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Abstract

We present a detailed numerical studyasfisotropic statistical fluctuations in stationargomogeneousurbulent flows.
We address both problems of intermittency in anisotropic sectors, and the relative importance of isotropic and anisotropic
fluctuations at different scales on a direct rarinal simulation of a three-dimensiormrandomKolmogorov flow.

We review a simple argument to predict the dimensional scaling for all velocity moments, in all anisotropic sectors. We extend
a previous analysis made on the same data set (Phys. Rev. Lett. 86 (2001) 4831) presenting (i) the statistical behavior of spectra
and co-spectra; (i) high-order longitudinal structure functions; (iii) anisotropic fluctuations of the full tensorial two-points
velocity correlations. Among the many issues discussed, we stress the problenretiitheto-isotropy the universality of
anisotropic fluctuations and the foliation mechanism. A aguwiori test on sub-grid quantities used in Large-Eddy Simulations
is also presented.
0 2003 Elsevier SAS. All rights reserved.
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1. Introduction

Kolmogorov 1941 theory assumes local homogeneity and local isotropy: the memory of large scale anisotropic forcing
and/or boundary conditions is supposed to bedosing the process of energy transfer toward small scales. The overall result
is a local recovery of isotropy and of weirsality in the statistics of turbulent fluctuations at scales small enough and at high
Reynolds numbers. In recent years, a quantitativestigation of return-tésotropy in experimentaanisotropic turbulence
[2—6], numerical homogeneous shear flows [7,8] and numericadra flows [9], questioned the main Kolmogorov paradigm,
speaking explicitly ofpersistence of anisotropie#\ huge amount of theoretical work has been done, starting from [10],
in order to understand how to link the rotational invariance of Navier—Stokes equations with the properties of anisotropic
velocity correlations. Quantifying anisotropic effects in small scale turbulence is libt#oeeticalchallenge and a very actual
practical problem, opening the question whether any realistic turbulent flow can ever possess statistical features independent
of the — generally anisotropic — boundary and forcing effects. Neglected anisotropic effects have also been proposed to be
at the origin of different statistical properties of transversal and longitudinal velocity fluctuations [11]. The importance of
properly disentangling isotropic and anisotropic fluctuations has been demonstrated in the analysis of intermittency in channel
flow turbulence [12]. Investigating and developing proper small scales models for anisotropic turbulence is also a first-order
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question appearing in all Large-Eddy Simulations (LES) of turbulent flows close to rigid walls or affected by anisotropic body
forces [13].

Important steps forward in the analysis of anisotropic fluctuations have recently been made in the context of Kraichnan
models [14-16], i.e., passive scalars/vectors advected by isotropic, Gaussian and white-in-time velocity fields with large-scale
anisotropic forcing [17-21]. In those models, anomalous scaling for the isotropic and anisotropic fluctuations of the passive
fields arises as the result of a non-trivial structure of the advecting operator. First, scaling exponents are found to be universal:
they do not depend on the actual value of forcing and boundamglitons. Second, they are fultharacterized by the order of
the anisotropy: correlation functions in different sectors of the rotational group in 3 dimensio®, Siw different scaling
properties. Non-universal effects aré fanly in coefficients multiplying the powdaws, when imposing the matching with non-
universal boundary conditions at large scales. Similar questiorestHikexistence of scaling laws the anisotpic sectors, or
the values of the scaling exponents and their universal character, are at the forefront of experimental, numerical and theoretical
research of real turbulent flows. Notwithstanding the diffuserist in the problem, only quite recently indirect experimental
investigations of scaling in different sectors [22,3,6] and direct decomposition in numerical simulations [12,23,9] have been
attempted.

The situation is still under debatevidences of a clear improving of scaling by isolating the isotropic sector have been
reported, supporting the idea that the eadmposed correlations are strongly aféecby the superposition of isotropic and
anisotropic fluctuations [12]. Experimental evidences of the existence of a scaling law also in anisotropic sectors have been
reported [22,3,6]. The value of the anisotropic leading exponent for the second order correlation function is found to be close
to the dimensional estimatg”' = 4/3 [24]. Most of the experimental investigations are flawed by the contemporary presence
of anisotropies and ging non-homogeneities; in some specific cases the meahswgling can however be re-interpreted (see
for instance [25—27] for a detailed analysis of strongly non-homogeneous and/or shear-dominated flows).

This paper is intended to give a compeeBive exposition of@ne recent numerical results concerning the statistics of the
velocity field, when energy is injected into the system via a strong anisotnopiogeneouforcing, confined to large scales [1].

We performed numerical investigations of a 3D random Kayorov flow (RKF): the resulting velocity field was strongly
anisotropic but statistically homogeneous. For the RKF, previous analyses have been reported in [1,28]. Here, we present a more
extended study, by providing further information on anigpies in both real and Fourier spaces. We present a first systematic
attempt to validate one of the most popular LES model on the basis of its performances on purely anisotropic correlation
functions. We also present direct measurements of isotropic and anisotropic sectors of even and odd structure functions, up to the
sixth order. We review in detail a dimensional prediction able to extend Lumley’s argument for any moment of the velocity field
and for any kind of anisotropic fluctuation [28]. All results point toward the existence of anisotropic universal anomalous scaling,
i.e., anisotropic structure functions possess scaling exponents which deviate from their dimensional estimate. We present a first
attempt to exactly decompose all tensorial paments of the second order velocity correlation(x + r)v; (x)), into their

isotropic and anisotropic components and we discuss the puzzle of the — supposed — different scaling between longitudinal and
transversal isotropic correlation functions [29,30,5].

The paper is organized as follows. In Section 2, we briefly review the dynamical importance of rotational invariance for
the Navier—Stokes equations and its consequences dolihton of the correlation function hierarchy [10]. In Section 3 we
present the numerical measurements $otropic and anisotropic fluctuations in both real and Fourier spaces for the RKF, as
well as a consistent dimensional argument for the scaling of any anisotropic fluctuations. We also discuss how to assess the
return to isotropy in a quantitative way using the decomposition in the irreducible representations of the group of rotations in 3
dimensions, SCB). We present the first S@) decomposition of the full tensorial structure of two-point velocity correlations.
Section 4 is devoted to sonaepriori tests of a popular LES model, the so-called nonlinear model, on the database of the random
Kolmogorov flow.

2. SQ(3) invariance and foliation of correlation hierarchy

In this section, we review recent results focusing on the dynamical and statistical consequences of invariance under rotation
of the advective term of the Navier—Stokes equations. In particular, we discuss how the above property allows one to introduce
a systematic tool able to quantify in an exact way the degree of anisotropy at each scale. The typical questions addressed are
(i) how to quantify the tendency toward isotropy in hydro-dynamical problems, (ii) how to measure persistence of anisotropies
(if any), (iii) how to quantify the robustness (read universality) of anisotropic fluctuations at small scales.

The above issues have a number of theoretical and applied interests. In many realistic turbulent problems where anisotropy
enters in the game, it is relevant to disentangle universal from non-universal aspects, as well as leading from sub-leading
scaling behaviors. The starting point is the observation that the Navier—Stokes equations, neglecting the non-universal boundary
conditions and the external forcing, are invariant under spatial rotations. A natural way to understand the inertial range statistical
properties is to suppose that both boundary @@k and forcing give a dominant coritition only at large scales, while the
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transfer of fluctuations from large to small scales in the bulk is driven by the inertial — rotational invariant — terms. This is
the rationale to study velocity correlation functions in terms of the projection on the irreducible representations af3)he SO
group.

Let us fix the idea by writing the Navier-Stokes equation for the two-points homogeneous structure fusfétion:=
((va (r) — v (0)) (vg(r) — vg(0))). Itis simple to derive the equation for this observable:

9 SB(ry = —8, 5P (r) + 9P PY(r) +v325%P (r) — F*P (r), (1)

where we have introduced, with obvious notation, the third order structure funstéti(r); the velocity—pressure
correlation functionP?(r) = ((p(r) — p(=1))vg(0)) and the forcing-velocity correlation functio®® (r) = (fa(Nvg(0) +
Ja(Qug(n) + (@ & B). In Eqg. (1), only the forcing termF*A (r), and the boundary conditions may break the rotational
invariance. Both of them are large scale quantities, and we may safely imagine that for scales smaller than the intdgyal scale
Eq. (1) recovers full rotational invariance in the bulk, with forcing induced terms appearing only as subdominant contributions.
Then, we can project the rotational invariant part of (1) on the irreducible representations of(@)eg8@p and obtain a
set of dynamical equations for each projentiin each separate sector [10]. More exgiiclet us recall that the decomposition
of $*A(r) in terms of theeigenfunctionof the rotational operator is made by a set of functions labelled with the usual
indicesj =0,1,... andm = —j, ..., +j, corresponding to the total angular momentum and to the projection of the total
angular momentum in an arbitrary direction, respectively. For scalars, as for example the longitudinal structure function,
So(r) = ([(v(r) — v(0)) - #12), the (j, m) set of basis functions are the spherical harmoriigs, (7). For a generig-th order
tensor, another index is necessary, to label different irreducible representations for gaelstor [10].
Itis easy to show that there are omgly= 1, ..., 6 irreducible representations of the @pgroup for the space of two-indices
symmetric tensors, as it €4 (r) (see Appendix). The second order structure function can be exactly decomposed as:

6 oo +Jj

sPr=3"3" 3 83 B @), @

q=1;=0m=—j

where theB;‘ﬁ (r) are tensors defined on the unit sphere which can be seen as a generalization of the spherical harmonics
to the tensorial case. The superscript “2” in the coefficient of (2) reflects the order of the analyzed correlation function. The
importance of decomposition (2) stems from the fact that one can exactly disentangle, for each anisotropic projection, the
statistical dependency on the reference seale,

The physics of isotropic and anisotrogluctuations can now be analyzed in a systematic and quantitative way by studying
the projection coefficients, ;,, (). It is important to realize that these obey separate dynamical equations withiijeagh
sector. Indeed by applying the same decomposition to all correlations (except for the forcing) appearing in (1), and noticing
that all derivative operators are rotational invariant, we obtairfahation of the dynamical equation for any correlation, in
each given sectatj, m) of the rotational group. Only projections within the sajem) sector are coupled [10]. THeliation
is a consequence of the fact that the unforced Navier—Stokes equations contain only rotationally invariant operators and of the
linearity of the correlation function hierarchy. Moreover, in the limit of infinite Reynolds numbers, the Navier—Stokes equations
become scaling invariant, sector by sector. It is quite natorakpect the existence of scaling laws characterizing each sector
separately:

2
3§J3n<r) ~ c 51(2) @)

where the coeﬁ|C|ents(§)m are fixed by imposing the matching with the large-scale physics. This result can be exactly

demonstrated in models for passive advection of scalars and vectors [18,20,21], but can only be argued for the Navier—Stokes
case on the basis of the above mentioned properties of rotational invariance of the operators, and linearity of the hierarchy. The
foliation of the scaling behavior has of course two importamsequences. First, the undecomposed observable is built up with
contributions (isotropic and anisotropic) having different scaling laws, i.e., the undecomposed, raw correlations do not scale:

6
2 0
S ()~ I [eloy s P BIoE) + i3y (Z)B“f” o)+ -] @)
q=1
Decomposition similar to (2) can be written for the most gengrti order tensors“:“» (r) = ((vg, (1) — v, (0)) - - - (va, (1) —
Ve, (0))) made ofp velocity differences at separatien

)~ D SO0, ®

q jm



404 L. Biferale et al. / European Journal of Mechanics B/Fluids 23 (2004) 401-414

Scaling is recovered either looking at the contributions in separate seﬁé%s(r) ~r&(P) | or looking at scales small enough
such that only the leading term in the sum (5) dominates.

This is connected to the important questionretovering of isotropySuch a recovering may exist only if the isotropic
scaling exponent is always smaller than all anisotropic ones for any given prdethe decomposed correlation function:
§f=0(p) < &J(p) for all j. Moreover, a hierarchy among the different anisotropic exponents is naturally expeittéd any
given orderp:

E70p) < &7 (p) <ET2(p) < - (6)
Another important consequence of (5) is that undecomposed objects are stronglpiversalbecause the coeﬁiciemgfn,

giving the overall strength of each sector depend obviously on the large-scale set-up. Only scaling exgapentsy be
assumed to enjoy some robustness properties. In addition, scaling exponents are supposed to be independeng pf the
indices. For the Navier—Stokes problem, there are no rigorous statements: again, hints come from analytical results derived in
the class of linear models previously mentioned. In particular, the independence framirttex is given by the arbitrariness
in defining the orientation of the reference axis in 3D space.

The dependence/independence from ghiadex, i.e., from the set of irreducible representations used to decompose the
observables in eaaty, m) sector, is on the other hand much less trivial aad imteresting consequences. A dependence on the
g index would weaken the whofeliation mechanism, which is based on the idea that only properties invariant under rotations
are relevant for the inertial range statistics, and not the set of eigenfunctions (with the same rotational properties) chosen
to decompose the observables. For example, the only posséyaonsupport, theoretically, the observed different scaling
between transversal and longitudinal high-order structure functions in isotropic statistics [29,30,5] would be to admit that, in
the isotropic sector, projections with differejtindices have different scaling properties. This sounds quite unlikely. A much
simpler scenario is to imagine that the observed differences are due to spurious contaminations from sub-leading anisotropic
sectors not completely decayed, yet: that is, such differences would become smaller and smaller by going to larger and larger
Reynolds numbers.

In the following we first review a simple argument to predict tmensionalvalues of scaling exponents, of any orger
and for any sectoj. Then, we present a detailed analysis of the numerical data set issuing from the numerical simulation of a
homogeneous random Kolmogorov flow with resolution236 particular, we discuss the measurements of scaling exponents
in (j, m) sector up toj = 6, for structure functions up to the sixth order. This enables us to assess (i) the existence of a
hierarchical organization ofcaling exponents (6); (ii) to estih in a quantitative way the rate of recovery of isotropy, and
(iii) to support the statement that anismtic fluctuations arereomalous, i.e., do not follow the miiensional prediction made
in Section 3.1. Finally, in Section 3.5 we discuss thelependency of the S®@) decomposition by performing the whole
decomposition of the second rank tens8f (r) up to j = 2. In the latter case, we also consider the problem of longitudinal
transversal scaling.

3. Anisotropic scaling
3.1. Adimensional estimate for the scaling in jhg 0 sectors

To give an assessment of the normal or anomalous behavior of anisotropic fluctuations, we first need an estimate for the
dimensional values of the exponerté(p). In [28], a new dimensional argument for the scaling exponents of the structure
functions of any order, and any sector was introduced. The argument is based on the idea that large-scale energy pumping and/or
boundary conditions are such as to enforce a lagge anisotropic driving velocity fiellf. A prediction for intermediate
(small) scale anisotropic fluctuations may then be obtained by studying the influence of the lardé-sudlee inertial range.

By decomposing the velocity field,= u + U, in a small scale component and a large-scale anisotropic compon&ntwe
have the following equation far:

Oruq +updgug + Ugdgug +upgdgUy = =0y p + vAugy. )

The major effect of the large-scale field is given by the instantaneous 8pé&ar, which acts as an anisotropic forcing term on
small scales.

A matching argument can be built as follows. Let us first consider the equation of motion for two point quantities
(us(x"ug(x)) in the stationary regime. We may balance inertial and shear-induced contributions:

(s (x"Yug () dgue () ~ (0 Uy () (x Y10 (x)), ®

which allows for a dimensional estimate of the anisotropic components of the LHS, in terms of the RHS shear intensity and of
the (uu) isotropic part. Similarly for three point quantities we have (neglecting tensorial notagiom)du) ~ (dUuuu), which
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can be generalized to any order velocity correlation. The shear term is a large-scale “slow” quantity and therefore, as far as
scaling properties are concerned, we may safely estin@tely (x)us(x)uy (x)) ~ T (s (X uy (x)).

The 3x 3 matrix X4 is associated to the combined probability to have a given shear and a given small scale velocity
configuration. TheX,s tensor brings angular momentum only up to= 2. One may therefore argue, by using simple
composition 6angular momenta,j(= 2 ® j — 2), the following dimensional matching:

Sy ~ 1218V, ©

HereS](p)(r) is a shorthand notation, neglecting further possible dependencigsandm indices, for the projection on the

Jj-th sector of thep-th order correlation functiofb‘;j’,)n (r) introduced in the previous section. In (9) witl'| we denote the
typical intensity of the shear teri¥,g in the j = 2 sector. Due to the simple level of the reasoning, we cannot make any
detailed statement about possible dependencies apahdm indices. We limit to discuss, therefore, the connections between
different j sectors.

For instance, the leading behavior of the= 2 anisotropic sector of the 3rd order correlation function in the LHS of (9),
is given by the coupling between thie= 2 components o0&z, and thej = 0 sector of the 2nd order velocity correlation in

the RHS of (9);8‘](.:220) ~ r|E|S;2:)0(r) ~ r55(3). By using the same argument and considering that now we know the scaling
of the sectorg =0, 2 of the third order correlation, we may estimate the scaling exponents of the fourth order correlation for
Jj =2,4. The procedure is easily extended to all orders, leading to the following expression:

HOEES (10)
which has been obtained by neglecting the intermittency effects in the isotropic sector. Let us notice that expression (10)
coincides with Lumley prediction [24], done fgr =2 and j = 2, i.e., it generalizes Lumley’'s argument to any kind of
anisotropic fluctuations and any order of velocity correlation functions. Let us also notice that prediction (10) differ from the
one made in [31], where for simplicity the tensorial properties of all velocity and forcing correlations functions were neglected.

3.2. Validation of numerical simulations

We performed a direct numerical simulation of a 3D fully periodic, incompressible flow with anisotropic large-scale
energy injection. The analytic expression of the forcingfis= (0,0, f;(x)), with f;(x) = Frcod2rx/Ly + ¢1(t)] +
Fpcod4rmx /Ly + ¢2(1)], with constant amplitudeB;; ) and independent, uniformly distributeticorrelated in time random
phases(1 2)(t). The random phases lead to homogeneous statistics. We studied the RKF at resolftjam@s6llected up to
70 eddy turn over times. Such long averaging is necessary because, as in any strongly anisotropic flow, we observe the formation
of persistent large-scale structures inducing strong osciflatof the mean energy evolution. The viscous term was replaced
by a second-order hyper-viscosityy A2v. Time-marching used a (second-order) slaved Adams—Bashforth scheme. Typical
Reynolds number iReg, ~ 100. We have a high degree of homogeneity (deviations are less than 5%) in the two transverse
directions,y and z, while we observe small oscillations in titedirection (of the order of 10%); these are due to statistical
fluctuations and are averaged out in the limit of very large statistics. In other words we have at each time a Kolmogorov Flow,
non-homogeneous in the direction, which tends to get more and mdremogeneous thanks to the random-reshuffling of
forcing phases.

In Fig. 1 we plot the instantaneous energy spectriitk) = f\k’|=k<v(k/) -v*(k")) dk’. It exhibits a scaling very close

to the K41 isotropic behavios k=5/3. Also, purely anisotropic quantities such as the co-spedifg,(k,) = [(va (k) -

vg (k)) dks dky, , with (8, y) # u show a good agreement with the’/3 law predicted by Lumley in [24]. These results validate
our numerical simulation: they are in agreement with common observations in numerical simulations [32], and in experiments
[4], in the presence of different anisotropic large-scale forcings.

3.3. SO(3) analysis of longitudinal structure functions
Let us now discuss the @ decomposition ofdngitudinal structure functionsi”) (r) = ([(v(x +r) — v(x)) - #]?). For

scalar objects like the longitudinal structure functions, thg3@ecomposition reduces to the projection on the spherical
harmonics:

oo ]
SO =3 3 SO i@, (11)

j=0m=—j
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As customary, the indice§j, m) label the total angular momentum and its projection on a reference axis, respectively. Our
interest here is on the scaling behavior of the functiﬁﬁ.ﬁ)(r), i.e.,Sj(.f;l)(r) ~ ijrsj(p). We start by reporting in the inset

of Fig. 1, some already published results [1] for the isotropic sector. We compare the undecomposed structure functions in
the three axis directions, with the projectiség)(r). Only for the projected correlation is it possible to measure (with 5% of

accuracy) the scaling exponent by a direct log—log fit versus the scale separation. The best git‘@%;a: 0.70+ 0.03.
On the contrary, the undecomposed structure functions are overwhelmed by the anisotropic effects present at all scales, and the
scaling behavior is completely spoiled.

In Table 1 we summarize our quantitative findings. Let us stiesaccuracy of these results: already at moderate Reynolds
numbers, it is possible to detect quite good isotropic scaling laws if anisotropic fluctuations are disentangled correctly. In Fig. 2,
there is an overview of the second order structure function for all sectors, isotropic and anisotropic, which have a signal-to-noise
ratio high enough to ensure stable results. Sectors withyedde absent due to the parity symmetry of the longitudinal structure
function. We notice from Fig. 2 a clear foliation in terms of théendex: sectors with the sanyebut differentms behave very
similarly. In Table 1 we present a more quantitative analysis by showing the results of the best power law fits for structure
functions of ordergp = 2, 4, 6. First, we notice the presence of a hierarchical organization as assumed in (6), i.e., there is no
saturation for the exponents as a function of fhealue. Second, the measured exponents in the setterd and;j = 6 are

anomalous, i.e., they differ from the dimensional estimate given in the previous sé;fgt(m,: (+p)/3.

10—y —
100 F B
10—1

1072
1073
104
1073
1076
1077
1078
107°

1 10 100
k., k

Fig. 1. Log-log plot of instantaneous engy spectrum in the isotropic sectéi(k) (top). The straight line ishie reference isotropitz‘f’/3
power law. Instantaneous co-spectriiy, (k;) (bottom). Here the straight line gives the referelhgﬁg/3 anisotropic Lumley prediction. The
two spectra have been shifted along the eattdirection for the sake of presentation. Inset: analysis on the real space. Log—log:ﬂ@t(ni

versusr (top curve), and of the three undecomposed longitaidstructure functions in the three directionsy, z (three bottom curves). The
straight line gives the best fit sIoﬁéZO(Z) =0.7.

Table 1

We summarize our numerical findings for the scaling exponents in thejgotand anisotropic sectors. Natithat values for the anisotropic

sectorj = 2 are taken from the experiments [3,6]. For the valagtracted from the numerical simulation (columns 0, 4, 6), error bars are

estimated on the oscillation of the local slopes. For the experimental data the error is given as the mismatch between the two experiments. For

all sectors we also give the dimensional estin;%teu) =p+)/3

p £1=0(p) —£1=%(p) §1=2(p) - 172 (p) =4 —£17(p) £7=6(p) —£1=%(p)

2 0.70 (2) - 0.66 1.15(5) - 1.33 1.65 (5) — 2.00 3.2 (2) - 2.66
4 1.28 (4) - 1.33 1.56 (5) — 2.00 2.25 (10) - 2.66 3.1(2)-3.33
6 1.81 (6) — 2.00 2.07 (8) - 2.33 2.60 (10) — 3.33 3.3(2) - 4.00
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10°

r

Fig. 2. Log—log plot of the second order structunedtion in all sectors with a strong signal. Sect@fs0), (+); (2, 2), (x); (4,0), (O); (4,2),
(*); (6,0, (0); (6,2), (m). The statistical and numerical noise induced by the3@rojection is estimated as the threshold where jthe6
sector starts to deviate from the monotonic decreasing behavio®(&03).

4 T T T T T T T
35 0 -
3F = O 4
2.5 .
2 X X .
+
15 X X + ;
+
1 g .
0.5 + -
0 1 ] 1 ] ] ] I
0 1 2 3 4 5 6 7 8
p

Fig. 3. Scaling exponent$; (p), of structure functions of ordes = 2, 4, 6 for isotropic and anisotropic sectors. From the DNS of RKF we
have: isotropic sector = 0 (+); anisotropic sectors; =4 (x) and j = 6 (O0). From the experimental data [3,6], we hayve- 2 (x). For an
estimate of error bars see Table 1.

Unfortunately, we are unable to give clean measurements of th@ sector. This is because we always observe a change
of sign in the projectionS‘g;) (r) for anym (and any ordep), probably due to some bottleneck effects at scales of the order of
the Kolmogorov scale. Such a change of sign does not alfote bhave a scaling range extended enough to measure exponents
with reasonable accuracy. Still we may check the overall comsigtef the foliation and hierarchical organization of scaling
exponents by borrowing the scaling exponents in the 2 sector from two recent experiments [3,6]. In Fig. 3 we inserted,
together with our data, the experimental values as extracted from [3,6]. The resulting picture is fully coherent: experimental
data coming from thg = 2 sector fit well in the global trend. As clear from Table 1, all anisotropic sectors ahomalous
scaling laws. The presence of anomalous scaling may also be interpreted as a universality property of small-scale anisotropic
statistics. Indeed a direct influence of forcing properties on the small-scale velocity fluctuations would always give a trivial
scaling [33].
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3.4. Return to isotropy

Having defined the meaning of dimensional scaling of anisotropic fluctuations, we discuss the return-to-isotropy issue.
Numerical and experimental evidences of persistence of small-scale anisotropic fluctuations have been reported in various
instances [1,4,8,9]. The question has many important consequences. We may refer to the breakingtuhth@-isotropy
behavior, with two different meanings [9]. We can speak sfrangviolation if the hierarchy (6) is not observed, i.e., if one, or
more, anisotropic sectors become leading with respect to the isotropic one. In such a case, at scales small enough, anisotropic
fluctuations become the dominant contribution in the turbulent statistics. This would definitely break the phenomenology
developed since Kolmogorov theory in 1941, leading also tegigtence of strong non-univedgies. Indeed, while any real
flow must have an isotropic component, independently on the large scale set-up, different anisotropic sectors may we switched
on/off depending on the particular experimentstongviolation of thereturn-to-isotropypostulate has never been observed
in Navier—Stokes turbulence. On the other handvemk breaking of thereturn-to-isotropycorresponds to the existence of
dimensionless observables which are exactly zero in a perfectly isotropic ensemble, but which go to zero at small scales with a
rate slower than predicted on the basis of dimensional analysis, or eventually do not decrease at all. For instance, by using the
simple S@3) decomposition of longitudinal sicture function one may buildp anisotropi indicators as:

S(.p) r :

e @)
(Spo (M)P/?

with x/(p) = &/(p) — %50(2). Clearly, observables like (12) must go to zero with a power B]Wn) (r) ~ ri/3, if the
dimensional scaling (10) is satisfied. What is observed in both experimental and numerical turbulence is that the decaying
behavior is much slower and, in some cases, even absent [4,9]: anisotropic fluctuations normalized by the root mean squared
isotropic fluctuationddo not decay. This is still in agreement with the raiehy supposed in (6), where only the relative
importance of anisotropic fluctuations with respect to the isotropic one addtreecorrelation function are compared. The
breaking of the dimensional recovery-of-isotropy is simply due to the existence of anomalous scaling in the anisotropic sectors.
If this is the case, the exponents/ (p), governing the LHS of (12) can assume values much smaller than the dimensional
estimatet/ (p) — %50(2) < j/3, including the possibility to become negative! In Fig. 4, we present the rate of recovery of
isotropy for observables of the kind (12), compared with our disinal prediction, as measured in the RKF data. Despite the
existence of the hierarchy (6) quantified in the Table 1, we have a slower recovery-of-isotropy, due to the anomalous anisotropic
scaling, in agreement with the explanation above. Furthermore, let us notice that the experimental measurements made in [6]
show a clear tendency for the smallest anisotropic expon&éﬁ@,(p) to become closer and closer to the isotropic exponent,
§f=0(p), for p high enough p > 8). Thus, the hierachy (6) tends to saturate the inequality betwegntizand; = 2 sectors.
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Fig. 4. Persistence of anisotropies. Log—logtpbf the dimensionless anisotropic (12) compensated with their dimensional prediction:
F}Z)(r)/rj/s - (sj.f;(r)/(sé%’(r>)f’/2)(1/rf/3> vs. r. Curves refer to the casp=6,m =0, p=6 (+)andj =6, m =0, p =5 ().

Inset: the same quantities with=5 andp = 6, but for the anisotropic sectgr= 4. The observed anisotropic fluctuations are clearly much
larger than what is predicted by dimensional analysis.
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This is a situation where anisotropic fluctuations are as intense as the isotropic ones: a sort of strong persistence of anisotropies.
Unfortunately, the statistics collected in the DNS do not allow us to make a quantitative statement on such high order moments.

3.5. Decomposition of the second rank tens®? (r)

In the previous sections, we have analyzed the scaling properties of scalar quantities built in terms of velocity correlations.
For these, the S@) projection reduces to the usual decomposition with the spherical harmonics, and does not probe any
dependency from the indexlabelling different irreducible representations (4). In particular, giving the set of eigenfunctions
listed in the Appendix, it is clear that longitudinal structure functions coincide with projections gn=thktbasis tensor. Here
we present the first attempt to decompose the whole second-rank &5, for j = 0, 2, performing the decomposition (2).

In the inset of Fig. 5, there are the only two functions alive in the isotropic seS@b(r) and Sé%)o(r), corresponding

to the projection on the tensﬁi‘oﬂo(f) = r%rP (longitudinal) and the projection on the tens@ggo(f) = (8%F — rorB/r2)

(transversal), respectively. the isotropic sector, the incomgssibility constraint forces éhtwo components to have the same
scaling. Indeed, as can be seen in the figure, the two scalirayloes are pretty much the same. Nothing can be said rigorously

for the anisotropic sectors. In particular the incompressibility constraint is no more sufficient to force all sectors to have the
same scaling (see Appendix of [10]). In the body of Fig. 5, we also show the four components with a nonvanishing projection
inthe j = 2, m = 2 sector, corresponding to= 1, 2, 3, 4 in the list (.21) of Appendix. Three of such curves have a quite good
scaling behavior, while one shows a less steep scaling. This result, if confirmed by other measurements, implies a breaking of the
foliation mechanism. Nevertheless, let us notice that the overall intensity gfphejection with a slow decay is much smaller

than two out of the other three projections. It is therefore not clear whether such a slow decay jfet theector may ever

become important (i.e., dominant) at some scale or not. Other tests at higher Reynolds numbers must be done before making any
strict conclusions. It would be very interesting to extend such analysis to higher anisotropic gec@rand higher correlation
functions p > 2. The computational effort is far from trivial, because very soon in both cases the number of projections on
different eigenfunctions to be measured rapidly increases. Let us make here a comment on the claimed experimental observation
[29,30,5] that longitudinal and transversal high-order structure functionsotropic turbulence possess a different scaling
exponent. If the statistics are really isotropic, and therefore one may exclude contamination from the anisotropic sectors, then
the only possibility to have a different dtay between longitudinal, &ansversal and mixed longitutil-transversal components

would be to admit that already for the isotropic secgtet 0, on changing the representation, the scaling behavior is different.

As we mentioned, this is not possible for structure functions of opder2, because of the incompressibility constraint, but
cannot be ruled out for higher order correlators.
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Fig. 5. Log—log plot of the S(8) decomposition of the second rank tenss#? (r) vs r. In the inset, we plot the projections on the two
isotropic sectorg = 0 with ¢ = 1, 3, corresponding to the Iongitudinélig)o(r), and transversal structure functioSé%)o(r) (see Appendix
for the notation). In the body of the figure, there are the foorst intense projections on the anisotropic secsy| (rywith j =2,m =2:
projectiong = 1 (O); projectiong = 2 (+); projectiong = 3 (x), and projectiory = 4 (x). Notice that three out of four have roughly the same
scaling, whileg = 3 has a slower decay. Neverthelegs; 3 is much less intense than= 1 andg = 4 for all inertial scales.
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4. An application of SO(3) decomposition to Large-Eddy Simulation

The presence of strong large-scale anisotropies makes the RKF an ideal candidate to test small-scale modelizations used
in Large-Eddy Simulation. In LES, only the large scales of motion are described in a deterministic way, while small scales
are parametrized. In the sequel, we show results of what is known under the nanpeiarf tests: starting from DNS data,
we compare the behavior between the modeling of some sub-grid observables, and their real statistical behavior. These are the
typical zeroth order tests to lwone in order to check a priori the degree dfafelity of a LES. The interest in making such
tests is that we have a strongly anisotropic data set, i.e., an important benchmark for realistic situations.

To getinto details, the principle of LES is to focus on large scales, thanks to a low-pass spatial filtering applied to the velocity
field: v =9 = [ ¢ (x —x)v(x") dx’, with ¢ 2 (x) being the convolution kernel. When doing so, the unforced Navier—Stokes
equations for the filtered velocify; and pressurg, are modified by the appearance of a new term proportiortgj1gs, where:

Tef = @Tz/ﬁ — Uy Vg, is the so-called sub-grid-scale (SGS) stress tensor. In this way, only scales greater than the filter scale

are simulated or “resolved”. To close the LES equations, small scale motion has to be modeled, that is the SGS stress tensor
has to be expressed in terms of the resolved fiedahly. It is worth noticing that in the equation for the resolved total kinetic
energyg2 = vy Uy, there is a term proportional to the SGS stress and to the resolved straﬁb,patbe., ~ T ﬁaﬁ, whose

sign is not a priori defined. When negative, it representeffextivedissipation at scales larger than due to the friction at

the small ones (forward cascade); but when positive, the energy flow being reversed, it acts as a source of energy for the large
scales (energy back-scatter).

One of the most popular SGS models, describing both forward and backward sub-grid energy transfer is the so-called
nonlinear or tensor eddy-viscosity model, first proposed by Lebf@4], and discussed in great detail for homogeneous,
isotropic turbulence in [35,13]:

7y = cn A2 050,057, (13)

«,

wherec, is typically aO (1) constant. In our a priori tests, we always used a Gaussian, isotropic, normalized) dx = 1,
filter of the form:

o= (29 o 1957)
AW =\7a2 "2z )

For the characteristic wave number of the fikge= /A, we choose the values 8 16 and 32.

We start our comparison between the actual valueg,gfand those of the modeled SGS, with measures of one-point
guantities. A crude indicator of the similarities between the modeled SGS and the real quantities is given by the linear correlation
coefficient p(a, aM°9), between an observableand its modeled equivalenf™d. One of the most studied quantities is the
energy flux towards small scales. For the nonlinear model, we observe a very high level of correlation, going=ftb&8 in
the case ok, =4, to p = 0.98 in the case of. = 32. In terms of one point measures, the model performances are not spoiled
by the presence of the anisotropy, since these results are very similar to those obtained in [35] for isotropic turbulence. In the
sub-grid model (13) the only free parameter is ¢heconstant to be optimized at any chosen cut-off. Here we fixed them such
as to have a perfect agreement between teamsub-grid and the true energy dissipation. Once the only free parameter is fixed,
one may probe the performance of the model on the rare events by comparing the probability density function (PDF) of the true
745 and of that one measured on the sub-grid ma@gl Fig. 6 shows, for different choices of the filter scale~ k;l, the
probability density function of the local energy fluk,= ﬁaﬁ 744, as calculated from the DNS data, compared with that of the
modeled energy fluxpn = ﬁalgfglls. Except fork, = 4, that is for a cut-off at very large scale, we observe a good agreement
between the distributions. In particular, the agreement is really good when we pick a characteristic wavépuwilein the
inertial range.

In order to assess the performance of the nonlinear model sotampic quantitiesye decompose the tensor eddy-viscosity
into an isotropic part, the trace of and an anisotropic pattg — 1/3ts5845. For the six off-diagonal components, we obtain
rates of linear correlation of aboutd® Such a good agreement is also found for tihel probability densitjunction: in Fig. 7
the PDF of a purely anisotropic componenjg with « = y andg = z, is shown for two choices of the wavenumiagr

The effects of the anisotropy on sub-grid scale modeling appear more important when we consider two-point measures.
A natural indicator is the spatial correlation of the resolved velocity field and the gradient of the SGS stress tensor:

Cop(r) = (Ua(0)Vstgs(r)). (14)

where the RHS depends only on the separatidrecause we are considering a homogeneous flow. Let us notice that the
symmetric formC,g(r) + Cgy (—r), is thetransportterm of the dynamical equation of the second order teggi0) vg (r)).
We applied the S(B) decomposition to the function

Top(r) =2C45(0) — Cop(r) — Cop(—1) = Z Zgjm (r)B;lfm
qjm

*). (15)
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Fig. 6. Log-lin plot of the probability density functions of the true local energy &usx Eo,,g 4p (+), and the nonlinear model representation
onl = I?aﬁ r(?}; (x). The coefficiente, is fixed in order to enforce the equality of the average flux. Isotropic Gaussian filters are used. Cut-off
wavenumber and constants are, respectivelyk(a} 4, ¢, = 0.049; (b)k, = 8, ¢, =0.072; (C)kc = 16,¢, = 0.061; (d)k. = 32, ¢, = 0.056.
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Fig. 7. Probability density functions of theurely anisotropic off-diagonal component; of the SGS stress tenso#-), and of its nonlinear

representationry; (x). Figure (a)kc =8, ¢, = 0.072; (b) kc = 16, ¢, = 0.061. Small discrepancies are observed only for very intense
fluctuations in the larger cut-off case (a).

The log—log plot of the isotropic sectors and of some anisotropic ghes2, m =2, g = 2, 4) are shown in Fig. 8. We note

a very good agreement between the isotropic projection coefficieRfgaf), and its nonlinear correspondiﬂ@}'} (r). On the

other hand, the anisotropic projection coefficients are no longer well fitted by the nonlinear ones, which have a general tendency
to overestimate the anisotropy. In other words, as for two point anisotropic fluctuations, the sub-grid model here studied does not
perform as well as for the single point quantities once the only free parameniefixed by imposing the equality between the
sub-grid and the true energy dissipation. To summarize, we can say that even in the presence of a large-scale strong anisotropy,
the nonlinear model is able to reproduce the main features of the filtered flow, at least concerning single point measures.
Two-point measurements, probing also the correlation of the sub-grid tensor at different spatial locations, perform less well.
Still, isotropic two-point measurementseaguite well reproduced, whilsome discrepancies are measured for the most intense
anisotropic two-point measurements. It would be extremely interesting to extend this analysis performirey @ofuériori

test, i.e., undertaking a large-eddy simulation of such a strongly anisotropic flow and comparing the actual performance.
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Fig. 8. Log—log plot of the coefficients ;,, (r), of SO(3) decomposition of the sub-grid correlation (15), at the cutkeft= 16. (a) True
SGS correlation: the two top curves refer to the isotropic segtet) with ¢ = 1, 3; while the two bottom curves refer to the most intense
projections on the anisotropic sectpe= 2, m = 2, with ¢ = 2, 4. (b) The same as (a), but for the SGS nonlinear model. Notice that the two
isotropic projections almost coincide with the true ones showeaielp(a); while there is a clear mismatch in the reproduced intensities and
trends for the anisotropic sectors.

5. Conclusions

We presented a detailed numerical studyanisotropicstatistical fluctuations in stationadypmogeneouturbulent flows.

We have discussed the meaning of both dimensional and anomalous scaling for the anisotropic turbulent fluctuations. We have
extended the numerical results presented in [1], by discussing in detail the recovery of isotropy and the foliation hypothesis.
A first detailed measurement of the anisotropic properties of the full tensor second-order velocity correlation was performed.
Also, a systematic a prioritedy of the LES non-linear model in terms of its edyility to capture singlgoint and two-point

isotropic and anisotropic fluctuations in sub-grid quantities has been performed.

We have given some clear evidences that anisotropic turbulent fluctuations deserve an interest in their own right. They
possess the same degree of complexity already well experimented and measured for isotropic fluctuations. They are anomalous,
they posses a non-trivial phenomenology and they are much more persistent than what would be believed on the basis of simple
dimensional reasonings. Last but not least, they are ubiquitcarsyimeal numerical or experimental turbulent study, including
applied problems as for the case of LES. Much more work is needed to extend the available experimental and numerical data
base, and to improve experimental techniques enabling one to address in a fully systematic wa§B}he#e&@nposition on
laboratory data. Only after that will simple but basic questions concerning, for example, the degree of universality of anisotropic
fluctuations for each S@) sector or thdoliation hypothesis, be answered.
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Appendix

We report for completeness the full 8 decomposition of the symmetric second order terfé¥(r) [10] . Once fixed
Jj andm indices, the 6 independent basis tensor can be simply constructed starting from the spherical hatpenicglus
successive application of isotropic operators such as contractionyvihdé,g, or derivation with respect tég, saturating
the correct number of tensorial indices. A particular choice is the following:
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By & =r 2P, ), (.16)
ByE () =r I [r0F + P91 (1), (17)
BYE®)=rI[8% — %P 120 (1), (.18)
Bzﬁm(f) =r %238, (n), (.19)
BEE ®) =TT P 0y B e 0,10 (1), (.20)
Be_jm (F) =r T [PHVr,0,8% + €¥"Vr,8,0P ] @, (1), (:21)

where @, (r) = ri Y, (f), and €?P7 is the usual fully antisymmetric 3-dimensional tensor. The tensors are regrouped
according to their parity invariance property: first, those of patity/ (1 — 4), then thosg¢—)/*1 (5, 6).

If the second order tensor under exam did not possess a defined symmetry under the exesghgee would have needed
also the following three antisymmetric in addition to the previous six symmetric tensors, to complete the basis:

BYE®) =r I[P — P01 (), (:22)
BgE &) =r I e P b, (), (:23)
Bg";m(f) =r Ity @ (). (:24)

Clearly, 7 is of parity(—)/ (1— 4), and 89 are of parity(—)/*1.
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