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Abstract

We present a detailed numerical study ofanisotropicstatistical fluctuations in stationary,homogeneousturbulent flows.
We address both problems of intermittency in anisotropic sectors, and the relative importance of isotropic and an
fluctuations at different scales on a direct numerical simulation of a three-dimensionalrandomKolmogorov flow.

We review a simple argument to predict the dimensional scaling for all velocity moments, in all anisotropic sectors. W
a previous analysis made on the same data set (Phys. Rev. Lett. 86 (2001) 4831) presenting (i) the statistical behavior
and co-spectra; (ii) high-order longitudinal structure functions; (iii) anisotropic fluctuations of the full tensorial two-
velocity correlations. Among the many issues discussed, we stress the problem of thereturn-to-isotropy, the universality of
anisotropic fluctuations and the foliation mechanism. A newa priori test on sub-grid quantities used in Large-Eddy Simulati
is also presented.
 2003 Elsevier SAS. All rights reserved.
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1. Introduction

Kolmogorov 1941 theory assumes local homogeneity and local isotropy: the memory of large scale anisotropic
and/or boundary conditions is supposed to be lostduring the process of energy transfer toward small scales. The overall
is a local recovery of isotropy and of universality in the statistics of turbulent fluctuations at scales small enough and a
Reynolds numbers. In recent years, a quantitativeinvestigation of return-to-isotropy in experimentalanisotropic turbulence
[2–6], numerical homogeneous shear flows [7,8] and numerical channel flows [9], questioned the main Kolmogorov paradig
speaking explicitly ofpersistence of anisotropies. A huge amount of theoretical work has been done, starting from
in order to understand how to link the rotational invariance of Navier–Stokes equations with the properties of ani
velocity correlations. Quantifying anisotropic effects in small scale turbulence is both atheoreticalchallenge and a very actu
practical problem, opening the question whether any realistic turbulent flow can ever possess statistical features ind
of the – generally anisotropic – boundary and forcing effects. Neglected anisotropic effects have also been propo
at the origin of different statistical properties of transversal and longitudinal velocity fluctuations [11]. The importa
properly disentangling isotropic and anisotropic fluctuations has been demonstrated in the analysis of intermittency in
flow turbulence [12]. Investigating and developing proper small scales models for anisotropic turbulence is also a fi
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question appearing in all Large-Eddy Simulations (LES) of turbulent flows close to rigid walls or affected by anisotropic body
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Important steps forward in the analysis of anisotropic fluctuations have recently been made in the context of K

models [14–16], i.e., passive scalars/vectors advected by isotropic, Gaussian and white-in-time velocity fields with la
anisotropic forcing [17–21]. In those models, anomalous scaling for the isotropic and anisotropic fluctuations of the
fields arises as the result of a non-trivial structure of the advecting operator. First, scaling exponents are found to be
they do not depend on the actual value of forcing and boundary conditions. Second, they are fullycharacterized by the order o
the anisotropy: correlation functions in different sectors of the rotational group in 3 dimensions, SO(3), show different scaling
properties. Non-universal effects are felt only in coefficients multiplying the power laws, when imposing the matching with no
universal boundary conditions at large scales. Similar questions, like the existence of scaling laws in the anisotropic sectors, or
the values of the scaling exponents and their universal character, are at the forefront of experimental, numerical and t
research of real turbulent flows. Notwithstanding the diffuse interest in the problem, only quite recently indirect experime
investigations of scaling in different sectors [22,3,6] and direct decomposition in numerical simulations [12,23,9] ha
attempted.

The situation is still under debate:evidences of a clear improving of scaling laws by isolating the isotropic sector have be
reported, supporting the idea that the undecomposed correlations are strongly affected by the superposition of isotropic an
anisotropic fluctuations [12]. Experimental evidences of the existence of a scaling law also in anisotropic sectors h
reported [22,3,6]. The value of the anisotropic leading exponent for the second order correlation function is found to
to the dimensional estimateξani

2 = 4/3 [24]. Most of the experimental investigations are flawed by the contemporary pre
of anisotropies and strong non-homogeneities; in some specific cases the meaning of scaling can however be re-interpreted (s
for instance [25–27] for a detailed analysis of strongly non-homogeneous and/or shear-dominated flows).

This paper is intended to give a comprehensive exposition of some recent numerical results concerning the statistics o
velocity field, when energy is injected into the system via a strong anisotropichomogeneousforcing, confined to large scales [1
We performed numerical investigations of a 3D random Kolmogorov flow (RKF): the resulting velocity field was strong
anisotropic but statistically homogeneous. For the RKF, previous analyses have been reported in [1,28]. Here, we pres
extended study, by providing further information on anisotropies in both real and Fourier spaces. We present a first syste
attempt to validate one of the most popular LES model on the basis of its performances on purely anisotropic co
functions. We also present direct measurements of isotropic and anisotropic sectors of even and odd structure function
sixth order. We review in detail a dimensional prediction able to extend Lumley’s argument for any moment of the veloc
and for any kind of anisotropic fluctuation [28]. All results point toward the existence of anisotropic universal anomalous
i.e., anisotropic structure functions possess scaling exponents which deviate from their dimensional estimate. We pre
attempt to exactly decompose all tensorial components of the second order velocity correlation,〈vi (x + r)vj (x)〉, into their
isotropic and anisotropic components and we discuss the puzzle of the – supposed – different scaling between longitu
transversal isotropic correlation functions [29,30,5].

The paper is organized as follows. In Section 2, we briefly review the dynamical importance of rotational invaria
the Navier–Stokes equations and its consequences on thefoliation of the correlation function hierarchy [10]. In Section 3 w
present the numerical measurements for isotropic and anisotropic fluctuations in both real and Fourier spaces for the RK
well as a consistent dimensional argument for the scaling of any anisotropic fluctuations. We also discuss how to a
return to isotropy in a quantitative way using the decomposition in the irreducible representations of the group of rotat
dimensions, SO(3). We present the first SO(3) decomposition of the full tensorial structure of two-point velocity correlatio
Section 4 is devoted to somea priori tests of a popular LES model, the so-called nonlinear model, on the database of the r
Kolmogorov flow.

2. SO(3) invariance and foliation of correlation hierarchy

In this section, we review recent results focusing on the dynamical and statistical consequences of invariance unde
of the advective term of the Navier–Stokes equations. In particular, we discuss how the above property allows one to
a systematic tool able to quantify in an exact way the degree of anisotropy at each scale. The typical questions add
(i) how to quantify the tendency toward isotropy in hydro-dynamical problems, (ii) how to measure persistence of anis
(if any), (iii) how to quantify the robustness (read universality) of anisotropic fluctuations at small scales.

The above issues have a number of theoretical and applied interests. In many realistic turbulent problems where a
enters in the game, it is relevant to disentangle universal from non-universal aspects, as well as leading from su
scaling behaviors. The starting point is the observation that the Navier–Stokes equations, neglecting the non-universal
conditions and the external forcing, are invariant under spatial rotations. A natural way to understand the inertial range
properties is to suppose that both boundary conditions and forcing give a dominant contribution only at large scales, while th
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transfer of fluctuations from large to small scales in the bulk is driven by the inertial – rotational invariant – terms. This is
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group.
Let us fix the idea by writing the Navier–Stokes equation for the two-points homogeneous structure function:Sαβ(r) ≡

〈(vα(r) − vα(0))(vβ (r) − vβ(0))〉. It is simple to derive the equation for this observable:

∂tS
αβ(r) = −∂µSαβµ(r) + ∂βPα(r) + ν∂2Sαβ(r) − Fαβ(r), (1)

where we have introduced, with obvious notation, the third order structure functionSαβµ(r); the velocity–pressure
correlation function,Pβ(r) ≡ 〈(p(r) − p(−r))vβ(0)〉 and the forcing-velocity correlation function,Fαβ(r) ≡ 〈fα(r)vβ(0) +
fα(0)vβ (r)〉 + (α ⇔ β). In Eq. (1), only the forcing termFαβ(r), and the boundary conditions may break the rotatio
invariance. Both of them are large scale quantities, and we may safely imagine that for scales smaller than the integraL0,
Eq. (1) recovers full rotational invariance in the bulk, with forcing induced terms appearing only as subdominant contri

Then, we can project the rotational invariant part of (1) on the irreducible representations of the SO(3) group and obtain a
set of dynamical equations for each projection, in each separate sector [10]. More explicitly, let us recall that the decompositio
of Sαβ(r) in terms of theeigenfunctionof the rotational operator is made by a set of functions labelled with the u
indicesj = 0,1, . . . and m = −j, . . . ,+j , corresponding to the total angular momentum and to the projection of the
angular momentum in an arbitrary direction, respectively. For scalars, as for example the longitudinal structure f
S2(r) ≡ 〈[(v(r) − v(0)) · r̂]2〉, the (j,m) set of basis functions are the spherical harmonics,Yjm(r̂). For a genericp-th order
tensor, another indexq is necessary, to label different irreducible representations for eachj sector [10].

It is easy to show that there are onlyq = 1, . . . ,6 irreducible representations of the SO(3) group for the space of two-indice
symmetric tensors, as it isSαβ(r) (see Appendix). The second order structure function can be exactly decomposed as:

Sαβ(r) ≡
6∑

q=1

∞∑
j=0

+j∑
m=−j

S(2)
qjm(r)B

αβ
qjm(r̂), (2)

where theBαβ
qjm

(r̂) are tensors defined on the unit sphere which can be seen as a generalization of the spherical h
to the tensorial case. The superscript “2” in the coefficient of (2) reflects the order of the analyzed correlation funct
importance of decomposition (2) stems from the fact that one can exactly disentangle, for each anisotropic projec
statistical dependency on the reference scale,r .

The physics of isotropic and anisotropic fluctuations can now be analyzed in a systematic and quantitative way by stu
the projection coefficientsSqjm(r). It is important to realize that these obey separate dynamical equations within each(j,m)

sector. Indeed by applying the same decomposition to all correlations (except for the forcing) appearing in (1), and
that all derivative operators are rotational invariant, we obtain thefoliation of the dynamical equation for any correlation,
each given sector(j,m) of the rotational group. Only projections within the same(j,m) sector are coupled [10]. Thefoliation
is a consequence of the fact that the unforced Navier–Stokes equations contain only rotationally invariant operators a
linearity of the correlation function hierarchy. Moreover, in the limit of infinite Reynolds numbers, the Navier–Stokes eq
become scaling invariant, sector by sector. It is quite natural to expect the existence of scaling laws characterizing each s
separately:

S(2)
qjm

(r) ∼ c
(2)
qjm

rξj (2), (3)

where the coefficientsc(2)
qjm are fixed by imposing the matching with the large-scale physics. This result can be e

demonstrated in models for passive advection of scalars and vectors [18,20,21], but can only be argued for the Navi
case on the basis of the above mentioned properties of rotational invariance of the operators, and linearity of the hiera
foliation of the scaling behavior has of course two important consequences. First, the undecomposed observable is built up
contributions (isotropic and anisotropic) having different scaling laws, i.e., the undecomposed, raw correlations do no

Sαβ(r) ∼
6∑

q=1

[
c
(2)
q00r

ξ0(2)B
αβ
q00(r̂) + c

(2)
q10r

ξ1(2)B
αβ
q10(r̂) + · · ·]. (4)

Decomposition similar to (2) can be written for the most generalp-th order tensor,Sα1···αp (r) ≡ 〈(vα1(r)−vα1(0)) · · · (vαp (r)−
vαp (0))〉 made ofp velocity differences at separationr :

Sα1···αp (r) ∼
∑
q

∑
jm

S(p)
qjm(r)B

α1···αp

qjm (r̂). (5)
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Scaling is recovered either looking at the contributions in separate sectors,S(p)
qjm

(r) ∼ rξj (p), or looking at scales small enough
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This is connected to the important question ofrecovering of isotropy. Such a recovering may exist only if the isotrop

scaling exponent is always smaller than all anisotropic ones for any given orderp of the decomposed correlation functio
ξj=0(p) < ξj (p) for all j . Moreover, a hierarchy among the different anisotropic exponents is naturally expected,within any
given orderp:

ξj=0(p) � ξj=1(p) � ξj=2(p) < · · · . (6)

Another important consequence of (5) is that undecomposed objects are stronglynon-universal, because the coefficientsc(p)
qjm,

giving the overall strength of each sector depend obviously on the large-scale set-up. Only scaling exponentsξj (p) may be
assumed to enjoy some robustness properties. In addition, scaling exponents are supposed to be independent of(m,q)

indices. For the Navier–Stokes problem, there are no rigorous statements: again, hints come from analytical results
the class of linear models previously mentioned. In particular, the independence from them index is given by the arbitrarines
in defining the orientation of the reference axis in 3D space.

The dependence/independence from theq index, i.e., from the set of irreducible representations used to decompos
observables in each(j,m) sector, is on the other hand much less trivial and has interesting consequences. A dependence o
q index would weaken the wholefoliation mechanism, which is based on the idea that only properties invariant under rot
are relevant for the inertial range statistics, and not the set of eigenfunctions (with the same rotational properties
to decompose the observables. For example, the only possible way to support, theoretically, the observed different sca
between transversal and longitudinal high-order structure functions in isotropic statistics [29,30,5] would be to admi
the isotropic sector, projections with differentq-indices have different scaling properties. This sounds quite unlikely. A m
simpler scenario is to imagine that the observed differences are due to spurious contaminations from sub-leading a
sectors not completely decayed, yet: that is, such differences would become smaller and smaller by going to larger a
Reynolds numbers.

In the following we first review a simple argument to predict thedimensionalvalues of scaling exponents, of any orderp

and for any sectorj . Then, we present a detailed analysis of the numerical data set issuing from the numerical simula
homogeneous random Kolmogorov flow with resolution 2563. In particular, we discuss the measurements of scaling expon
in (j,m) sector up toj = 6, for structure functions up to the sixth order. This enables us to assess (i) the existen
hierarchical organization of scaling exponents (6); (ii) to establish in a quantitative way the rate of recovery of isotropy, a
(iii) to support the statement that anisotropic fluctuations are anomalous, i.e., do not follow the dimensional prediction mad
in Section 3.1. Finally, in Section 3.5 we discuss theq dependency of the SO(3) decomposition by performing the who
decomposition of the second rank tensorSαβ(r) up toj = 2. In the latter case, we also consider the problem of longitudinavs.
transversal scaling.

3. Anisotropic scaling

3.1. A dimensional estimate for the scaling in thej �= 0 sectors

To give an assessment of the normal or anomalous behavior of anisotropic fluctuations, we first need an estima
dimensional values of the exponentsξj (p). In [28], a new dimensional argument for the scaling exponents of the stru
functions of any order, and any sector was introduced. The argument is based on the idea that large-scale energy pum
boundary conditions are such as to enforce a large-scale anisotropic driving velocity fieldU . A prediction for intermediate
(small) scale anisotropic fluctuations may then be obtained by studying the influence of the large-scaleU on the inertial range
By decomposing the velocity field,v = u + U , in a small scale componentu, and a large-scale anisotropic componentU , we
have the following equation foru:

∂tuα + uβ∂βuα + Uβ∂βuα + uβ∂βUα = −∂αp + ν�uα. (7)

The major effect of the large-scale field is given by the instantaneous shear,∂βUα , which acts as an anisotropic forcing term
small scales.

A matching argument can be built as follows. Let us first consider the equation of motion for two point qua
〈uδ(x

′)uα(x)〉 in the stationary regime. We may balance inertial and shear-induced contributions:〈
uδ(x

′)uβ(x)∂βuα(x)
〉 ∼ 〈

∂µUα(x)uδ(x
′)uµ(x)

〉
, (8)

which allows for a dimensional estimate of the anisotropic components of the LHS, in terms of the RHS shear intensi
the〈uu〉 isotropic part. Similarly for three point quantities we have (neglecting tensorial notation):〈uuu∂u〉 ∼ 〈∂Uuuu〉, which
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can be generalized to any order velocity correlation. The shear term is a large-scale “slow” quantity and therefore, as far as
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scaling properties are concerned, we may safely estimate:〈∂µUα(x)uδ(x )uµ(x)〉 ∼ Σαµ〈uδ(x )uµ(x)〉.
The 3× 3 matrix Σαβ is associated to the combined probability to have a given shear and a given small scale v

configuration. TheΣαβ tensor brings angular momentum only up toj = 2. One may therefore argue, by using sim
composition of angular momenta, (j = 2⊗ j − 2), the following dimensional matching:

S(p)
j

(r) ∼ r|Σ | · S(p−1)
j−2 (r). (9)

HereS(p)
j

(r) is a shorthand notation, neglecting further possible dependencies onq andm indices, for the projection on th

j -th sector of thep-th order correlation functionS(p)
qjm(r) introduced in the previous section. In (9) with|Σ | we denote the

typical intensity of the shear termΣαβ in the j = 2 sector. Due to the simple level of the reasoning, we cannot make
detailed statement about possible dependencies on theq andm indices. We limit to discuss, therefore, the connections betw
differentj sectors.

For instance, the leading behavior of thej = 2 anisotropic sector of the 3rd order correlation function in the LHS of
is given by the coupling between thej = 2 components ofΣαβ , and thej = 0 sector of the 2nd order velocity correlation

the RHS of (9):S(3)
j=2(r) ∼ r|Σ |S(2)

j=0(r) ∼ rξ2
d (3). By using the same argument and considering that now we know the sc

of the sectorsj = 0,2 of the third order correlation, we may estimate the scaling exponents of the fourth order correla
j = 2,4. The procedure is easily extended to all orders, leading to the following expression:

ξ
j
d
(p) = p + j

3
, (10)

which has been obtained by neglecting the intermittency effects in the isotropic sector. Let us notice that expres
coincides with Lumley prediction [24], done forp = 2 and j = 2, i.e., it generalizes Lumley’s argument to any kind
anisotropic fluctuations and any order of velocity correlation functions. Let us also notice that prediction (10) differ fr
one made in [31], where for simplicity the tensorial properties of all velocity and forcing correlations functions were neg

3.2. Validation of numerical simulations

We performed a direct numerical simulation of a 3D fully periodic, incompressible flow with anisotropic large
energy injection. The analytic expression of the forcing isf = (0,0, fz(x)), with fz(x) = F1 cos[2πx/Lx + φ1(t)] +
F2 cos[4πx/Lx + φ2(t)], with constant amplitudesF{1,2} and independent, uniformly distributed,δ-correlated in time random

phasesφ{1,2}(t). The random phases lead to homogeneous statistics. We studied the RKF at resolution 2563, and collected up to
70 eddy turn over times. Such long averaging is necessary because, as in any strongly anisotropic flow, we observe the
of persistent large-scale structures inducing strong oscillations of the mean energy evolution. The viscous term was repl
by a second-order hyper-viscosity,−ν∆2v. Time-marching used a (second-order) slaved Adams–Bashforth scheme. T
Reynolds number isReλ ∼ 100. We have a high degree of homogeneity (deviations are less than 5%) in the two tran
directions,ŷ and ẑ, while we observe small oscillations in thex̂ direction (of the order of 10%); these are due to statist
fluctuations and are averaged out in the limit of very large statistics. In other words we have at each time a Kolmogor
non-homogeneous in thêx direction, which tends to get more and morehomogeneous thanks to the random-reshuffling
forcing phases.

In Fig. 1 we plot the instantaneous energy spectrum,E(k) = ∫
|k′|=k〈v(k′) · v∗(k′)〉dk′. It exhibits a scaling very clos

to the K41 isotropic behavior∝ k−5/3. Also, purely anisotropic quantities such as the co-spectra,Eαβ(kµ) = ∫ 〈vα(k) ·
v∗
β(k)〉dkδ dkγ , with (δ, γ ) �= µ show a good agreement with thek−7/3 law predicted by Lumley in [24]. These results valida

our numerical simulation: they are in agreement with common observations in numerical simulations [32], and in exp
[4], in the presence of different anisotropic large-scale forcings.

3.3. SO(3) analysis of longitudinal structure functions

Let us now discuss the SO(3) decomposition of longitudinal structure functions:S(p)(r) = 〈[(v(x + r) − v(x)) · r̂]p〉. For
scalar objects like the longitudinal structure functions, the SO(3) decomposition reduces to the projection on the sphe
harmonics:

S(p)(r) =
∞∑

j=0

j∑
m=−j

S(p)
jm

(r)Yjm(r̂). (11)
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As customary, the indices(j,m) label the total angular momentum and its projection on a reference axis, respectively. Our
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of Fig. 1, some already published results [1] for the isotropic sector. We compare the undecomposed structure fun

the three axis directions, with the projectionS(p)
00 (r). Only for the projected correlation is it possible to measure (with 5%

accuracy) the scaling exponent by a direct log–log fit versus the scale separation. The best fit givesξj=0(2) = 0.70± 0.03.
On the contrary, the undecomposed structure functions are overwhelmed by the anisotropic effects present at all scal
scaling behavior is completely spoiled.

In Table 1 we summarize our quantitative findings. Let us stressthe accuracy of these results: already at moderate Reyn
numbers, it is possible to detect quite good isotropic scaling laws if anisotropic fluctuations are disentangled correctly.
there is an overview of the second order structure function for all sectors, isotropic and anisotropic, which have a signa
ratio high enough to ensure stable results. Sectors with oddjs are absent due to the parity symmetry of the longitudinal struc
function. We notice from Fig. 2 a clear foliation in terms of thej index: sectors with the samej but differentms behave very
similarly. In Table 1 we present a more quantitative analysis by showing the results of the best power law fits for s
functions of ordersp = 2,4,6. First, we notice the presence of a hierarchical organization as assumed in (6), i.e., the
saturation for the exponents as a function of thej value. Second, the measured exponents in the sectorsj = 4 andj = 6 are

anomalous, i.e., they differ from the dimensional estimate given in the previous section,ξ
j
d
(p) = (j + p)/3.

Fig. 1. Log–log plot of instantaneous energy spectrum in the isotropic sectorE(k) (top). The straight line is the reference isotropick−5/3

power law. Instantaneous co-spectrumEyz(kz) (bottom). Here the straight line gives the referencek
−7/3
z anisotropic Lumley prediction. Th

two spectra have been shifted along the vertical direction for the sake of presentation. Inset: analysis on the real space. Log–log plot ofS(2)
00 (r)

versusr (top curve), and of the three undecomposed longitudinal structure functions in the three directionsx, y, z (three bottom curves). Th
straight line gives the best fit slopeξj=0(2) = 0.7.

Table 1
We summarize our numerical findings for the scaling exponents in the isotropic and anisotropic sectors. Notice that values for the anisotrop
sectorj = 2 are taken from the experiments [3,6]. For the values extracted from the numerical simulation (columnsj = 0,4,6), error bars are
estimated on the oscillation of the local slopes. For the experimental data the error is given as the mismatch between the two exper

all sectors we also give the dimensional estimateξ
j
d (p) = (p + j)/3

p ξj=0(p) – ξ
j=0
d

(p) ξj=2(p) – ξ
j=2
d

(p) ξj=4(p) – ξ
j=4
d

(p) ξj=6(p) – ξ
j=6
d

(p)

2 0.70 (2) – 0.66 1.15 (5) – 1.33 1.65 (5) – 2.00 3.2 (2) – 2.66
4 1.28 (4) – 1.33 1.56 (5) – 2.00 2.25 (10) – 2.66 3.1 (2) – 3.33
6 1.81 (6) – 2.00 2.07 (8) – 2.33 2.60 (10) – 3.33 3.3 (2) – 4.00
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Fig. 2. Log–log plot of the second order structure function in all sectors with a strong signal. Sectors:(0,0), (+); (2,2), (×); (4,0), (�); (4,2),
(�); (6,0), (◦); (6,2), (2). The statistical and numerical noise induced by the SO(3) projection is estimated as the threshold where thej = 6
sector starts to deviate from the monotonic decreasing behavior, i.e.,O(10−3).

Fig. 3. Scaling exponents,ξj (p), of structure functions of orderp = 2,4,6 for isotropic and anisotropic sectors. From the DNS of RKF
have: isotropic sector,j = 0 (+); anisotropic sectors,j = 4 (�) andj = 6 (�). From the experimental data [3,6], we havej = 2 (×). For an
estimate of error bars see Table 1.

Unfortunately, we are unable to give clean measurements of thej = 2 sector. This is because we always observe a ch

of sign in the projectionsS(p)
2m

(r) for anym (and any orderp), probably due to some bottleneck effects at scales of the ord
the Kolmogorov scale. Such a change of sign does not allow us to have a scaling range extended enough to measure expo
with reasonable accuracy. Still we may check the overall consistency of the foliation and hierarchical organization of scal
exponents by borrowing the scaling exponents in thej = 2 sector from two recent experiments [3,6]. In Fig. 3 we inser
together with our data, the experimental values as extracted from [3,6]. The resulting picture is fully coherent: expe
data coming from thej = 2 sector fit well in the global trend. As clear from Table 1, all anisotropic sectors showanomalous
scaling laws. The presence of anomalous scaling may also be interpreted as a universality property of small-scale a
statistics. Indeed a direct influence of forcing properties on the small-scale velocity fluctuations would always give
scaling [33].
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3.4. Return to isotropy
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Having defined the meaning of dimensional scaling of anisotropic fluctuations, we discuss the return-to-isotrop
Numerical and experimental evidences of persistence of small-scale anisotropic fluctuations have been reported
instances [1,4,8,9]. The question has many important consequences. We may refer to the breaking of thereturn-to-isotropy
behavior, with two different meanings [9]. We can speak of astrongviolation if the hierarchy (6) is not observed, i.e., if one,
more, anisotropic sectors become leading with respect to the isotropic one. In such a case, at scales small enough,
fluctuations become the dominant contribution in the turbulent statistics. This would definitely break the phenom
developed since Kolmogorov theory in 1941, leading also to theexistence of strong non-universalities. Indeed, while any rea
flow must have an isotropic component, independently on the large scale set-up, different anisotropic sectors may we
on/off depending on the particular experiment. Astrongviolation of thereturn-to-isotropypostulate has never been observ
in Navier–Stokes turbulence. On the other hand, aweakbreaking of thereturn-to-isotropycorresponds to the existence
dimensionless observables which are exactly zero in a perfectly isotropic ensemble, but which go to zero at small sca
rate slower than predicted on the basis of dimensional analysis, or eventually do not decrease at all. For instance, by
simple SO(3) decomposition of longitudinal structure function one may buildup anisotropic indicators as:

F
(p)
jm (r) =

S(p)
jm (r)

(S(2)
00 (r))p/2

∼ rχj (p) (12)

with χj (p) = ξj (p) − p
2 ξ0(2). Clearly, observables like (12) must go to zero with a power lawF

(p)
jm

(r) ∼ rj/3, if the
dimensional scaling (10) is satisfied. What is observed in both experimental and numerical turbulence is that the
behavior is much slower and, in some cases, even absent [4,9]: anisotropic fluctuations normalized by the root mea
isotropic fluctuationsdo not decay. This is still in agreement with the hierarchy supposed in (6), where only the relat
importance of anisotropic fluctuations with respect to the isotropic one of thesamecorrelation function are compared. Th
breaking of the dimensional recovery-of-isotropy is simply due to the existence of anomalous scaling in the anisotropic
If this is the case, the exponents,χj (p), governing the LHS of (12) can assume values much smaller than the dimen
estimateξj (p) − p

2 ξ0(2) < j/3, including the possibility to become negative! In Fig. 4, we present the rate of recove
isotropy for observables of the kind (12), compared with our dimensional prediction, as measured in the RKF data. Despite
existence of the hierarchy (6) quantified in the Table 1, we have a slower recovery-of-isotropy, due to the anomalous an
scaling, in agreement with the explanation above. Furthermore, let us notice that the experimental measurements m
show a clear tendency for the smallest anisotropic exponent,ξj=2(p) to become closer and closer to the isotropic expon
ξj=0(p), for p high enough (p � 8). Thus, the hierachy (6) tends to saturate the inequality between thej = 0 andj = 2 sectors.

Fig. 4. Persistence of anisotropies. Log–log plot of the dimensionless anisotropic (12) compensated with their dimensional predi

F
(p)
jm

(r)/rj/3 = (S
(p)
jm

(r)/(S
(2)
00 (r))p/2)(1/rj/3) vs. r . Curves refer to the casej = 6, m = 0, p = 6 (+) and j = 6, m = 0, p = 5 (×).

Inset: the same quantities withp = 5 andp = 6, but for the anisotropic sectorj = 4. The observed anisotropic fluctuations are clearly m
larger than what is predicted by dimensional analysis.
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This is a situation where anisotropic fluctuations are as intense as the isotropic ones: a sort of strong persistence of anisotropies.
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Unfortunately, the statistics collected in the DNS do not allow us to make a quantitative statement on such high order m

3.5. Decomposition of the second rank tensorSαβ(r)

In the previous sections, we have analyzed the scaling properties of scalar quantities built in terms of velocity corr
For these, the SO(3) projection reduces to the usual decomposition with the spherical harmonics, and does not pr
dependency from the indexq labelling different irreducible representations (4). In particular, giving the set of eigenfunc
listed in the Appendix, it is clear that longitudinal structure functions coincide with projections on theq = 1 basis tensor. Her
we present the first attempt to decompose the whole second-rank tensor,Sαβ(r), for j = 0,2, performing the decomposition (2

In the inset of Fig. 5, there are the only two functions alive in the isotropic sector,S(2)
100(r) and S(2)

300(r), corresponding

to the projection on the tensorBαβ
100(r̂) = rαrβ (longitudinal) and the projection on the tensorB

αβ
300(r̂) = (δαβ − rαrβ/r2)

(transversal), respectively. Inthe isotropic sector, the incompressibility constraint forces the two components to have the sam
scaling. Indeed, as can be seen in the figure, the two scaling behaviors are pretty much the same. Nothing can be said rigoro
for the anisotropic sectors. In particular the incompressibility constraint is no more sufficient to force all sectors to h
same scaling (see Appendix of [10]). In the body of Fig. 5, we also show the four components with a nonvanishing pr
in thej = 2, m = 2 sector, corresponding toq = 1,2,3,4 in the list (.21) of Appendix. Three of such curves have a quite g
scaling behavior, while one shows a less steep scaling. This result, if confirmed by other measurements, implies a brea
foliation mechanism. Nevertheless, let us notice that the overall intensity of theq-projection with a slow decay is much small
than two out of the other three projections. It is therefore not clear whether such a slow decay for thej = 2 sector may eve
become important (i.e., dominant) at some scale or not. Other tests at higher Reynolds numbers must be done before m
strict conclusions. It would be very interesting to extend such analysis to higher anisotropic sectorsj > 2, and higher correlation
functionsp > 2. The computational effort is far from trivial, because very soon in both cases the number of projecti
different eigenfunctions to be measured rapidly increases. Let us make here a comment on the claimed experimental o
[29,30,5] that longitudinal and transversal high-order structure functions inisotropic turbulence possess a different scali
exponent. If the statistics are really isotropic, and therefore one may exclude contamination from the anisotropic sec
the only possibility to have a different scaling between longitudinal, transversal and mixed longitudinal-transversal componen
would be to admit that already for the isotropic sectorj = 0, on changing theq representation, the scaling behavior is differe
As we mentioned, this is not possible for structure functions of orderp = 2, because of the incompressibility constraint,
cannot be ruled out for higher order correlators.

Fig. 5. Log–log plot of the SO(3) decomposition of the second rank tensor,Sα β(r) vs r . In the inset, we plot the projections on the tw

isotropic sectorsj = 0 with q = 1,3, corresponding to the longitudinalS(2)
100(r), and transversal structure functionsS(2)

300(r) (see Appendix

for the notation). In the body of the figure, there are the fourmost intense projections on the anisotropic sectorsS(2)
qjm

(r) with j = 2, m = 2:
projectionq = 1 (�); projectionq = 2 (+); projectionq = 3 (�), and projectionq = 4 (×). Notice that three out of four have roughly the sa
scaling, whileq = 3 has a slower decay. Nevertheless,q = 3 is much less intense thanq = 1 andq = 4 for all inertial scales.
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4. An application of SO(3) decomposition to Large-Eddy Simulation
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The presence of strong large-scale anisotropies makes the RKF an ideal candidate to test small-scale modeliza
in Large-Eddy Simulation. In LES, only the large scales of motion are described in a deterministic way, while smal
are parametrized. In the sequel, we show results of what is known under the name ofa priori tests: starting from DNS data
we compare the behavior between the modeling of some sub-grid observables, and their real statistical behavior. The
typical zeroth order tests to bedone in order to check a priori the degree of reliability of a LES. The interest in making suc
tests is that we have a strongly anisotropic data set, i.e., an important benchmark for realistic situations.

To get into details, the principle of LES is to focus on large scales, thanks to a low-pass spatial filtering applied to the
field: v ⇒ ṽ = ∫

φ∆(x − x′)v(x′)dx ′, with φ∆(x) being the convolution kernel. When doing so, the unforced Navier–St
equations for the filtered velocitỹv, and pressurẽp, are modified by the appearance of a new term proportional to∂βταβ , where:
ταβ = ṽαvβ − ṽα ṽβ , is the so-called sub-grid-scale (SGS) stress tensor. In this way, only scales greater than the filter∆

are simulated or “resolved”. To close the LES equations, small scale motion has to be modeled, that is the SGS str
has to be expressed in terms of the resolved fieldṽ only. It is worth noticing that in the equation for the resolved total kine
energyq̃2 = ṽα ṽα , there is a term proportional to the SGS stress and to the resolved strain rateR̃αβ , i.e.,∼ ταβ R̃αβ , whose
sign is not a priori defined. When negative, it represents theeffectivedissipation at scales larger than∆, due to the friction at
the small ones (forward cascade); but when positive, the energy flow being reversed, it acts as a source of energy fo
scales (energy back-scatter).

One of the most popular SGS models, describing both forward and backward sub-grid energy transfer is the
nonlinear or tensor eddy-viscosity model, first proposed by Leonard [34], and discussed in great detail for homogeneo
isotropic turbulence in [35,13]:

τnl
αβ = cn∆2∂δṽα∂δṽβ , (13)

wherecn is typically aO(1) constant. In our a priori tests, we always used a Gaussian, isotropic, normalized
∫

φ∆(x)dx = 1,
filter of the form:

φ∆(x) =
(

10

π∆2

)3/2
exp

(
−10|x |2

∆2

)
.

For the characteristic wave number of the filterkc ≡ π/∆, we choose the values 4,8,16 and 32.
We start our comparison between the actual values ofταβ and those of the modeled SGS, with measures of one-p

quantities. A crude indicator of the similarities between the modeled SGS and the real quantities is given by the linear co
coefficientρ(a, amod), between an observablea and its modeled equivalentamod. One of the most studied quantities is t
energy flux towards small scales. For the nonlinear model, we observe a very high level of correlation, going fromρ = 0.88 in
the case ofkc = 4, toρ = 0.98 in the case ofkc = 32. In terms of one point measures, the model performances are not s
by the presence of the anisotropy, since these results are very similar to those obtained in [35] for isotropic turbulen
sub-grid model (13) the only free parameter is thecn constant to be optimized at any chosen cut-off. Here we fixed them
as to have a perfect agreement between the mean sub-grid and the true energy dissipation. Once the only free parameter is
one may probe the performance of the model on the rare events by comparing the probability density function (PDF) o
ταβ and of that one measured on the sub-grid modelτnl

αβ . Fig. 6 shows, for different choices of the filter scale∆ ∼ k−1
c , the

probability density function of the local energy flux,Φ = R̃αβταβ , as calculated from the DNS data, compared with that of

modeled energy flux,Φnl = R̃αβτnl
αβ . Except forkc = 4, that is for a cut-off at very large scale, we observe a good agree

between the distributions. In particular, the agreement is really good when we pick a characteristic wavenumberkc, well in the
inertial range.

In order to assess the performance of the nonlinear model on anisotropic quantities,we decompose the tensor eddy-viscos
into an isotropic part, the trace ofτ , and an anisotropic partταβ − 1/3τδδδαβ . For the six off-diagonal components, we obta
rates of linear correlation of about 0.9. Such a good agreement is also found for the whole probability densityfunction: in Fig. 7
the PDF of a purely anisotropic component,ταβ with α = y andβ = z, is shown for two choices of the wavenumberkc.

The effects of the anisotropy on sub-grid scale modeling appear more important when we consider two-point m
A natural indicator is the spatial correlation of the resolved velocity field and the gradient of the SGS stress tensor:

Cαβ(r) = 〈
ṽα(0)∇δτβδ(r)

〉
, (14)

where the RHS depends only on the separationr because we are considering a homogeneous flow. Let us notice th
symmetric form,Cαβ(r) + Cβα(−r), is thetransportterm of the dynamical equation of the second order tensor〈ṽα(0)ṽβ(r)〉.
We applied the SO(3) decomposition to the function

Tαβ(r) = 2Cαβ(0) − Cαβ(r) − Cαβ(−r) =
∑
qjm

Tqjm(r)B
αβ
qjm(r̂). (15)
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Fig. 6. Log-lin plot of the probability density functions of the true local energy fluxΦ = R̃αβταβ (+), and the nonlinear model representati

Φnl = R̃αβτnl
αβ (×). The coefficientcn is fixed in order to enforce the equality of the average flux. Isotropic Gaussian filters are used.

wavenumber and constants are, respectively: (a)kc = 4, cn = 0.049; (b)kc = 8, cn = 0.072; (c)kc = 16,cn = 0.061; (d)kc = 32,cn = 0.056.

Fig. 7. Probability density functions of thepurely anisotropic off-diagonal componentτyz of the SGS stress tensor(+), and of its nonlinear
representationτnl

yz (×). Figure (a)kc = 8, cn = 0.072; (b) kc = 16, cn = 0.061. Small discrepancies are observed only for very inte
fluctuations in the larger cut-off case (a).

The log–log plot of the isotropic sectors and of some anisotropic ones(j = 2, m = 2, q = 2,4) are shown in Fig. 8. We not
a very good agreement between the isotropic projection coefficient ofTαβ(r), and its nonlinear correspondingT nl

αβ(r). On the
other hand, the anisotropic projection coefficients are no longer well fitted by the nonlinear ones, which have a general
to overestimate the anisotropy. In other words, as for two point anisotropic fluctuations, the sub-grid model here studied
perform as well as for the single point quantities once the only free paramenter,cn is fixed by imposing the equality between t
sub-grid and the true energy dissipation. To summarize, we can say that even in the presence of a large-scale strong
the nonlinear model is able to reproduce the main features of the filtered flow, at least concerning single point m
Two-point measurements, probing also the correlation of the sub-grid tensor at different spatial locations, perform l
Still, isotropic two-point measurements are quite well reproduced, whilesome discrepancies are measured for the most int
anisotropic two-point measurements. It would be extremely interesting to extend this analysis performing a fulla posteriori
test, i.e., undertaking a large-eddy simulation of such a strongly anisotropic flow and comparing the actual performan
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Fig. 8. Log–log plot of the coefficients,Tqjm(r), of SO(3) decomposition of the sub-grid correlation (15), at the cut-offkc = 16. (a) True
SGS correlation: the two top curves refer to the isotropic sectorsj = 0 with q = 1,3; while the two bottom curves refer to the most inten
projections on the anisotropic sectorj = 2, m = 2, with q = 2,4. (b) The same as (a), but for the SGS nonlinear model. Notice that the
isotropic projections almost coincide with the true ones showed in panel (a); while there is a clear mismatch in the reproduced intensities
trends for the anisotropic sectors.

5. Conclusions

We presented a detailed numerical study ofanisotropicstatistical fluctuations in stationary,homogeneousturbulent flows.
We have discussed the meaning of both dimensional and anomalous scaling for the anisotropic turbulent fluctuations
extended the numerical results presented in [1], by discussing in detail the recovery of isotropy and the foliation hy
A first detailed measurement of the anisotropic properties of the full tensor second-order velocity correlation was pe
Also, a systematic a priori study of the LES non-linear model in terms of its capability to capture singlepoint and two-point
isotropic and anisotropic fluctuations in sub-grid quantities has been performed.

We have given some clear evidences that anisotropic turbulent fluctuations deserve an interest in their own rig
possess the same degree of complexity already well experimented and measured for isotropic fluctuations. They are a
they posses a non-trivial phenomenology and they are much more persistent than what would be believed on the basis
dimensional reasonings. Last but not least, they are ubiquitous inany real numerical or experimental turbulent study, includ
applied problems as for the case of LES. Much more work is needed to extend the available experimental and nume
base, and to improve experimental techniques enabling one to address in a fully systematic way the SO(3) decomposition on
laboratory data. Only after that will simple but basic questions concerning, for example, the degree of universality of an
fluctuations for each SO(3) sector or thefoliation hypothesis, be answered.
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Appendix

We report for completeness the full SO(3) decomposition of the symmetric second order tensorSαβ(r) [10] . Once fixed
j andm indices, the 6 independent basis tensor can be simply constructed starting from the spherical harmonicsYjm(r̂), plus
successive application of isotropic operators such as contraction withrα andδαβ, or derivation with respect to∂β , saturating
the correct number of tensorial indices. A particular choice is the following:
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B
αβ
2,jm

(r̂) ≡ r−j
[
rα∂β + rβ∂α

]
Φjm(r), (.17)

B
αβ
3,jm

(r̂) ≡ r−j
[
δαβ − rαrβ/r2]

Φjm(r), (.18)

B
αβ
4,jm

(r̂) ≡ r−j+2∂α∂βΦjm(r), (.19)

B
αβ
5,jm

(r̂) ≡ r−j−1[
rαεβµνrµ∂ν + rβεαµνrµ∂ν

]
Φjm(r), (.20)

B6,jm(r̂) ≡ r−j+1[
εβµνrµ∂ν∂α + εαµνrµ∂ν∂β

]
Φjm(r), (.21)

where Φjm(r) ≡ rj Yjm(r̂), and εαβγ is the usual fully antisymmetric 3-dimensional tensor. The tensors are regro

according to their parity invariance property: first, those of parity(−)j (1− 4), then those(−)j+1 (5,6).
If the second order tensor under exam did not possess a defined symmetry under the exchangeα ⇔ β, we would have neede

also the following three antisymmetric in addition to the previous six symmetric tensors, to complete the basis:

B
αβ
7,jm

(r̂) ≡ r−j
[
rα∂β − rβ∂α

]
Φjm(r), (.22)

B
αβ
8,jm

(r̂) ≡ r−j−1εαβµrµΦjm(r), (.23)

B
αβ
9,jm

(r̂) ≡ r−j+1εαβµ∂µΦjm(r). (.24)

Clearly, 7 is of parity(−)j (1− 4), and 8,9 are of parity(−)j+1.
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