time ran-
dom phasesf1,2(t). This choice ensured the statistical h
mogeneity of the forcing and thus of the velocity field. W
simulated the forced random Kolmogorov flow at resoluti
2563 for time spans up to 70 eddy turnover times.18 The
viscous term was replaced by a second-order hypervisc
term 2nD2v. We stored 40 statistically independent co
figurations that here serve as initial conditions for the dec
ing runs.

B. Decaying runs

As turbulence decays, the effective Reynolds num
Re5vrmsL0 /n decreases, while the viscous characteris
scale and time increase. To speed up the numerical ti
marching, it is then convenient to use an adaptive sche
We calculate periodically the smallest eddy-field configu
tion is then dumped for off-line analysis at fixed multipl
$0,1,10,102,103,104,105,106%t0 of the initial large-scale eddy
turnover time t05L0 /v rms

t50. In Fig. 1 we show a two-
dimensional section in the planex–z of the velocity compo-
nentsvz andvx .

III. THE DECAY OF GLOBAL QUANTITIES

A first hint on the restoration of isotropy at large tim
can be obtained by the two-dimensional snapshots in Fig
Downloaded 01 Oct 2011 to 130.89.86.11. Redistribution subject to AIP lic
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1.

After a few eddy turnover times, it is evident that large-sc
fluctuations become more and more isotropic. To give
quantitative measure, we collect for each run the tempo
behavior of the following one-point quantities:

Ei j 5v i~ t !v j~ t !, ~2!

V i j 5v i~ t !v j~ t !. ~3!

An overbar denotes the average over space coordinates
whereas angular brackets will indicate the average over b
initial conditions and space. The symmetric matricesEi j (t)
and V i j (t) are then diagonalized at each time step and
eigenvaluesE1(t),E2(t),E3(t) and V1(t),V2(t),V3(t) are
extracted. Since the forcing points in a fixed direction tw
eigenvalues are almost degenerate, sayE2 and E3 , and
strongly differ from the first one,E1 . The typical decay of
Ei(t) and V i(t) for i 51, . . . ,3 isshown in Fig. 2. During
the self-similar stage,tP@10,106#, the energy eigenvalue
fall of as E$1,2,3%;t22, as expected for the decay in
bounded domain.4,15 The enstrophy eigenvalues,V$1,2,3% de-
cay ast212/5. The dimensional argument that captures the

FIG. 1. Two-dimensional sections of a typical velocity field at differe
times of decay. The three top images and the three bottoms are the
scale plots of the velocity components parallel and transverse to the d
tion of the forcing, respectively. Note in the upper row, the presence
anisotropic structures which decay as time elapses.

FIG. 2. Log–log plot of the eigenvalues of energy and vorticity matrices
time, expressed int0 units.
ense or copyright; see http://pof.aip.org/about/rights_and_permissions



o

n

tio

-
fy

is
Th
es

tr
ll

e

a
nc

th

n-
c-
s of

the
,
the

he
to
y

ty
ve

on
e-

tions

ime

sis

t
on

on

ary

rall

r
lf-

nv
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algebraic laws proceeds as follows. The energy decay is
tained by the energy balancedE(t)/dt52e(t), where we
estimateE;v rms

2 (t) and e(t);v rms
3 (t)/L0;E3/2(t)/L0 , and

obtainE(t);t22 ande(t);t23. As for the vorticity decay,
we haveV(t);(dhv)2/h2, whereh is the dissipative length
scale anddhv is the typical velocity difference at separatio
h. Assuming a Kolmogorov scalingdhv;e(t)1/3h1/3, and
recalling that for a second-order hyper-viscous dissipa
e(t);n(dhv)2/h4 we obtain h;t3/10 and dhv;t29/10,
whenceV(t);t212/5. We now focus on the process of re
covery of isotropy in terms of global quantities. We identi
two set of observables

D i j E~ t !5 K Ei~ t !2Ej~ t !

Ei~ t !1Ej~ t !L , ~4!

D i j V~ t !5 K V i~ t !2V j~ t !

V i~ t !1V j~ t !L , ~5!

which vanish for isotropic statistics. Their rate of decay
therefore a direct measurement of the return to isotropy.
energy matrixEi j is particularly sensitive to the large scal
while small-scale fluctuations are sampled byV i j . As can be
seen from Fig. 3, both large and small scales begin to iso
pize after roughly one eddy turnover time and become fu
isotropic~within statistical fluctuations! after 100 eddy turn-
over times. However, small scales show an overall degre
anisotropy much smaller than the large scales.

IV. THE DECAY OF SMALL-SCALE FLUCTUATIONS

A. The self-preservation hypothesis for
anisotropic decay

The observables which characterize the decay of sm
scale velocity fluctuations are the longitudinal structure fu
tions

S~n!~r,t !5^@~v~x1r,t !2v~x,t !!"r̂ #n&. ~6!

Those quantities depend not only on the modulus of
separationr but also on its orientationr̂ , since the velocity

FIG. 3. Log–log plot of the anisotropy content at the large scales@D12E(t),
D13E(t), top curves# and the small scales@D12V(t), D13V(t), bottom
curves# as a function of time, expressed int0 units. The large-scale~small-
scale! anisotropy content is defined as the mismatch between the eige
ues of the single-point velocity~vorticity! correlation.
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statistics is anisotropic. A method to systematically dise
tangle isotropic from anisotropic contributions in the stru
ture functions is based on the irreducible representation
the SO~3! group.19 In this approach, the observables~6! are
expanded on the complete basis of the eigenfunctions of
rotation operator. The SO~3! decomposition of scalar objects
such as structure functions, is obtained by projection on
spherical harmonicsYjm( r̂):

S~n!~r ,t !5(
j 50

`

(
m52 j

j

Sjm
~n!~r ,t !Yjm~ r̂!. ~7!

Here,Sjm
(n)(r ,t) denotes the projection of thenth order struc-

ture function on the (j ,m) SO~3! sector, withj andm label-
ing the total angular momentum and its projection in t
direction ẑ, respectively. Another equivalent possibility is
look at the SO~3! decomposition of the probability densit
function ~PDF! of the longitudinal velocity differences. In
this case, denoting byP(D,r ;t) the probability that the lon-
gitudinal incrementd rv[(v(r ,t)2v(0,t))"r̂ is equal toD,
we may projectP(D,r ;t) on the SO~3! basis:

P~D,r ;t !5(
j 50

`

(
m52 j

j

Pjm~r ,D;t !Yjm~ r̂!. ~8!

The projectionPjm(r ,D;t) plays the role of an ‘‘effective
PDF’’ for each single SO~3! sector.@It should be however
remarked that only the isotropic probability densi
P00(r ,D;t) has the property of being everywhere positi
and normalized to unity with respect to the weightr 2/(4p).]
Indeed, the projections of the longitudinal structure functi
on any sector (j ,m) can be reconstructed from the corr
spondingPjm(r ,D;t) by averaging over all possibleD’s:

Sjm
~n!~r ,t !5E dDDnPjm~r ,D;t !. ~9!

That establishes the equivalence between the decomposi
~7! and ~8!.

The main points broached here are about the long-t
properties of the SO~3! projections,Sjm

(n)(r ,t). A simple an-
isotropic generalization of the self-preservation hypothe
~see, e.g., Ref. 2! amounts to writing

Sjm
~n!~r ,t !5Vjm

~n!~ t ! f jm
~n!~r /L jm~ t !!. ~10!

Note thatVjm
(n)(t) takes explicitly into account the fact tha

large-scale properties may depend in a nontrivial way
both (j ,m) and the ordern. Furthermore,L jm(t) accounts for
the possibility that the characteristic length scale depend
the SO~3! sector.

In analogy with the observations made in the station
case18,20–26we postulate a scaling behavior

Sjm
~n!~r ,t !;ajm

~n!~ t !S r

L jm~ t ! D
z j

~n!

. ~11!

The time behavior is encoded in both the decay of the ove
intensity, accounted for by the prefactorsajm

(n)(t), and the
variation of the integral scalesL jm(t). The representation
~11! is the simplest one fitting the initial time statistics fo
t50 and agreeing with the evolution given by the se

al-
ense or copyright; see http://pof.aip.org/about/rights_and_permissions
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preservation hypothesis in the isotropic case. The power
behavior forf jm

(n)(r /L jm(t)) can be expected only in a time
dependent inertial range of scalesh(t)!r !(t). As for the
exponents appearing in~11!, their values are expectedly th
same as in the stationary case. In the latter situation it
been shown that they are organized hierarchically accord
to their angular sectorj:24

z0
~n!<z1

~n!<•••z j
~n!<••• . ~12!

Since the isotropic sector has the smallest exponent, at
given time and for a given intensity of the fluctuation~se-
lected by the value ofn! we have a recovery of isotrop
going to smaller and smaller scales. Yet, deviations of
scaling exponents from their dimensional expectations m
the recovery at small scales much slower than predicted
dimensional analysis.25,26 Moreover, there are quantitie
which should vanish in an isotropic field and actually blo
up as the scale decreases.25

Concerning the time evolution, it seems difficult to di
entangle the dependence due to the decay ofajm

(n)(t) from the
one due to the growth of the integral scaleL jm(t). Here, we
note only that the existence of running reference sc
L jm(t), introduces some nontrivial relations between the s
tial anomalous scaling and the decaying time properties,
those relations might be subject to experimental verificati
In our case, the fact that the initial condition has a charac
istic length scale comparable with the box size, simplifies
matter. Indeed we expect thatL jm

(t)'L0 , and the decay is due
only to the fall off of the global intensityajm

(n)(t). Unfortu-
nately, a shortcoming is that the width of the inertial ran
L0 /h(t) shrinks monotonically in time, thereby limiting th
possibility of precise quantitative statements.

B. Numerical results

An overall view of the SO~3! projections at all resolved
scales and for all measured decay times is presented in F
for n52 and the isotropic, (j 50,m50), sector. The same

FIG. 4. Log–log plot of the isotropic component of the second-or
projection S00

(2)(r ,t) vs r for seven decay times,t50,t0 ,10t0 ,
102t0 ,103t0 ,104t0,105t0 ~from top to bottom!. The two straight lines cor-
respond to the inertial range slopeS00

(2)(r ,t);r 0.7 ~top! and to the smooth
differentiable slopeS00

(2)(r ,t);r 2 ~bottom!.
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quantities are presented in Fig. 5 for the most intense an
tropic sector (j 54,m50).

We notice that as time elapses the dissipative ra
erodes the inertial one, as a consequence of the growth o
Kolmogorov scaleh(t). We notice in passing that the tw
curves corresponding tot50 andt5t0 almost coincide, i.e.,
even small scales are unchanged despite their typical e
turnover times being much smaller thant0 . This finding has
some consequences that will be discussed at length in Se
A similar qualitative trend is displayed by the most inten
anisotropic sector, (j 54,m50) shown in Fig. 5, even
though oscillations at small scales spoil significantly t
scaling properties at small separationsr.

In order to assess the relative importance of isotro
and anisotropic contributions, we plot in Fig. 6 the SO~3!
projections of some (j ,m) sectors for the ordern52 and a
fixed time, t5t0 . Figure 7 shows the same quantities as
Fig. 6 but at a later time,t5100t0 . Although the small-scale
behavior of anisotropic sectors readily becomes rather no
the various contributions are organized hierarchically and
isotropic contribution is dominant, as expected.

Let us now analyze quantitatively the time decay of t
structure functions at a fixed separation. In Fig. 8 we sh

r
FIG. 5. The same quantities as in Fig. 4 but for the anisotropic sectj
54,m50, i.e., log–log plot ofS40

(2)(r ,t) vs r.

FIG. 6. Log–log plot ofSjm
(2)(r ,t) vs t5t0 . Symbols refer to (j 50,m50)

~top! and to (j 54,m50) ~bottom!.
ense or copyright; see http://pof.aip.org/about/rights_and_permissions
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the long-time decay of the second- and fourth-order m
ments on the isotropic and an anisotropic sector atr 580,
within the inertial range.

We observe that the anisotropic sectors decay faster
the isotropic one, i.e., at a fixed scale there is a tende
toward the recovery of isotropy at large times. The relat
rate of decay can be quantified by the observable

P jm
~n!~r ,t ![

Sjm
~n!~r ,t !

S0,0
~n!~r ,t !

;t2x j
~n!

. ~13!

In Fig. 9 we showP jm
(n)(r ,t) at r 580 for structure func-

tions of ordern52, 4, 6 and for~4,0!, one of the most in-
tense anisotropic sectors. In the inset we also plot the s
quantities at the smaller scaler 540. All anisotropic sectors
for all measured structure functions, decay faster than
isotropic one. The measured slope in the decay is ab
x j

(n);0.3 almost independent, within the statistical errors,
the ordern. Note that these results agree with the sim
picture that the time-dependence in~11! is entirely carried by
the prefactorsajm

(n)(t) and the value of the integral scale
L jm(t) is saturated at the size of the box. Indeed, by ass

FIG. 7. The same quantities as in Fig. 6 but at the later timet5102t0 . The
sectors shown are (j 50,m50) and (j 54,m50) ~top to bottom!, as in
Fig. 6.

FIG. 8. Log–log plot of the second-order momentSjm
(2)(r 580,t) for the

isotropic sector (j 50,m50) and the anisotropic sector (j 54,m50), vs
time, for a separationr in the inertial range. In the inset we plot the sam
curves for the fourth-order momentSjm

(4)(r 580,t).
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ing that large-scale fluctuations are almost Gaussian we h
that the leading time-dependency ofajm

(2n) is given by
ajm

(2)a00
(2n22) . For the isotropic sector,a00

(2n);(a00
(2))n, and

plugging that in ~13!, we get P jm
(n)(r ,t);ajm

(2)(t)/a00
(2)(t)

;t2x* with x* ;0.3(60.1) independent ofn. The quality
of our data is insufficient to detect possible residual effe
due toL jm(t), which would makex j

(n) depend onn and j
because of spatial intermittency.

The interesting fact that we measure decay propertie
the anisotropic sectors which are almost independent of
order of the structure functions indicate that we must exp
some nontrivial time dependence in the shape of the PD
Pjm(r ,D;t) for j .0. The most accurate way to probe th
rescaling properties ofPjm(r ,D;t) in time is to compute the
generalized flatness:

K jm
~n!~r ,t ![

Sjm
~n!~r ,t !

~Sjm
~2!~r ,t !!n/2;ta j

~n!
. ~14!

Were the PDF projection in the (j ,m) sector self-similar for
t@t0 , thenK jm

(n)(r ,t) would tend to constant values. This
not the case for anisotropic fluctuations, as is shown in F
10. The curvesK jm

(n)(r ,t) are collected for two fixed inertia
range separations,r 580 andr 540 ~inset!, for two different
orders,n54,6, and for both the isotropic and one of the mo
intense anisotropic sectors (j 54,m50). The isotropic flat-
ness tends toward a constant value for larget. Conversely, its
anisotropic counterparts are monotonically increasing witt,
indicating a tendency for the anisotropic fluctuations to b
come more and more intermittent as time elapses. A con
quence of the monotonic increase of intermittency for la
times is the impossibility to find a rescaling function,g(t,r ),
which makes the rescaled PDFg(t,r )Pjm(r ,D/g(t,r );t)
time-independent at large times. Let us notice that the
havior in Fig. 10 is in qualitative agreement with the obs
vation previously made that all time dependencies can
accounted by the prefactorsajm

(n)(t). Indeed, assuming tha
the length scalesL jm(t) have saturated and that the larg

FIG. 9. Hierarchal organization of anisotropic fluctuations at long tim
Log–log plot of the anisotropic projections normalized by the correspond
isotropic projection~see the text!, at two fixed scalesr 580 and r 540
~inset! for n52, 4, 6 in the anisotropic sectorj 54,m50. Symbols read as
follows: P40

(2) ~closed box!; P40
(4) ~star!; P40

(6) ~open box!. The straight line is
t2x* with x* ;0.3. Same symbols in the inset.
ense or copyright; see http://pof.aip.org/about/rights_and_permissions
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scale PDF is close to Gaussian, it is easy to work out
prediction K jm

(n)(r ,t);t2x* (12n/2), i.e., aj
(n)5x* (n/221).

We conclude this section with a brief summary of the resu
We have found that isotropic fluctuations persist longer th
anisotropic ones, i.e., there is a time-recovery, albeit slo
than predicted by dimensional arguments, of isotropy dur
the decay process. We have also found that isotropic fluc
tions decay in an almost self-similar way while the anis
tropic ones become more and more intermittent. Qual
tively, velocity configurations get more isotropic b
anisotropic fluctuations become, in relative terms, m
‘‘spiky’’ than the isotropic ones as time elapses.

V. ANALOGIES WITH PASSIVE SCALAR DECAY

Let us now move to the properties of decay at sh
times (t!t0). Universality of small-scale forced turbulenc
is at the forefront of both theoretical and experimental inv
tigation of real turbulent flows.2 The problem is to identify
those statistical properties which are robust against cha
of the large-scale physics, that is against changes in
boundary conditions and the forcing mechanisms. Our g
here is to relate the small-scale universal properties of for
turbulent statistics to those of short-time decay for an
semble of initial configurations. An immediate remark is th
one cannot expect an universal behavior for all statist
observables as the very existence of anomalous scaling i
signature of the memory of the boundaries and/or the ex
nal forcing throughout all the scales. Indeed, the main m
sage we want to convey here is that only the scaling of b
isotropic and anisotropic small-scale fluctuations is univ
sal, at least for forcings concentrated at large scales.
prefactors are not expected to be so. There is therefore
reason to expect that quantities such as the skewness
kurtosis, and in fact the whole PDF of velocity increments
gradients are universal.

This is the same behavior as for the passive transpo
scalar and vector fields~see Ref. 8 and references therei!.
For those systems both the existence and the origin of

FIG. 10. Log–log plot of the generalized flatness,K jm
(n)(r ,t) of order n

54, 6 for both the isotropic~two bottom curves!, and the anisotropic secto
( j 54,m50) ~two top curves! at r 580, and as a function of time. In th
inset we plot the same quantities, in the same order, at a different ine
range scale,r 540.
Downloaded 01 Oct 2011 to 130.89.86.11. Redistribution subject to AIP lic
e

.
n
er
g
a-
-
-

e

t

-

es
he
al
d
-
t
l

the
r-
s-
th
r-
he
no
the
r

of

e

observed anomalous scaling laws have been understood
even calculated analytically for some instances in the spe
class of Kraichnan flows.27 Here, it is worth stressing that th
universal character of scaling exponents is shared by b
isotropic and anisotropic fluctuations.28

For the Navier–Stokes case we have a huge amoun
experimental and numerical indications that the velocity fi
shows anomalous scaling,2 suggesting the existence of ph
nomena ‘‘similar’’ to those of the linear case. However, ca
rying over the analytical knowledge developed for linear h
drodynamical problems involves some nontrivial missi
steps. For the Navier–Stokes dynamics, linear equation
motion surface again but at the functional level of the wh
set of correlation functions. In a schematic form:

] tC
~n!5G~n11!C~n11!1nD ~n!C~n!1F ~n!, ~15!

whereG (n11) is the integro-differential linear operator com
ing from the inertial and pressure terms andC(n11) is a
shorthand notation for a generic (n11)-point correlator. The
molecular viscosity is denoted byn and D (n) is the linear
operator describing dissipative effects. Finally,F (n) is the
correlator involving increments of the large-scale forcingf
and of the velocity field. Balancing inertial and injectio
terms gives dimensional scaling, and anomalously sca
terms must therefore have a different source. A natural p
sibility is that a mechanism similar to the one identified
linear transport problems is at work in the Navier–Stok
case as well. The anomalous contributions to the correla
would then be associated with statistically stationary so
tions of the unforced equations~15!. The scaling exponents
would a fortiori be independent of the forcing and thus un
versal. As for the prefactors, the anomalous scaling ex
nents are positive and thus the anomalous contributions g
at infinity. They should then be matched at the large sca
with the contributions coming from the forcing to ensure th
the resulting combination vanishes at infinity, as required
correlation functions. Our aim here is not to prove the p
vious points but rather to check over the most obvious ca
the Navier–Stokes equations being integro-differential, n
local contributions might directly couple inertial and inje
tion scales and spoil the argument. This effect might be p
ticularly relevant for anisotropic fluctuations where infrar
divergences may appear in the pressure integrals.29

In order to investigate the previous point, we perform
two sets of numerical experiments in decay. The first set
is of the same kind as in Sec. IV, i.e., we integrated
unforced Navier–Stokes equations~1! with initial conditions
picked from an ensemble obtained from a forced anisotro
stationary run. Statistical observables are measured as aen-
sembleaverage over the different initial conditions,^d&ens.
The ensemble at the initial time of the decay process is th
fore coinciding with that at the stationary state in forc
runs. If correlation functions are indeed dominated at sm
scales by statistically stationary solutions of the unforc
equations then the field should not decay. Specifically,
field should not vary for times smaller than the large-sc
eddy turnover timet0;L0 /^v2&1/2, with L0 denoting the in-
tegral scale of the flow. Those are the times when the effe
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2111Phys. Fluids, Vol. 15, No. 8, August 2003 The decay of homogeneous anisotropic turbulence
of the forcing terms start to be felt. Note that this should h
at all scales, including the small ones whose turnover tim
are much faster thant0 . The second set of numerical simu
lations ~set B! is meant to provide for a stringent test
comparison. The initial conditions are the same as before
for the random scrambling of the phases:v̂ i(k)
→Pil (k) v̂ l(k)exp(iul(k)). Here,v̂ denotes the Fourier trans
form and Pil (k) is the incompressibility projector. In thi
way, the spectrum and its scaling are preserved but
wrong organization of the phases is expected to spoil
statistical stationarity of the initial ensemble. As a con
quence, two different decays are expected for the two se
experiments. In particular, contrary to set A, set B sho
vary at small scales on times of the order of the eddy tu
over timest r;r 2/3. This is exactly what we found in the
numerical simulations, as can be seen in Fig. 11, where
temporal behavior of longitudinal structure functions of o
der 2 and 4 is shown. The scaling of the contributions
sponsible for the observed behavior at small scales are
forcing independent.

As for anisotropic fluctuations, we also found two ve
different behaviors depending on the set of initial conditio
In Fig. 12 we show the case of the projectionSjm

(n)(r 560,t)
for the anisotropic sectorj 54,m50. As it can be seen, fo
set A of initial conditions the function is indeed not decayi
up to a time of the order oft0 .

To conclude, the data presented here support the
clusion that nonlocal effects peculiar to the Navier–Sto
dynamics do not spoil arguments on universality based
analogies with passive turbulent transport. The picture
the anomalous contributions to the correlation functions h
ing universal scaling exponents and nonuniversal prefac
follows.

FIG. 11. Top: Temporal decay of the second-order isotropic structure f
tion S00

(2)(r ,t), rescaled by its value att50. Herer 530, inside the inertial
range. The two curves refer to the time evolution of the structure func
starting from the forced-stationary velocity fields~squares, set A! and from
the randomly dephased velocity fields~circles, set B!. Time is normalized by
the integral eddy turnover time. Notice that for set B we observe change
a time scale faster than the integral eddy turnover time. That is to be
trasted with case A, where structure functions are strictly constant in tim
to an integral eddy turnover time. Bottom: The same curves but for
fourth-order structure function.
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VI. CONCLUSIONS

We have presented a numerical investigation of the
cay of three-dimensional turbulence, both isotropic and
isotropic. Concerning short-time decay, we have compa
the decay for two different sets of initial conditions, with an
without phase correlations. That gave some new hints on
properties of universality of isotropic and anisotropic forc
turbulence. As for long times, we have found that fluctu
tions in the inertial range become more and more isotro
On the other hand, the anisotropic components become m
and more intermittent, i.e., relatively intense anisotropic flu
tuations become more and more probable. The main is
here was to investigate the effects of a bounded domain,
situations where the integral scale cannot grow indefinite
The decay process at long times is then governed by
setup at large scales. Anisotropies decay in time at a
almost independent of the order of the moments and of
kind of anisotropic fluctuations. Projections of the PDFs
different SO~3! sectors show different intermittent propertie
~with the anisotropic sectors being more intermittent!. An
obvious further development of this study would be to inve
tigate the case where the integral scalesL jm(t) vary in time.
Additional intermittency in time might then be brought in b
the anomalous scaling in the space variables of the corr
tion functions.
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